
Hardware Objects for Java

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Christian Thalinger
Institute of Computer Languages

Vienna University of Technology, Austria
twisti@complang.tuwien.ac.at

Stephan Korsholm
Department of Computer Science

Aalborg University DK-9220 Aalborg
stk@cs.aau.dk

Anders P. Ravn
Department of Computer Science

Aalborg University DK-9220 Aalborg
apr@cs.aau.dk

Abstract

Java, as a safe and platform independent language,
avoids access to low-level I/O devices or direct memory ac-
cess. In standard Java, low-level I/O it not a concern; it is
handled by the operating system.

However, in the embedded domain resources are scarce
and a Java virtual machine (JVM) without an underlying
middleware is an attractive architecture. When running the
JVM on bare metal, we need access to I/O devices from Java;
therefore we investigate a safe and efficient mechanism to
represent I/O devices as first class Java objects, where device
registers are represented by object fields. Access to those reg-
isters is safe as Java’s type system regulates it. The access is
also fast as it is directly performed by the bytecodes getfield
and putfield.

Hardware objects thus provide an object-oriented ab-
straction of low-level hardware devices. As a proof of con-
cept, we have implemented hardware objects in three quite
different JVMs: in the Java processor JOP, the JIT compiler
CACAO, and in the interpreting embedded JVM SimpleRTJ.

1 Introduction

In embedded systems Java is now considered an alterna-
tive to C/C++. Java improves the safety of programs due to
compile time type checking, additional runtime checks, and
reference integrity. Those properties result in an increase of
programmer productivity. Furthermore, Java is much more
portable and thus facilitates reuse.

However, portability and safety comes at a cost: access
to low-level devices (common in embedded systems) is not
possible from pure Java. One has to use native functions that
are implemented in C/C++. Invocation of those native func-
tions incurs runtime overheads. Often they are developed in
ad-hoc fashion, thus making them error prone as well; for
instance if they interfere with the Java VM or garbage col-
lection when addressing Java objects. Before we present our

proposed solution, Hardware Objects, we describe the prob-
lem as seen from a Java virtual machine (JVM).

1.1 Embedded JVMs

The architecture of JVMs for embedded systems are more
diverse than on desktop or server systems. Figure 1 shows
variations of Java implementations in embedded systems and
an example of the control flow for a web server application.
The standard approach of a JVM running on top of an op-
erating system (OS) is shown in sub-figure (a). A network
connection bypasses the JVM via native functions and uses
the TCP/IP stack and device drivers of the OS.

A JVM without an OS is shown in sub-figure (b). This
solution is often called running on the bare metal. The JVM
acts as the OS and provides thread scheduling and low-level
access to the hardware. Thus the stack can be written en-
tirely in Java. An example of the approach is JNode1 which
implements the OS fully in Java.

Sub-figure (c) shows a solution where the JVM is a Java
processor. With this solution the native layer can be com-
pletely avoided and all code is Java.

However, for both (b) and (c) we need access to device
registers and in some applications also interrupts. Here we
focus on an object-oriented approach to access device regis-
ters which is compatible with Java. The issue of interrupts is
treated in a companion paper [7], because it is more related
to synchronization and thread scheduling.

1.2 Related Work

An excellent overview of historical solutions to access
hardware devices from high-level languages, including C, is
presented in Chapter 15.2 of [2]. The solution in Modula-1
(Ch. 15.3.1) is very much like C; however the constructs are
safer, because they are encapsulated in modules. In Ada (Ch
15.4.1) the representation of individual fields in registers can
be described precisely using representation classes, while the

1http://www.jnode.org/



Hardware
Java processor (JVM)

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application Web server

Hardware

OS (Linux)

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application

N
at

iv
e

Web server

Hardware

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application

N
at

iv
e

Web server

(a) (b) (c)

Figure 1. (a) Standard layers for embedded Java with an operating system, (b) a JVM on the bare metal, and (c) a
JVM as a Java processor

corresponding structure is bound to a location using the Ad-
dress attribute.

More recently, the RTSJ [1] does not give much support.
Essentially, one has to use RawMemoryAccess at the level
of primitive data types. A similar approach is used in the
Ravenscar Java profile [8]. Although the solution is efficient,
this representation of physical memory is not object oriented
and there are some safety issues: When one raw memory
area represents an address range where several devices are
mapped to there is no protection between them.

The aJile processor [6] uses native functions to access de-
vices through IO pins. The Squawk VM [15], which is a
JVM mostly written Java that runs without an operating sys-
tem, uses device drivers written in Java. These device drivers
use a form of peek and poke interface to access the device’s
memory. The JX Operating System [3] uses memory objects
to provide read-only memory and device access, which are
both required by an OS. Memory objects represent a region
of the main address space and accesses to the regions are han-
dled via normal method invocations on the memory objects
representing the different regions.

The distinctive feature of our proposal is that it maps a
hardware object onto the OO address space and provide, if
desired, access methods for individual fields, such that it lifts
the facilities of Ada into the object oriented world of Java.

The remainder of the paper is structured as follows: in
Section 2 we motivate hardware objects and present the idea.
Section 3 provides details on the integration of hardware
objects into three different JVMs: a Java processor, a Just-
in-time (JIT) compiling JVM, and an interpreting JVM. We
conclude and evaluate the proposal in Section 4.

2 Hardware Objects
Let us consider a simple parallel input/output (PIO) de-

vice. The PIO provides an interface between I/O registers

typedef struct {
int data;
int control;

} parallel_port;
#define PORT_ADDRESS 0x10000;

int inval, outval;
parallel_port *mypp;
mypp = (parallel_port *) PORT_ADDRESS;
...
inval = mypp->data;
mypp->data = outval;

Figure 2. Definition and usage of a parallel port in C

and I/O pins. The example PIO contains two registers: the
data register and the control register. Writing to the data
register stores the value into a register that drives the output
pins. Reading from the data register returns the value that is
present at the input pins.

The control register configures the direction for each PIO
pin. When bit n in the control register is set to 1, pin n drives
out the value of bit n of the data register. A 0 at bit n in
the control register configures pin n as input pin. At reset
the port is usually configured as input port2 – a safe default
configuration.

When the I/O address space is memory mapped, such a
parallel port is represented in C as a structure and a constant
for the address. This definition is part of the board level con-
figuration. Figure 2 shows the parallel port example. The
parallel port is directly accessed via a pointer in C. For a
system with a distinct I/O address space access to the de-
vice registers is performed via distinct machine instructions.
Those instructions are represented by C functions that take
the address as argument, which is not a type-safe solution.

2Output can result in a short circuit between the I/O pin and the external
device when the logic levels are different.



public final class ParallelPort {
public volatile int data;
public volatile int control;

}

int inval, outval;
myport = JVMMagic.getParallelPort();
...
inval = myport.data;
myport.data = outval;

Figure 3. The parallel port device as a simple Java
class

package com.board-vendor.io;

public class IOSystem {

// do some JVM magic to create the PP object
private static ParallelPort pp = JVMPPMagic();
private static SerialPort sp = JVMSPMagic();

public static ParallelPort getParallelPort() {
return pp;

}
public static SerialPort getSerialPort() {..}

}

Figure 4. A Factory with static methods for Single-
ton hardware objects

This simple representation of memory mapped I/O de-
vices in C is efficient but unsafe. On a standard JVM, na-
tive functions, written in C or C++, allow low-level access to
devices from Java. This approach is neither safe nor object-
oriented (OO) and incurs a lot of overheads; parameters and
return values have to be converted between Java and C.

In an OO language the most natural way to represent an
I/O device is as an object. Figure 3 shows a class definition
and object instantiation for our simple parallel port. The
class ParallelPort is equivalent to the structure definition for
C in Figure 2. Reference myport points to the hardware ob-
ject. The device register access is similar to the C version.

The main difference to the C structure is that the access
requires no pointers. To provide this convenient representa-
tion of I/O devices as objects we just need some magic in
the JVM and a mechanism to create the device object and re-
ceive a reference to it. Representing I/O devices as first class
objects has following benefits:

Safe: The safety of Java is not compromised. We can access
only those device registers that are represented by the
class definition.

Efficient: For the most common case of memory mapped
I/O device access is through the bytecodes getfield
and putfield; for a separate I/O address space the IO-
instructions can be included in the JVM as variants of
these bytecodes for hardware objects. Both solutions
avoid expensive native calls.

public class IOFactory {

private final static int SYS_ADDRESS = ...;
private final static int SERIAL_ADDRESS = ...;
private SysDevice sys;
private SerialPort sp;
IOFactory() {

sys = (SysDevice) JVMIOMagic(SYS_ADDRESS);
sp = (SerialPort) JVMIOMagic(SERIAL_ADDRESS);

};
private static IOFactory single = new IOFactory();
public static IOFactory getFactory() {

return single;
}
public SerialPort getSerialPort() { return sp; }
public SysDevice getSysDevice() { return sys; }
// here comes the magic!
Object JVMIOMagic(int address) {...}

}

public class DspioFactory extends IOFactory {

private final static int USB_ADDRESS = ...;
private SerialPort usb;
DspioFactory() {

usb = (SerialPort) JVMIOMagic(USB_ADDRESS);
};
static DspioFactory single = new DspioFactory();
public static DspioFactory getDspioFactory() {

return single;
}
public SerialPort getUsbPort() { return usb; }

}

Figure 5. A base class of a hardware object Factory
and a Factory subclass

2.1 Hardware Object Creation

Representing the registers of each I/O device by an object
or an array is clearly a good idea; but how are those objects
created? An object that represents an I/O device is a typical
Singleton [4]. Only one object should map to a single device.
Therefore, hardware objects cannot be instantiated by a sim-
ple new: (1) they have to be mapped by some JVM magic
to the device registers; (2) each device is represented by a
single object.

One may assume that the board manufacturer provides the
classes for the hardware objects and the configuration class
for the board. This configuration class provides the Factory
[4] methods (a common design pattern to create Singletons)
to instantiate hardware objects.

Each I/O device object is created by its own Factory
method. The collection of those methods is the board con-
figuration which itself is also a Singleton (we have only one
board). The configuration Singleton property is enforced by
a class that contains only static methods. Figure 4 shows
an example for such a class. The class IOSystem represents
a minimal system with two devices: a parallel port as dis-
cussed before to interact with the environment and a serial
port for program download and debugging.



+read() : char
+write()

+data : int
+status : int

SerialPort

#IODevice()

IODevice

+data : int
+control : int

ParallelPort

-IOFactory()
+getFactory() : IOFactory
+getSerialPort() : SerialPort
+getParallelPort() : ParallelPort

-single : IOFactory
-serial : SerialPort
-parallel : ParallelPort

IOFactory

«creates»

«creates»

-DspioFactory()
+getDspioFactory() : DspioFactory
+getUsbPort() : SerialPort

-single : DspioFactory
-usb : SerialPort

DspioFactory

«creates»

Figure 6. Hardware object classes and board Factory classes

This approach is simple, but not very flexible. Consider
a vendor who provides boards in slightly different config-
urations (e.g., with different number of serial ports). With
the approach described above each board requires a different
IOSystem class that lists all devices.

2.2 Board Configurations

We can avoid the duplication of code by replacing the
static Factory methods by instance methods and use inher-
itance for different configurations. With a Factory object we
represent the common subset of I/O devices by a base class
and the variants as subclasses.

However, the Factory object itself shall still be a Single-
ton. Therefore the board specific Factory object is created at
class initialization and can be retrieved by a static method.
Figure 5 shows an example of a base Factory and a derived
Factory. Note how getFactory() is used to get a single in-
stance of the hardware object Factory. We have applied the
idea of a Factory two times: the first Factory generates an
object that represents the board configuration. That object is
itself a Factory that generates the objects that represent the
actual devices – the hardware objects.

The shown example Factory is a simplified version of the
minimum configuration of the JOP [11] FPGA module Cy-
core and an extension with an I/O board that contains an USB
interface.

Furthermore, we show in Figure 5 a different way to in-
corporate the JVM magic into the Factory: we define well
known constants (the memory addresses of the devices) in
the Factory and let the native function JVMIOMagic() return
the correct I/O device type.

Figure 6 gives a summary example (a slight variation of
the former example) of hardware object classes and the cor-
responding Factory classes as an UML class diagram. The
serial port hardware object contains additional access meth-
ods to the device register fields. The figure shows that all I/O
classes subclass the abstract class IODevice, a detail we have
omitted in our discussion so far.

public class Example {

public static void main(String[] args) {

IOFactory fact = IOFactory.getFactory();
SerialPort sp = fact.getSerialPort();

String hello = "Hello World!";

for (int i=0; i<hello.length(); ++i) {
// busy wait on transmit data register empty
while ((sp.status & SerialPort.MASK_TDRE)==0)

;
// write a character
sp.data = hello.charAt(i);

}
}

}

Figure 7. Hello World using hardware objects

2.3 Using Hardware Objects

Creation of hardware objects is a bit complex, but usage
is very simple. After obtaining a reference to the object all
what has to be done (or can be done) is to read from and
write to the object fields. Figure 7 shows an example of the
client code. The example is the Hello World program using
low-level access to the terminal via a hardware object.

3 Implementations

In order to show that our proposed approach is work-
able we have chosen three completely different JVMs for
the evaluation: a Java processor (JOP [11, 13]), a JIT JVM
(CACAO [5]) and a small interpreting JVM (the SimpleRTJ
VM [10]). All three projects are open-source and make it
possible for us to show that hardware objects can be imple-
mented in very different JVMs.

We provide implementation details to help other JVM de-
velopers to add hardware objects to their JVM. The tech-
niques used for JOP, CACAO, or SimpleRTJ cannot be used
one-to-one. However, the solutions (or sometimes a work-
around) presented here should guide other JVM developers.



Stack

Handle area Heap
Runtime 

structures

GC info

...

handle

[0]

[2]

[1]

[3]GC info

4

...

a

b

handle

reference

reference

M0

Class 
info

M1

M2

Constant 
Pool

class reference

reference

HW object 
handle

class reference

handle

I/O device

reg0

reg1

reg2

Figure 8. Memory layout of the JOP JVM

3.1 HW Objects on JOP

We have implemented the proposed hardware objects in
the JVM for the Java processor JOP [11, 13]. No changes
inside the JVM (the microcode in JOP) were necessary. The
tricky part is the creation of hardware objects (the Factory
classes).

3.1.1 Object Layout

In JOP objects and arrays are referenced through an indirec-
tion, called the handle. This indirection is a lightweight read
barrier for the compacting real-time garbage collector (GC)
[12, 14]. All handles for objects in the heap are located in a
distinct memory region, the handle area. Besides the indirec-
tion to the real object the handle contains auxiliary data, such
as a reference to the class information, the array length, and
GC related data. Figure 8 shows an example with a small ob-
ject that contains two fields and an integer array of length 4.
We can see that the object and the array on the heap just con-
tain the data and no additional hidden fields. This object lay-
out greatly simplifies our object to I/O device mapping. We
just need a handle where the indirection points to the mem-
ory mapped device registers. This configuration is shown in
the upper part of Figure 8. Note that we do not need the GC
information for the HW object handles.

3.1.2 The Hardware Object Factory

As described in Section 2.1 we do not allow applications to
create hardware objects; the constructor is private. Two static
fields are used to store the handle to the hardware object. The
first field is initialized with the base address of the I/O device;
the second field contains a pointer to the class information.
The address of the first static field is returned as the reference
to the serial port object. We have to solve two issues: (1)

obtain the class reference for the HW object; (2) return the
address of a static field as a reference to the hardware object.

We have two options to get a pointer to the class informa-
tion of a hardware object, such as SerialPort, in a method of
IOFactory:

1. Create a normal instance of SerialPort with new on the
heap and copy the pointer to the class information.

2. Invoke a static method of SerialPort. The method exe-
cutes in the context of the class SerialPort and has ac-
cess to the constant pool of that class and the rest of the
class information.

Option 1 is simple and results in following code for the
object factory:

SerialPort s = new SerialPort();
int ref = Native.toInt(s);
SP_MTAB = Native.rdMem(ref+1);

All methods in class Native, a JOP system class, are na-
tive3 methods for low-level functions – the code we want
to avoid in application code. Method toInt(Object o) defeats
Java’s type safety and returns a reference as an int. Method
rdMem(int addr) performs a memory read. In our case the
second word from the handle, the pointer to the class infor-
mation. The main drawback of option 1 is the creation of
normal instances of the hardware class. With option 1 the
visibility of the constructor has to be relaxed to package.

For option 2 we have to extend each hardware object by a
class method to retrieve the address of the class information.
Figure 9 shows the version of SerialPort with this method.
We use again native functions to access JVM internal infor-
mation. In this case rdIntMem(1) loads one word from the

3There are no native functions in JOP – bytecode is the native instruction
set. The very few native functions in class Native are replaced by a special,
unused bytecode during class linking.



public final class SerialPort {

public volatile int status;
public volatile int data;

static int getClassRef() {
// we can access the constant pool pointer
// and therefore get the class reference
int cp = Native.rdIntMem(1);
...
return ref;

}
}

Figure 9. A static method to retrieve the address of
the class information

on-chip memory onto the top-of-stack. The on-chip memory
contains the stack cache and some JVM internal registers. At
address 1 the pointer to the constant pool of the actual class
is located. From that address we can calculate the address of
the class information. The main drawback of option 2 is the
repetitive copy of getClassRef() in each hardware class. As
this method has to be static (we need it before we have an
actual instance of the class) we cannot move it to a common
superclass.

We decided to use option 1 to avoid the code duplication.
The resulting package visibility of the hardware object con-
structor is a minor issue.

All I/O device classes and the Factory classes are grouped
into a single package, in our case in com.jopdesign.io. To
avoid exposing the native functions (class Native) that reside
in a system package we use delegation. The Factory con-
structor delegates all low-level work to a helper method from
the system package.

3.2 HW Objects in CACAO

As a second experiment we have implemented the hard-
ware objects in the CACAO VM [5]. The CACAO VM is a
research JVM developed at the Vienna University of Tech-
nology and has a Just-In-Time (JIT) compiler for various ar-
chitectures.

3.2.1 Object layout

As most other JVMs, CACAO’s Java object layout includes
an object header which is part of the object itself and resides
on the garbage collected heap (GC heap). This fact makes
the idea of having a real hardware-object impossible without
changing the CACAO VM radically. Thus we have to use
an indirection for accessing hardware-fields and hardware-
arrays. Having an indirection adds obviously an overhead
for accesses to hardware-fields or hardware-arrays. On the
other hand, CACAO does widening of primitive fields of the
type boolean, byte, char, and short to int which would make it
impossible to access hardware-fields smaller than int directly
in a Java object. With indirection we can solve this issue. We

store the address of the hardware-field in a Java object field
and access the correct data size in JIT code.

When it comes to storing the hardware address in a
Java object field, we hit another problem. CACAO sup-
ports 32 and 64-bit architectures and obviously a hard-
ware address of a byte-field on a 64-bit architecture won’t
fit into a widened 32-bit object field. To get around
this problem we widen all object fields of sub-classes of
org.cacaovm.io.IODevice to the pointer size on 64-bit ma-
chines. To be able to widen these fields and to generate the
correct code later on in the JIT compiler, we add a VM in-
ternal flag ACC CLASS HARDWARE FIELDS and set it for
the class org.cacaovm.io.IODevice and all its subclasses, so
the JIT compiler can generate the correct code without the
need to do super-class tests during the JIT compiler run. For
hardware-arrays we have to implement a similar approach.
The object layout of an array in CACAO looks like this:

typedef struct java_array_t {
java_object_t objheader;
int32_t size;

} java_array_t;

typedef struct java_intarray_t {
java_array_t header;
int32_t data[1];

} java_intarray_t;

The data field of the array structure is expanded to the ac-
tual size when the array object is allocated on the Java heap.
This is a common practice in C.

When we want to access a hardware array we have the
same problem as for fields – the array header. We cannot put
the array directly on the hardware addresses. Therefore we
add a union to the java xxxarray t-structures:

typedef struct java_intarray_t {
java_array_t header;
union {

int32_t array[1];
intptr_t address;

} data;
} java_intarray_t;

Now we can allocate the required memory for Java arrays
or store the hardware address for hardware arrays into the
array object.

3.2.2 Implementation

CACAO’s JIT compiler generates widened loads and stores
for getfield and putfield instructions. But when we want to
load byte or short fields from a hardware object we need to
generate 8-bit or 16-bit loads and stores, respectively. To get
these instructions generated we implement additional cases
in the JIT compiler for the various primitive types.

Whether the JIT compiler needs to generate 8-bit or 16-
bit loads and stores for boolean, byte, char, or short fields is
decided on the flags of the declared class.



Contrary to hardware fields, when accessing hardware ar-
rays we have to generate some dedicated code for array ac-
cesses to distinguish between Java arrays and hardware ar-
rays at runtime and generate two different code paths, one to
access Java arrays and the other to access hardware arrays.

3.3 HW Objects in SimpleRTJ

In a third experiment we have implemented hardware ob-
jects for the SimpleRTJ interpreter [10]. The SimpleRTJ VM
is described in more detail in [9]. To support the direct read-
ing and writing from/to raw memory we introduced an ad-
ditional version of the put/get-field bytecodes. We changed
the VM locally to use these versions at bytecode addresses
where access to hardware objects is performed. The original
versions of put/get-field are not changed and are still used to
access normal Java object fields.

The new versions of put/get-field to handle hardware ob-
jects are different. An object is identified as a hardware ob-
ject if it inherits from the base class IODevice. This base
class defines one 32 bit integer field called address. During
initialization of the hardware object the address field vari-
able is set to the absolute address of the device register range
that this hardware object accesses.

The hardware object specific versions of put/get-field cal-
culates the offset of the field being accessed as a sum of the
width of all fields preceding it. In the following example con-
trol has an offset of 0, data an offset of 1, status an offset of
3 and finally reset an offset of 7.

class DummyDevice extends IODevice {
public byte control;
public short data;
public int status;
public int reset;

}

The field offset is added to the base address as stored in
the super class instance variable address to get the absolute
address of the device register or raw memory to access. The
width (or number of bytes) of the data to access is derived
from the type of the field.

To ensure that the speed by which normal objects are
accessed do not suffer from the presence of hardware ob-
jects we use the following strategy: The first time a put/get-
field bytecode is executed a check is made if the objects ac-
cessed is a hardware object. If so, the bytecode is substituted
with the hardware object specific versions of put/get-field. If
not the bytecode is substituted with the normal versions of
put/get-field.

For this to be sound, a specific put/get-field instruction is
never allowed to access both normal and hardware objects.
In a polymorphic language like Java this is in general not a
sound assumption. However, with the inheritance hierarchy
of hardware object types this is a safe assumption.

3.4 Summary

We have described the implementation of hardware ob-
jects on JOP in great detail and outlined the implementa-
tion in CACAO and in SimpleRTJ. Other JVMs use different
structures for their class and object representations and the
presented solutions cannot be applied directly. However, the
provided details give guidelines for changing other JVMs to
implement hardware objects.

On JOP all the code could be written in Java,4 it was not
necessary to change the microcode (the low-level implemen-
tation of the JVM bytecodes in JOP). Only a single change in
the runtime representation of classes proved necessary. The
implementation in CACAO was straightforward. Adding a
new internal flag to flag classes which contain hardware-
fields and generating slightly more code for array accesses,
was enough to get hardware objects working in CACAO.

4 Conclusion

We have introduced the notation of hardware objects.
They provide an object-oriented abstraction of low-level de-
vices. They are first class objects providing safe and efficient
access to device registers from Java.

To show that the concept is practical we have imple-
mented it in three different JVMs: in the Java processor JOP,
in the research VM CACAO, and in the embedded JVM Sim-
pleRTJ. The implementation on JOP was surprisingly simple
– the coding took about a single day. The changes in the
JIT JVM and in the interpreter JVM have been slightly more
complex.

The proposed hardware objects are an important step for
embedded Java systems without a middleware layer. Device
drivers can be efficiently programmed in Java and benefit
from the same safety aspects as Java application code.

4.1 Performance

Our main objective for hardware objects is a clean OO
interface to I/O devices. Performance of the access of de-
vice registers is an important secondary goal, because short
access time is important on relatively slow embedded pro-
cessors while it matters less on general purpose processors,
where the slow I/O bus essentially limits the access time. In
Table 1 we compare the access time to a device register with
native functions to the access via hardware objects.

On JOP the native access is faster than using hardware
objects. This is due to the fact that a native access is a spe-
cial bytecode and not a function call. The special bytecode
accesses memory directly, where the bytecodes putfield and
getfield perform a null pointer check and indirection through
the handle.

The performance evaluation with the CACAO JVM has
been performed on a 2 GHz x86 64 machine under Linux

4except the already available primitive native functions



JOP CACAO SimpleRTJ
read write read write read write

native 8 9 24004 23683 2588 1123
HWO 21 24 22630 21668 3956 3418

Table 1. Access time to a device register in clock
cycles

with reads and writes to the serial port. The access via hard-
ware objects is slightly faster (6% for read and 9% for write,
respectively). The kernel trap and the access time on the I/O
bus dominate the cost of the access in both versions. On an
experiment with shared memory instead of a real I/O device
the cost of the native function call was considerable.

On the SimpleRTJ VM the native access is slightly faster
than access to hardware objects. The reason is that the Sim-
pleRTJ VM does not implement JNI, but has it’s own pro-
prietary, more efficient, way to invoke native methods. It
does this very efficiently using a pre-linking phase where the
invokestatic bytecode is instrumented with information to al-
low an immediate invocation of the target native function.
On the other hand, hardware object field access needs a field
lookup that is more time consuming than invoking a static
method.

4.2 Safety and Portability Aspects

Hardware objects map object fields to the device registers.
When the class that represents an I/O device is correct, access
to the low-level device is safe – it is not possible to read from
or write to an arbitrary memory address. A memory area
represented by an array is protected by Java’s array bounds
check.

It is obvious that hardware objects are platform depen-
dent, after all the idea is to have an interface to the bare metal.
Nevertheless, hardware objects give device manufacturers an
opportunity to supply supporting software that fits into Java’s
object-oriented framework and thus cater for developers of
embedded software.

4.3 Interrupts

Hardware objects are a vehicle to write device drivers in
Java and benefit from the safe language. However, most
device drivers also need to handle interrupts. We have not
covered the topic of writing interrupt handlers in Java. This
topic is covered by a companion paper [7], where we discuss
interrupt handlers implemented in Java. Jointly Java hard-
ware objects and interrupt handlers makes it attractive to de-
velop platform dependent middleware fully within an object-
oriented framework with excellent structuring facilities and
fine grained control over the unavoidable unsafe facilities.

Acknowledgement
We thank the anonymous reviewers for their detailed and

insightfully comments that helped to improve the paper.

References
[1] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Java Se-
ries. Addison-Wesley, June 2000.

[2] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages: ADA 95, Real-Time Java, and Real-
Time POSIX. Addison-Wesley Longman Publishing Co., Inc.,
3rd edition, 2001.

[3] M. Felser, M. Golm, C. Wawersich, and J. Kleinöder. The
JX operating system. In Proceedings of the USENIX Annual
Technical Conference, pages 45–58, 2002.

[4] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley Professional, 1994.

[5] R. Grafl. CACAO: A 64-Bit JavaVM Just-in-Time Compiler.
Master’s thesis, Vienna University of Technology, 1997.

[6] D. S. Hardin. Real-time objects on the bare metal: An effi-
cient hardware realization of the Java virtual machine. In Pro-
ceedings of the Fourth International Symposium on Object-
Oriented Real-Time Distributed Computing, page 53. IEEE
Computer Society, 2001.

[7] S. Korsholm, M. Schoeberl, and A. P. Ravn. Java interrupt
handling. In Proceedings of the 11th IEEE International Sym-
posium on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC 2008), Orlando, Florida, USA,
May 2008. IEEE Computer Society.

[8] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A high
integrity profile for real-time Java. In Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande, pages 131–
140. ACM Press, 2002.

[9] E. Potratz. A practical comparison between Java and Ada in
implementing a real-time embedded system. In SigAda ’03:
Proceedings of the 2003 annual ACM SIGAda international
conference on Ada, pages 71–83. ACM Press, 2003.

[10] RTJComputing. http://www.rtjcom.com. Visited June 2007.
[11] M. Schoeberl. JOP: A Java Optimized Processor for Em-

bedded Real-Time Systems. PhD thesis, Vienna University of
Technology, 2005.

[12] M. Schoeberl. Real-time garbage collection for Java. In Pro-
ceedings of the 9th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing
(ISORC 2006), pages 424–432, Gyeongju, Korea, April 2006.

[13] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Article in press and online: Journal of Sys-
tems Architecture, doi:10.1016/j.sysarc.2007.06.001, 2007.

[14] M. Schoeberl and J. Vitek. Garbage collection for safety
critical Java. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-time and Embedded Sys-
tems (JTRES 2007), pages 85–93, Vienna, Austria, September
2007. ACM Press.

[15] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
java virtual machine. In VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments,
pages 78–88. ACM Press, 2006.


