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Abstract Automatic memory management or garbage collection greatly simplifies
development of large systems. However, garbage collection is usually not used in
real-time systems due to the unpredictable temporal behavior of current implemen-
tations of a garbage collector. In this paper we propose a real-time garbage collector
that can be scheduled like a normal real-time thread with a deadline monotonic as-
signed priority. We provide an upper bound for the collector period so that the appli-
cation threads will never run out of memory. Furthermore, we show that the restricted
execution model of the Safety Critical Java standard simplifies root scanning and re-
duces copying of static data. Our proposal has been implemented and evaluated in
the context of the Java processor JOP.

Keywords Real-Time Systems · Garbage Collection · Real-Time Java

1 Introduction

The Java programming language is widely used for general purpose programming.
Java has a number of safety features (with respect to programming errors) which
make it an appealing candidate for real-time systems. One key feature that makes
Java a safe language is automatic memory management based on a garbage collector
(GC). Memory management is a cross-cutting issue and hard to get right when done
by hand, especially in large software systems. Manual memory management errors
can lead to dangling references which are hard to find and can occur at any point
during the execution of a program. Garbage collection relieves programmers from
having to worry about this class of errors.

In order to make Java suitable for hard real-time systems the Real-Time Specifica-
tion for Java (RTSJ) [10] chooses to avoid GC by introducing the concept of immortal
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and scoped memory areas and no-heap real-time threads. A scoped memory area is
a region which supports linear time allocation of objects and bulk deallocation. The
RTSJ mandates write barriers to prevent dangling pointers. Any reference assignment
must ensure that the referred object has a lifetime at least as long as that of the target
of the assignment. Scoped memories are thus safer than explicit memory manage-
ment, but still hard to use correctly [20,23]. An alternative that is an active area of
research is garbage collection algorithms with real-time guarantees.

We believe that for the acceptance of Java for real-time systems, the restrictions
imposed by the RTSJ are too strong. To simplify creation of possible large real-time
applications, most of the code should be able to use the GC managed heap. For a
collector to be used in real-time systems two points are essential:

– The GC has to keep up with the garbage generated by the application threads to
avoid out-of-memory stalls

– The GC has to be incremental with a short maximum blocking time that has to be
known

– All GC operations, such as object allocation, write barriers, root scanning, tracing,
and object copying need to be time predictable.

The first issue that has to be considered is scheduling the GC so that the GC col-
lects enough garbage. The memory demands (static and dynamic) by the application
threads have to be analyzed. These requirements, together with the properties of the
GC, result in scheduling parameters for the GC thread. In this paper we present a
solution to calculate the maximum period of the GC thread that will collect enough
memory in each collector cycle so we will never run out of memory. The collector
cycle depends on the heap size and the allocation rate of the application threads.

The second point is necessary to limit interference between the GC thread and
high-priority threads. It is also essential to minimize the overhead introduced by read-
and write-barriers, which are necessary for synchronization between the GC thread
and the application threads. The design of a GC within these constraints is described
in [36,33] and summarized in Section 4.

Time predictability of individual GC operations depends in the implementation of
the GC. Although the main focus of this paper is on the derivation of the maximum
GC period, the evaluation section provides some details of a time-predictable GC
implementation.

To distinguish between other garbage collectors and a collector for (hard) real-
time systems we define a real-time collector as follows:

A real-time garbage collector provides time predictable automatic memory
management for tasks with a bounded memory allocation rate with minimal
temporal interference to tasks that use only static memory.

To avoid heap fragmentation (external or internal) a real-time GC has to compact
the heap. A compacted heap results in a time-predictable object allocation. Com-
paction can be either performed on the full heap with a mark-compact collector or
with a copying collector. In Section 2, the maximum period for both variants is ana-
lyzed. As the maximum period is similar for both algorithms and a copying collector
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moves less objects we have chosen to implement a copying collector for the eval-
uation. The collector presented in this paper is based on the work by Steele [38],
Dijkstra [14] and Baker [8]. However, the copying collector is changed to perform
the copy of an object concurrently by the collector and not as part of the mutator
work. Therefore we name it concurrent-copy collector.

We will use the terms first introduced by Dijkstra with his On-the-Fly concurrent
collector [14]. The application is called the mutator to reinforce that the application
changes (mutates) the object graph while the GC does the collection work. The GC
process is simply called collector. In the following discussion we will use the color
scheme of white, gray, and black objects:

Black indicates that the object and all immediate descendants have been visited by
the collector.

Grey objects have been visited, but the descendants may not have been visited by
the collector, or the mutator has changed the object.

White objects are unvisited. At the beginning of a GC cycle all objects are white. At
the end of the tracing, all white objects are garbage.

At the end of a collection cycle all black objects are live (or floating garbage) and
all white objects are garbage.

1.1 Incremental Collection

An incremental collector can be realized in two ways: either by doing part of the
work on each allocation of a new object or by running the collector as an indepen-
dent process. For a single-threaded application, the first method is simpler as less
synchronization between the application and the collector is necessary. For a multi-
threaded environment there is no advantage by interleaving collector work with object
allocation. In this case we need synchronization between the collector work done by
one thread and the manipulation of the object graph performed by the other mutator
thread. Therefore we will consider a concurrent solution where the collector runs in
its own thread or processor. It is even possible to realize the collector as dedicated
hardware [15].

1.2 Conservatism

Incremental collector algorithms are conservative, meaning that objects becoming
unreachable during collection are not collected by the collector — they are floating
garbage. Many approaches exist to reduce this conservatism in the general case. How-
ever, algorithms that completely avoid floating garbage are impractical. For different
conservative collectors the worst-case bounds are all the same (i.e., all objects that
become unreachable during collection remain floating garbage). Therefore the level
of conservatism is not an issue for real-time collectors.
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1.3 Safety Critical Java

In [35] a profile for safety-critical Java (SCJ) is defined. SCJ is also an evolving
standard under the Java Community Process (JSR 302) [16] for future safety-critical
systems. SCJ has two interesting properties that may simplify the implementation of
a real-time collector: firstly, the split between initialization and mission phase, and
secondly the simplified threading model (which also mandates that self-blocking op-
erations are illegal in the mission phase). During initialization of the application a
SCJ virtual machine does not have to meet any real-time constraints (other than pos-
sibly a worst case bound on the entire initialization phase). It is perfectly acceptable
to use a non-real-time GC implementation during this phase – even a stop-the-world
GC. As the change from initialization to mission phase is explicit, it is clear when
the virtual machine must initiate real-time collection and which code runs during the
mission phase.

Simplifying the threading model has the following advantage, if the collector
thread runs at a lower priority than all other threads in the system, it is the case that
when it runs all other threads have returned from their calls to run(). This is trivially
true due to the priority preemptive scheduling discipline.1 Any thread that has not
returned from its run() method will preempt the GC until it returns. This has the side
effect that the GC will never see a root in the call stack of another thread. Therefore,
the usually atomic operation of scanning call stacks can be omitted in the mission
phase. We will elaborate on this property in Section 3.

This paper is an extended version of [29] and the remainder of this paper is struc-
tured as follows: Section 2 is the main section of the paper and provides the bound of
the maximum collector period for mark-compact and concurrent-copy collectors. In
Section 3, we describe possible simplifications of the GC algorithm when the applica-
tion is structured according to the SCJ specification. We describe an implementation
of a concurrent-copy GC on the Java processor JOP and evaluate our design in Sec-
tion 4. It has to be noted that the analysis of the maximum GC period is independent
of the concrete implementation. The findings are discussed in Section 5 and compared
to related work in Section 6. The paper is concluded in Section 7.

2 Scheduling of the Collector Thread

In the following section, we provide a bound on the maximum collector period so that
no mutator thread runs out of memory. To provide this bound, the size of the heap,
the maximum allocation rate of the mutator threads, and the maximum lifetime of
objects needs to be known. The heap size is known statically. The maximum alloca-
tion rate can be analyzed similar to the worst-case execution time (WCET). To derive
the maximum allocation rate, a WCET tool, such as [32], can be adapted by setting
the execution cost for an allocation instruction to the size of the object and to zero
for other instructions. Therefore, the mutator threads need to be statically analyzable,
e.g., all loops and the recursion depths needs to be bounded. This is a common restric-

1 If we would allow blocking in the application threads, we would also need to block the GC thread.
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tion for hard real-time systems. For the maximum lifetime of objects an inter-thread
analysis has to be performed, which is an interesting research challenge.

The collector work can be scheduled either work based or time based. On a work
based scheduling, as performed in [37], an incremental part of the collector work
is performed at object allocation. This approach sounds quite natural as threads that
allocate more objects have to pay for the collector work. Furthermore, no additional
collector thread is necessary. The main issue with this approach is to determine how
much work has to be done on each allocation – a non trivial question as collection
work consists of different phases. A more subtle question is: Why should a high
frequency (and high priority) thread increase its WCET by performing collector work
that does not have to be done at that period? Leaving the collector work to a thread
with a longer period allows higher utilization of the system.

On a time based scheduling of the collector work, the collector runs in its own
thread. Scheduling this thread as a normal real-time thread is quite natural for a hard
real-time system. The question is: which priority to assign to the collector thread?
The Metronome collector [7] uses the highest priority for the collector. Robertz and
Henriksson [25] and Schoeberl [29] argue for the lowest priority. When building hard
real-time systems the answer must take scheduling theory into consideration: the pri-
ority is assigned according to the period, either rate monotonic [19] or more general
deadline monotonic [3]. Assuming that the period of the collector is the longest in
the system and the deadline equals the period the collector gets the lowest priority.

In this section, we provide an upper bound for the collector period so that the
application threads will never run out of memory. The collector period, besides the
WCET of the collector, is the single parameter of the collector that can be incorpo-
rated in standard schedulability analysis.

The following symbols are used in this section: heap size for a mark-compact
collector (HMC) and for a concurrent-copying collector (HCC) containing both semi-
spaces, period of the GC thread (TGC), period of a single mutator thread (TM), period
of mutator thread i (Ti) from a set of threads, and memory amount allocated by a
single mutator (a) or by mutator i (ai) from a set of threads.

We assume that the mutator allocates all memory at the start of the period and
the memory becomes garbage at the end. In other words the memory is live for one
period. This is the worst-case,2 but very common as we can see in the following code
fragment.

for (;;) {

Node n = new Node();

work(n);

waitForNextPeriod();

}

The object Node is allocated at the start of the period and n will reference it until
the next period when a new Node is created and assigned to n. In this example we
assume that no reference to Node is stored (inside work) to an object with a longer
lifetime.

2 See Section 2.3.6 for an example where the worst-case lifetime is two periods.
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Fig. 1 Heap usage during a mark-compact collection cycle
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(b)
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at the end (before flip)

(c)

f4 l7 f6 f5

after the flip

(d)

to-space

at the begin of the GC cycle

from-space

l4 g3 g2 g1

Fig. 2 Heap usage during a concurrent-copy collection cycle

2.1 An Example

We start our discussion with a simple example3 where the collector period is 3 times
the mutator period (TGC = 3TM) and a heap size of 8 objects (8a). We show the heap
during one GC cycle for a mark-compact and a concurrent-copy collector. The fol-
lowing letters are used to show the status of a memory cell (that contains one object
from the mutator in this example) in the heap: gi is garbage from mutator cycle i, l

3 The relation between the heap size and the mutator/collector proportion is an arbitrary value in this
example. We will provide the exact values in the next sections.
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is the live memory, and f is floating garbage. We assume that all objects that become
unreachable during the collection remain floating garbage.

Figure 1 shows the changes in the heap during one collection cycle. At the start
(sub-figure (a)) there are three objects (g1, g2, and g3) left over from the last cy-
cle (floating garbage) which are collected by the current cycle and one live object
l4. During the collection the live objects become unreachable and are now floating
garbage (e.g. f4 in sub-figure (b)). At the end of the cycle, just before compacting,
we have three garbage cells (g1-g3), three floating garbage cells ( f4- f6) and one live
cell l7 (sub-figure (c)). Compaction moves the floating garbage and the live cell to
the start of the heap and we end up with four free cells (sub-figure (d)). The floating
garbage will become garbage in the next collection cycle and we start over with the
first sub-figure with three garbage cells and one live cell.

Figure 2 shows one collection cycle of the concurrent-copy collector. We have
two memory spaces: the from-space and the to-space. Again we start (sub-figure (a))
the collection cycle with one live cell and three garbage cells left over from the last
cycle. Note that the order of the cells is different from the previous example. New
cells are allocated in the to-space from the top of the heap, whereas moved cells are
allocated from the bottom of the heap. Sub-figure (b) shows a snapshot of the heap
during the collection: formerly live object l4 is already floating garbage f4 and copied
into to-space. A new cell l5 is allocated in the to-space. Before the flip of the two
semi-spaces (sub-figure (c)) the from-space contains the three garbage cells (g1-g3)
and the to-space the three floating garbage cells ( f4- f6) and one live cell l7. Sub-
figure (d) shows the heap after the flip: The from-space contains the three floating
cells which will be garbage cells in the next cycle and the one live cell. The to-space
is now empty.

From this example we see that the necessary heap size for a mark-compact collec-
tor is similar to the heap size for a copying collector. We also see that the compacting
collector has to move more cells (all floating garbage cells and the live cell) than the
copying collector (just the one cell that is live at the beginning of the collection).

2.2 Minimum Heap Size

In this section, we show the memory bounds for a mark-compact collector with a
single heap memory and a concurrent-copying collector with the two spaces from-
space and to-space.

2.2.1 Mark-Compact

For the mark-compact collector, the heap HMC can be divided into allocated memory
M and free memory F

HMC = M+F = G+G+L+F (1)

where G is garbage at the start of the collector cycle that will be reclaimed by the
collector. Objects that become unreachable during the collection cycle and will not
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be reclaimed are floating garbage G. These objects will be detected in the next col-
lection cycle. We assume the worst case that all objects that die during the collection
cycle will not be detected and therefore are floating garbage. L denotes all live, i.e.,
reachable, objects. F is the remaining free space.

We have to show that we will never run out of memory during a collection cycle
(F ≥ 0). The amount of allocated memory M has to be less than or equal to the heap
size HMC

HMC ≥M = G+G+L (2)

In the following proof the superscript n denotes the collection cycle. The subscript
letters S and E denote the value at the start and the end of the cycle, respectively.

Lemma 1 For a collection cycle the amount of allocated memory M is bounded by
the maximum live data Lmax at the start of the collection cycle and two times Amax,
the maximum data allocated by the mutator during the collection cycle.

M ≤ Lmax +2Amax (3)

Proof During a collection cycle G remains constant. All live data that becomes un-
reachable will be floating garbage. Floating garbage GE at the end of cycle n will be
detected (as garbage G) in cycle n+1.

Gn+1 = Gn
E (4)

The mutator allocates A memory and transforms part of this memory and part of the
live data at the start LS to floating garbage GE at the end of the cycle. LE is the data
that is still reachable at the end of the cycle.

LS +A = LE +GE (5)

with A ≤ Amax and LS ≤ Lmax. A new collection-cycle start immediately follows the
end of the former cycle. Therefore the live data remains unchanged.

Ln+1
S = Ln

E (6)

We will show that (3) is true for cycle 1. At the start of the first cycle we have no
garbage (G = 0) and no live data (LS = 0). The heap contains only free memory.

M1
S = 0 (7)

During the collection cycle the mutator allocates A1 memory. Part of this memory
will be live at the end and the remaining will be floating garbage.

A1 = L1
E +G1

E (8)

Therefore at the end of the first cycle

M1
E = L1

E +G1
E

M1 = A1 (9)
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As A1 ≤ Amax (3) is fulfilled for cycle 1.
Under the assumption that (3) is true for cycle n, we have to show that (3) holds

for cycle n+1.

Mn+1 ≤ Lmax +2Amax (10)

Mn = Gn +Gn
E +Ln

E (11)

Mn+1 = Gn+1 +Gn+1
E +Ln+1

E (12)

= Gn
E +Ln+1

S +An+1 apply (4) and (5)

= Gn
E +Ln

E +An+1 apply (6)

= Ln
S +An +An+1 apply (5) (13)

As LS ≤ Lmax, An ≤ Amax and An+1 ≤ Amax

Mn+1 ≤ Lmax +2Amax (14)
ut

2.2.2 Concurrent-Copy

In the following section, we will show the memory bounds for a concurrent-copying
collector with the two spaces from-space and to-space. We will use the same symbols
as in Section 2.2.1 and denote the maximum allocated memory in the from-space as
MFrom and the maximum allocated memory in the to-space as MTo.

For a copying-collector the heap HCC is divided in two equal sized spaces HFrom
and HTo. The amount of allocated memory M in each semi-space has to be less than
or equal to HCC

2
HCC = HFrom +HTo ≥ 2M (15)

Lemma 2 For a collection cycle, the amount of allocated memory M in each semi-
space is bounded by the maximum live data Lmax at the start of the collection cycle
and Amax, the maximum data allocated by the mutator during the collection cycle.

M ≤ Lmax +Amax (16)

Proof Floating garbage at the end of cycle n will be detectable garbage in cycle n+1

Gn+1 = Gn
E (17)

Live data at the end of cycle n will be the live data at the start of cycle n+1

Ln+1
S = Ln

E (18)

The allocated memory MFrom in the from-space contains garbage G and the live
data at the start Ls.

MFrom = G+LS (19)
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All new objects are allocated in the to-space. Therefore the memory requirement for
the from-space does not change during the collection cycle. All garbage G remains
in the from-space and the to-space only contains floating garbage and live data.

MTo = G+L (20)

At the start of the collection cycle, the to-space is completely empty.

MTo S = 0 (21)

During the collection cycle all live data is copied into the to-space and new objects
are allocated in the to-space.

MTo E = LS +A (22)

At the end of the collector cycle, the live data from the start LS and new allocated
data A stays either live at the end LE or becomes floating garbage GE .

LS +A = LE +GE (23)

For the first collection cycle there is no garbage (G= 0) and no live data at the start
(LS = 0), i.e. the from-space is empty (M1

From = 0). The to-space will only contain all
allocated data A1, with A1 ≤ Amax, and therefore (16) is true for cycle 1.

Under the assumption that (16) is true for cycle n, we have to show that (16) holds
for cycle n+1.

Mn+1
From ≤ Lmax +Amax

Mn+1
To ≤ Lmax +Amax (24)

At the start of a collection cycle, the spaces are flipped and the new to-space is
cleared.

Hn+1
From⇐ Hn

To

Hn+1
To ⇐ /0 (25)

The from-space:

Mn
From = Gn +Ln

S (26)

Mn+1
From = Gn+1 +Ln+1

S (27)

= Gn
E +Ln

E

= Ln
S +An (28)

As LS ≤ Lmax and An ≤ Amax

Mn+1
From ≤ Lmax +Amax (29)



11

The to-space:

Mn
To = Gn

E +Ln
E (30)

Mn+1
To = Gn+1

E +Ln+1
E (31)

= Ln+1
S +An+1

= Ln
E +An+1 (32)

As LE ≤ Lmax and An+1 ≤ Amax

Mn+1
To ≤ Lmax +Amax (33)

ut
From this result we can see that the dynamic memory consumption for a mark-

compact collector is similar to a concurrent-copy collector. This is contrary to the
common belief that a copy collector needs the double amount of memory.

We have seen that the double-memory argument against a copying collector does
not hold for an incremental real-time collector. We need double the memory of the
allocated data during a collection cycle in either case. The advantage of the copying
collector over a compacting one is that newly allocated data are placed in the to-space
and does not need to be copied. The compacting collector moves all newly created
data (that is mostly floating garbage) at the compaction phase.

2.3 Garbage Collection Period

GC work is inherently periodic. After finishing one round of collection the GC starts
over. The important question is: what is the maximum period the GC can be run so
that the application will never run out of memory. Scheduling the GC at a shorter
period does not hurt but decreases utilization.

In the following, we derive the maximum collector period that guarantees that we
will not run out of memory. The maximum period TGC of the collector depends on
Lmax and Amax for which safe estimates are needed.

We assume that the mutator allocates all memory at the start of the period and
the memory becomes garbage at the end. In other words the memory is live for one
period. This is the worst case, but very common.

2.3.1 Single Mutator Thread

First we give an upper bound for the collector cycle time for a single mutator thread.

Lemma 3 For a single mutator thread with period TM that allocates memory “a”
each period, the maximum collector period TGC that guarantees that we will not run
out of memory is

TGC ≤ TM

⌊
HMC−a

2a

⌋
(34)

TGC ≤ TM

⌊
HCC−2a

2a

⌋
(35)
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Proof The maximum live data referenced by a single mutator is the maximum data
allocated by the mutator in a single cycle.

Lmax = a (36)

A single mutator allocates a memory during the period TM . Therefore the maximum
allocation during the collector period TGC is

Amax = a
⌈

TGC

TM

⌉
(37)

Using equations (2) and (3) we get the minimum heap size HMC for a mark-compact
collector

HMC ≥ Lmax +2Amax

HMC ≥ a
(

1+2
⌈

TGC

TM

⌉)
(38)

Equations (15) and (16) result in the minimum heap size HCC, containing both semi-
spaces, for the concurrent-copy collector

HCC ≥ 2(Lmax +Amax)

HCC ≥ 2a
(

1+
⌈

TGC

TM

⌉)
(39)

The ceiling function covers the worst-case schedule between the collector thread and
the mutator thread. We are interested in the maximum collector period TGC with a
given heap size HMC or HCC ⌈

TGC

TM

⌉
≤ HMC−a

2a
(40)

⌈
TGC

TM

⌉
≤ HCC−2a

2a
(41)

The maximum quotient ( TGC
TM

) that fulfills (40) or (41) is an integer n. n is the largest
integer that is less than or equal the right side of (40) or (41). Therefore we get for
the mark-compact collector

TGC

TM
≤
⌊

HMC−a
2a

⌋
(42)

⇒ TGC ≤ TM

⌊
HMC−a

2a

⌋
(43)

and for the concurrent-copy collector

TGC

TM
≤
⌊

HCC−2a
2a

⌋
(44)

⇒ TGC ≤ TM

⌊
HCC−2a

2a

⌋
(45)

ut
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2.3.2 Several Mutator Threads

In this section, the upper bound of the period for the collector thread is given for n
independent mutator threads.

Theorem 1 For “n” mutator threads with period Ti where each thread allocates ai
memory each period, the maximum collector period TGC that guarantees that we will
not run out of memory is

TGC ≤
HMC−3∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(46)

TGC ≤
HCC−4∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(47)

Proof For n mutator threads with periods Ti and allocations ai during each period the
values for Lmax and Amax are

Lmax =
n

∑
i=1

ai (48)

Amax =
n

∑
i=1

⌈
TGC

Ti

⌉
ai (49)

The ceiling function for Amax covers the individual worst cases for the thread schedule
and cannot be solved analytically. Therefore we use a conservative estimation A

′
max

instead of Amax.

A
′
max =

n

∑
i=1

(
TGC

Ti
+1
)

ai ≥
n

∑
i=1

⌈
TGC

Ti

⌉
ai (50)

From (2) and (3) we get the minimum heap size for a mark-compact collector

HMC ≥ Lmax +2Amax

≥
n

∑
i=1

ai +2
n

∑
i=1

⌈
TGC

Ti

⌉
ai (51)

For a given heap size HMC we get the conservative upper bound of the maximum
collector period TGC

4

2A
′
max ≤ HMC−Lmax

2
n

∑
i=1

(
TGC

Ti
+1
)

ai ≤ HMC−Lmax (52)

TGC ≤
HMC−Lmax−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(53)

4 It has to be noted that this is a conservative value for the maximum collector period TGC . The maxi-
mum value TGCmax that fulfills (51) is in the interval(

HMC−3∑
n
i=1 ai

2∑
n
i=1

ai
Ti

,
HMC−∑

n
i=1 ai

2∑
n
i=1

ai
Ti

)
and can be found by an iterative search.
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⇒ TGC ≤
HMC−3∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(54)

Equations (15) and (16) result in the minimum heap size HCC, containing both semi-
spaces, for the concurrent-copy collector

HCC ≥ 2Lmax +2Amax

≥ 2
n

∑
i=1

ai +2
n

∑
i=1

⌈
TGC

Ti

⌉
ai (55)

For a given heap size HCC we get the conservative upper bound of the maximum
collector period TGC

2A
′
max ≤ HCC−2Lmax

2
n

∑
i=1

(
TGC

Ti
+1
)

ai ≤ HCC−2Lmax (56)

TGC ≤
HCC−2Lmax−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(57)

⇒ TGC ≤
HCC−4∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(58)

ut

2.3.3 Producer/Consumer Threads

So far we have only considered threads that do not share objects for communication.
This execution model is even more restrictive than the RTSJ scoped memories that
can be shared between threads. In this section, we discuss how our GC scheduling
can be extended to account for threads that share objects.

Object sharing is usually done by a producer and a consumer thread. I.e., one
thread allocates the objects and stores references to those objects in a way that they
can be accessed by the other thread. This other thread, the consumer, is in charge to
free those objects after use.

An example of this sharing is a device driver thread that periodically collects
data and puts them into a list for further processing. The consumer thread, with a
longer period, takes all available data from the list at the start of the period, processes
the data, and removes them from the list. During the data processing, new data can be
added by the producer. Note that in this case the list will probably never be completely
empty. This typical case cannot be implemented by an RTSJ shared scoped memory.
There would be no point in the execution where the shared memory will be empty
and can get recycled.

The question now is how much data will be alive in the worst case. We denote Tp
as the period of the producer thread τp and Tc as the period of the consumer thread
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τc. τp allocates ap memory each period. During one period of the consumer τc the
producer τp allocates ⌈

Tc

Tp

⌉
ap

memory. The worst case is that τc takes over all objects at the start of the period and
frees them at the end. Therefore the maximum amount of live data for this producer/-
consumer combination is ⌈

2Tc

Tp

⌉
ap

To incorporate this extended lifetime of objects we introduce a lifetime factor li which
is

li =

{
1 : for normal threads⌈

2Tc
Ti

⌉
: for producer τi and associated consumer τc

(59)

and extend Lmax from (48) to

Lmax =
n

∑
i=1

aili (60)

The maximum amount of memory Amax that is allocated during one collection cycle is
not changed due to the freeing in a different thread and therefore remains unchanged.

The resulting equations for the maximum collector period are

TGC ≤
HMC−∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(61)

and

TGC ≤
HCC−2∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(62)

If the consumer thread does not consume all elements at one iteration, the lifetime
of objects is further extended. The of lifetime factor has to be increased accordingly.

2.3.4 Long Periods

Threads with a longer period/deadline than the collector will receive a lower priority
than the collector thread. Due to the ceiling functions the equations for the maximum
collector period are still valid: Such a thread contributes with his allocation al once
to Lmax and once to Amax. As a consequence the collector will run at a higher priority
than the mutator with the longer period.

As the collector runs at a higher priority than the thread with the long period, we
cannot apply the SCJ optimization for this thread. The collector has to scan the stack
of that thread atomically. However, this atomic section needs only be atomic with
respect to the thread scanned [24]. The collector can still be preempted by higher
priority threads during the stack scan.
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2.3.5 Static Objects

The discussion about the collector cycle time assumes that all live data is produced by
the periodic application threads and the maximum lifetime is one period. However,
in the general case we have also live data that is allocated in the initialization phase
of the real-time application and stays alive until the application ends. We incorporate
this value by including this static live memory Ls in Lmax

Lmax = Ls +
n

∑
i=1

aili (63)

A mark-compact collector moves all static data to the bottom of the heap in
the first and second5 collection cycle after the allocation. It does not have to com-
pact these data during the following collection cycles in the mission phase. The
concurrent-copy collector moves these static data in each collection cycle. Further-
more, the memory demand for the concurrent copy is increased by the double amount
of the static data (compared to the single amount in the mark-compact collector)6.

The SCJ application model with an initialization and a mission phase can reduce
the amount of live data that needs to be copied (see Section 3).

2.3.6 Object Lifetime

Listing 1 shows an example of a periodic thread that allocates an object in the main
loop and the resulting bytecodes. The method waitForNextPeriod() (or wFNP() for
short) blocks the periodic thread till its next release.

There is a time between allocation of Node and the assignment to n where a
reference to the former Node (from the former cycle) and the new Node (on the
operand stack) is live. To handle this issue we can either change the values of Lmax
and Amax to accommodate this additional object or change the top-level code of the
periodic work to explicitly assign a null-pointer to the local variable n as it can be
seen in Listing 4 from the evaluation section. Programming against the SCJ profile
avoids this issues (see Section 3).

However, this null pointer assignment is only necessary at the top-level method
that invokes waitForNextPeriod and is therefore not as complex as explicit freeing of
objects. Objects that are created inside work in our example do not need to be freed
in this way as the reference to the object gets lost on return from the method.

2.3.7 Allocation Cost

A compacting GC introduces some overhead due to the movement of live data. How-
ever, this additional cost pays off for real-time systems by two important proper-
ties: (1) fragmentation (external or internal) is avoided, and (2) allocation is time-
predictable. After compaction the free part of the heap is contiguous. Allocation is

5 A second cycle is necessary as this static data can get intermixed by floating garbage from the first
collector cycle.

6 Or the collector period gets shortened.
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Listing 1 Example periodic thread and the corresponding Java bytecodes

public void run() {

for (;;) {

Node n = new Node();

work(n);

waitForNextPeriod();

}

}

public void run();

Code:

0: new #20; //class Node

3: dup

4: invokespecial #22; //"<init>":()V

7: astore_1

8: aload_1

9: invokestatic #26; //work:(Node)V

12: aload_0

13: invokevirtual #30; //wFNP:()Z

16: pop

17: goto 0

a cheap and constant time increment of a pointer by the size of the allocated object.
A new allocated object in Java has to be initialized with zero. This initialization can
be done at allocation time, resulting in a cost linear to the size of the object. Or the
free heap can be zeroed out by the GC at the end of the GC cycle. The second solu-
tion shifts cost from the mutator threads to the GC thread. When mutator periods are
shorter than the GC period, this cost shift results in a better schedulable system.

3 Safety-Critical Java Simplifications

The restrictions of the computational model for safety critical Java allow for opti-
mizations of the GC. We can avoid atomic stack scanning for roots and do not have
to deal with exact pointer finding. Static objects, which would belong into immor-
tal memory in the RTSJ, can be detected by a special GC cycle at transition to the
mission phase. We can treat those objects specially and do not need to collect them
during the mission phase. This static memory area is automatically sized.

It has to be noted that our proposal is extending JSR 302. Clearly, adding RTGC
to SCJ reduces the importance of scopes and would likely relegate them to the small
subset of applications where fast deallocation is crucial. Discussing the interaction
between scoped memory and RTGC is beyond the scope of this paper.

3.1 Simple Root Scanning

Thread stack scanning is usually performed atomically. Scanning of the thread stacks
with a snapshot-at-beginning write barrier [40] allows optimization of the write barri-
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ers to consider only field access (putfield and putstatic) and array access. Reference
manipulation in locals and on the operand stack can be ignored for a write barrier.
However, this optimization comes at the cost of a possible large blocking time due to
the atomicity of stack scanning.

A subtle difference between the RTSJ and the SCJ definition is the possibility
to use local variables within run(). Although handy for the programmer to preserve
state information in locals,7 GC implementation can greatly benefit from not having
reference values on the thread stack when the thread suspenses execution.

If the GC thread has the lowest priority and there is no blocking library function
that can suspend a real-time thread, then the GC thread will only run when all real-
time threads are waiting for their next period – and this waiting is performed after
the return from the run() method. In that case the other thread stacks are completely
empty. We do not need to scan them for roots as the only roots are the references in
static (class) variables.

For a real-time GC root scanning has to be exact. With conservative stack scan-
ning, where a primitive value is treated as a pointer, possible large data structures can
be kept alive artificially. To implement exact stack scanning we need the informa-
tion of the stack layout for each possible GC preemption point. For a high-priority
GC this point can be at each bytecode (or at each machine instruction for compiling
Java). The auxiliary data structure to capture the stack layout (and information which
machine register will hold a reference for compiled Java) can get quite large [22] or
require additional effort to compute.

With a low-priority GC and the RTSJ model of periodic thread coding with
wFNP() the number of GC preemption points is decreased dramatically. When the
GC runs all threads will be in wFNP(). Only the stack information for those places
in the code have to be available. It is also assumed that wFNP() is not invoked very
deep in the call hierarchy. Therefore, the stack hight will be low and the resulting
blocking time short.

As mentioned before, the SCJ style periodic thread model results in an empty
stack at GC runtime. As a consequence we do not have to deal with exact stack
scanning and need no additional information about the stack layout.

3.2 Static Memory

A SCJ copying collector will perform best when all live data is produced by periodic
threads and the maximum lifetime of a newly allocated object is one period. How-
ever, some data structures allocated in the initialization phase stay alive for the whole
application lifetime. In an RTSJ application this data would be allocated in immortal
memory. With a real-time GC there is no notion of immortal memory; instead we
will use the term static memory. Without special treatment, a copying collector will
move this data at each GC cycle. Furthermore, the memory demand for the collector
increases by the amount of the static data.

7 Using multiple wFNP() invocations for local mode changes can also come handy. The author has
used this fact heavily in the implementation of a modem/PPP protocol stack.
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As those static objects (mostly) live forever, we propose a solution similar to
the immortal memory of the RTSJ. All data allocated during the initialization phase
(where no application threads are scheduled) is considered potentially static. As part
of the transition to the mission phase a special collection cycle in a stop-the-world
fashion is performed. Objects that are still alive after this cycle are assumed to live
forever and make up the static memory area. The remaining memory is used for the
garbage collected heap.

This static memory will still be scanned by the collector to find references into
the heap but it is not collected. The main differences between our static memory and
the immortal memory of the RTSJ are:

– The choice of allocation context is implicit. There is no need to specify where an
object must be allocated. We do not have to state explicitly which data belongs
to the application life-time data. This information is implicitly gathered by the
start-mission transition.

– References from the static memory to the garbage collected heap are allowed
contrary to the fact in the RTSJ that references to scoped memories, that have to
be used for dynamic memory management without a GC, are not allowed from
immortal memory.

The second fact greatly simplifies communication between threads. For a typical
producer/consumer configuration the container for the shared data is allocated in im-
mortal memory and the actual data in the garbage collected heap. With this immortal
memory solution the actual Lmax only contains allocated memory from the periodic
threads.

4 Evaluation

To evaluate the proposed real-time GC scheduling a concurrent copy collector is im-
plemented in the context of the Java processor JOP [31]. JOP is a Java processor
especially designed for embedded real-time systems. The architecture is optimized
for worst-case execution time (WCET) instead of the usual optimization for average
case execution time. Execution time of bytecodes is known cycle accurate.

First the internals of GC implementation are described, followed by evaluation
experiments on heap usage and the release time jitter of high priority threads. The test
setup consists of JOP implemented in an Altera Cyclone FPGA clocked at 100 MHz.
The main memory is a 1 MB SRAM with an access time of two clock cycles. JOP is
configured with a 4 KB instruction cache and a 1 KB stack cache. No additional data
cache is used.

4.1 Implementation

The implemented collector on JOP is an incremental collector [29,36] based on the
copy collector by Cheney [13] and the incremental version by Baker [8]. To avoid
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the expensive read barrier in Baker’s collector all object copies are performed con-
currently by the collector. The collector is concurrent and resembles the collectors
presented by Steele [38] and Dijkstra et al. [14]. Therefore we call it the concurrent-
copy collector.

The collector and the mutator are synchronized by two barriers. A Brooks-style [12]
forwarding directs the access to the object either into tospace or fromspace. The for-
warding pointer is kept in a separate handle area as proposed in [21]. The separate
handle area reduces the space overheads as only one pointer is needed for both object
copies. Furthermore, the indirection pointer does not need to be copied. The handle
also contains other object related data, such as type information, and the mark list.
The objects in the heap only contain the fields and no object header.

The second synchronization barrier is a snapshot-at-beginning write-barrier [40].
A snapshot-at-beginning write-barrier synchronizes the mutator with the collector on
a reference store into a static field, an object field, or an array.

The whole collector, the new operation, and the write barriers are implemented
in Java (with the help of native functions for direct memory access). The object copy
operation is implemented in hardware and can be interrupted by mutator threads after
each word copied [33]. The copy unit redirects the access to the object under copy,
depending on the accessed field, either to the original or the new version of the object.

Although we show the implementation on a Java processor, the GC is not JOP
specific and can also be implemented on a conventional processor.

4.1.1 Heap Layout

Figure 3 shows a symbolic representation of the heap layout with the handle area
and two semi-spaces, fromspace and tospace. Not shown in this figure is the mem-
ory region for runtime constants, such as class information or string constants. This
memory region, although logically part of the heap, is neither scanned, nor copied by
the GC. This constant area contains its own handles and all references into this area
are ignored by the GC.

To simplify object move by the collector, all objects are accessed with one indi-
rection, called the handle. The handle also contains auxiliary object data structures,
such as a pointer to the method table or the array length. Instead of Baker’s read
barrier we have an additional mark stack which is a threaded list within the handle
structure. An additional field (as shown in Figure 3) in the handle structure is used
for a free list and a use list of handles.

The indirection through a handle, although a very light-weight read barrier, is
usually still considered as a high overhead. Metronome [7] uses a forwarding pointer
as part of the object and performs forwarding eagerly. Once the pointer is forwarded,
subsequent uses of the reference can be performed on the direct pointer until a GC
preemption point. This optimization is performed by the compiler.

JOP uses a hardware based optimization for this indirection [30]. The indirection
is unconditionally performed in the memory access unit. Furthermore, null pointer
checks and array bounds checks are done in parallel to this indirection.

There are two additional benefits from an explicit handle area instead of a for-
warding pointer: (a) access to the method table or array size needs no indirection,
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and (b) the forwarding pointer and the auxiliary data structures do not need to be
copied by the GC.

The fixed handle area is not subject to fragmentation as all handles have the same
size and are recycled at a sweep phase with a simple free list. However, the reserved
space has to be sized (or the GC period adapted) for the maximum number of objects
that are live or are floating garbage.

4.1.2 The Collector

The collector is scheduled periodically with a priority according to its deadline, which
is equal the period. The collector performs following steps within each period it :

Flip An atomic flip exchanges the roles of tospace and fromspace.
Mark roots Atomic scan of each thread stack. If the SCJ profile is used this step

can be omitted for all higher priority threads, as the thread stacks
are empty when the GC executes.

Mark and copy An object is popped from the mark stack, all referenced objects,
which are still white, are pushed on the mark stack, the object is
copied to tospace and the handle pointer is updated.

Sweep handles All handles in the use list are checked if they still point into tospace
(black objects) or can be added to the handle free list.

Clear fromspace At the end of the collector work the fromspace that contains only
white objects is initialized with zero. Objects allocated in that space
(after the next flip) are already initialized and allocation can be per-
formed in constant time.

Object copy, when performed atomically, can introduce considerable blocking
time. This is especially an issue for large arrays. In the implementation on JOP the
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blocking time is reduced by a hardware unit the performs the object copy [33]. This
unit can be preempted after each copied word. The unit is notified on the interrupt and
records the copy position. On an object or array access the hardware knows whether
the access should go to the already copied part in the tospace or in the not yet copied
part in the fromspace. For a GC on a standard hardware splitting larger arrays into
smaller chunks, as done in Metronome [7] and in the GC for the JamaicaVM [37], is
a software option to reduce the blocking time.

The collector has two modes of operation: one for the initialization phase and
one for the mission phase. At the initialization phase it operates in a stop-the-world
fashion and gets invoked when a memory request cannot be satisfied. In this mode
the collector scans the stack of the single thread.

As part of the mission start one stop-the-world cycle is performed to clean up
the heap from garbage generated at initialization. From that point on the GC runs in
concurrent mode in its own thread and can omit scanning of the thread stacks.

4.1.3 The Mutator

The coordination between the mutator and the collector is performed within the new
and newarray bytecodes and within write barriers for JVM bytecodes putfield and
putstatic for reference fields, and bytecode aastore. The field access bytecodes are
substituted at application link time (run of JOPizer). Only write accesses to ref-
erence fields are substituted by special versions of the bytecodes (putfield ref and
putstatic ref). Therefore, the write barrier code is only executed on reference write
access.

Allocation Objects are allocated black (in tospace). In non real-time collectors it
is more common to allocate objects white. It is argued [14] that objects die young
and the chances are high that the GC never needs to touch them. However, in the
worst case no object that is created and becomes garbage during the GC cycle can be
reclaimed. Those floating garbage will be reclaimed in the next GC cycle. Therefore,
we do not benefit from the white allocation optimization in a real-time GC. Allocating
a new object black has the benefit that those objects do not need to be copied. The
same argument applies to the chosen write barrier. The code in Listing 2 shows the
simple implementation of bytecode new.

As the old fromspace is cleared by the GC, the new object is already initialized
and new executes in constant time. The methods Native.rdMem() and Native.wrMem()
provide direct access to the main memory. Only those two native methods are neces-
sary for an implementation of a GC in pure Java.

Atomic operations, as shown for the implementation of bytecode new, of the GC
are protected simply by turning the timer interrupt off.8 Those atomic sections lead to
release jitter of the real-time tasks and shall be minimized. It has to be noted that the
GC protection with interrupt disabling is not an option for multiprocessor systems.

8 If interrupt handlers are allowed to change the object graph those interrupts also need to be disabled.
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Listing 2 Implementation of bytecode new in JOPs JVM (simplified)

private static int new(int cons) {

int size = ... // read size from the class info

synchronized (GC.mutex) {

// we allocate from the upper part

allocPtr -= size;

int ref = getHandle(size);

// mark as object

Native.wrMem(IS_OBJ, ref+OFF_TYPE);

// pointer to method table in the handle

Native.wrMem(cons+CLASS_HEADR, ref+OFF_MTAB_ALEN);

}

return ref;

}

Listing 3 Snapshot-at-beginning write-barrier in JOPs JVM

private static void putfield_ref(int ref, int value, int index) {

synchronized (GC.mutex) {

// snapshot-at-beginning barrier

int oldVal = Native.getField(ref, index);

// Is it white?

if (oldVal != 0

&& Native.rdMem(oldVal+GC.OFF_SPACE) != GC.toSpace) {

// Mark grey

GC.push(oldVal)

}

Native.putField(ref, index, value);

}

}

Write Barriers A snapshot-at-beginning write-barrier [40] synchronizes the mutator
with the collector on a reference store into a static field, an object field, or an array.
The to be overwritten field is shaded gray as shown in Listing 3. An object is shaded
gray by pushing the reference of the object onto the mark stack.9 Further scanning
and copying into tospace – coloring it black – is left to the GC thread. One field in
the handle area is used to implement the mark stack as a simple linked list. Listing 3
shows the implementation of putfield for reference fields.

Note that field and array access is implemented in hardware on JOP. Only write
accesses to reference fields need to be protected by the write-barrier, which is im-

9 Although the GC is a copying collector a mark stack is needed to perform the object copy in the GC
thread and not by the mutator.
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plemented in software. During class linking all write operations to reference fields
(putfield and putstatic when accessing reference fields) are replaced by a JVM inter-
nal bytecodes (e.g., putfield ref) to execute the write-barrier code as shown before.
The shown code is part of a special class (com.jopdesign.sys.JVM) where Java byte-
codes that are not directly implemented by JOP can be implemented in Java [28].

The methods of class Native are JVM internal methods needed to implement part
of the JVM in Java. The methods are replaced by regular or JVM internal bytecodes
during class linking. Methods getField(ref, index) and putField(ref, value, index)
map to the JVM bytecodes getfield and putfield. The method rdMem() is an example
of an internal JVM bytecode and performs a memory read. The null pointer check for
putfield ref is implicitly performed by the hardware implementation of getfield that
is executed by Native.getField(). The hardware implementation of getfield triggers
an exception interrupt when the reference is null. The implementation of the write-
barrier shows how a bytecode is substituted by a special version (pufield ref), but
uses in the software implementation the hardware implementation of that bytecode
(Naitve.putfield()).

4.1.4 Time-predictability of GC Operations

The execution time of GC related operations shall be time-predictable and constant
at best. Searching for a large enough memory block on allocation is at best hard to
analyze. The implemented GC compacts the heap and clears the fromspace at the
end of the GC cycle. Therefore, a new operation, as shown in Listing 2, is a constant
time operation. The method getHandle() picks the first element from the list of free
handles.

Another GC related operation is the write barrier on a reference write (putfield).
This operation, as shown in Listing 3, is also a constant time operation. Marking
an object grey is performed by pushing it on the mark stack, which itself is also a
constant time operation.

4.2 Scheduling Experiments

In this section, we test an implementation of the concurrent-copy garbage collector on
JOP. The tests are intended to get some confidence that the formulas for the collector
periods are correct. Furthermore, we visualize the actual heap usage of a running
system.

The examples are synthetic benchmarks that emulate worst-case execution time
(WCET) by executing a busy loop after allocation of the data. The WCET of the
collector was measured to be 10.4 ms when executing it with scheduling disabled
during one collection cycle for example 1 and 11.2 ms for example 2. We use 11 ms
and 12 ms respectively as the WCET of the collector for the following examples10.

Listing 4 shows our worker thread with the busy loop. The data is allocated at the
start of the period and freed after the simulated execution. waitForNextPeriod blocks
until the next release time for the periodic thread.

10 It has to be noted that measuring execution time is not a safe method to estimate WCET values.
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Listing 4 Example periodic thread with a busy loop

public void run() {

for (;;) {

int[] n = new int[cnt];

// simulate work load

busy(wcet);

n = null;

waitForNextPeriod();

}

}

final static int MIN_US = 10;

static void busy(int us) {

int t1, t2, t3;

int cnt;

cnt = 0;

// get the current time in us

t1 = Native.rd(Const.IO_US_CNT);

for (;;) {

t2 = Native.rd(Const.IO_US_CNT);

t3 = t2-t1;

t1 = t2;

if (t3<MIN_US) {

cnt += t3;

}

if (cnt>=us) {

return;

}

}

}

For the busy loop to simulate real execution time, and not elapsed time, the con-
stant MIN US has to be less than the time for two context switches, but larger than
the execution time of one iteration of the busy loop. In this case only cycles executed
by the busy loop are counted for the execution time and interruption due to a higher
priority thread is not part of the execution time measurement.

In our example we use a concurrent-copy collector with a heap size (for both
semi-spaces) of 100 KB. At startup the JVM allocates about 3.5 KB data. We incor-
porate11 these 3.5 KB as static live data Ls.

The remaining memory at the end of the GC cycle, shown in the following graphs,
give an indication of the conservatism of the GC period bound. The assumed worst-
case for the GC period would result in almost zero free memory before the semi-space
flip.

11 The suggested handling of static data to be moved to immortal memory at mission start is not yet
implemented.
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Ti Ci ai

τ1 5 ms 1 ms 1 KB
τ2 10 ms 3 ms 3 KB
τGC 77 ms 11 ms

Table 1 Thread properties for experiment 1

4.2.1 Independent Threads

The first example consists of two threads with the properties listed in Table 1. Ti is the
period, Ci the WCET, and ai the maximum amount of memory allocated each period.
Note that the period for the collector thread is also listed in the table although it is a
result of the worker thread properties and the heap size.

With the periods Ti and the memory consumption ai for the two worker threads we
calculate the maximum period TGC for the collector thread τGC by using Theorem 1

TGC ≤
HCC−2(Ls +∑

n
i=1 ai)−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

≤ 100−2(3.5+4)−2 ·4
2
( 1

5 +
3
10

) ms

≤ 77ms

The priorities are assigned rate-monotonic [19] and we perform a quick schedu-
lability check with the periods Ti and the WCETs Ci by calculation of the processor
utilization U for all three threads

U =
3

∑
i=1

(
Ci

Ti

)
=

1
5
+

3
10

+
11
77

= 0.643

which is less than the maximum utilization for three tasks

Umax = m∗ (2
1
m −1)

= 3∗ (2
1
3 −1)

≈ 0.78

In Figure 4 the memory trace for this system is shown. The graph shows the free
memory in one semi-space (the to-space, which is 50 KB) during the execution of the
application. The individual points are recorded with time-stamps at the end of each
allocation request.

In the first milliseconds we see allocation requests that are part of the JVM startup
(most of it is static data). The change to the mission phase is delayed 100 ms and the
first allocation from a periodic thread is at 105 ms. The collector thread also starts at
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Fig. 4 Free memory in experiment 1

Ti Ci ai

τ1 5 ms 0.5 ms 1 KB
τ2 10 ms 3 ms 3 KB
τ3 30 ms 2 ms
τGC 55 ms 12 ms

Table 2 Thread properties for experiment 2

the same time and the first semi-space flip can be seen at 110 ms (after one allocation
from each worker thread). We see the 77 ms period of the collector in the jumps in the
free memory graph after the flip. The different memory requests of two times 1 KB
from thread τ1 and one time 3 KB from thread τ2 can be seen every 10 ms.

In this example the heap is used until it is almost full, but the application never
runs out of memory and no thread misses a deadline. From the regular allocation pat-
tern we also see that this collector runs concurrently. With a stop-the-world collector
we would notice gaps of 10 ms (the measured execution time of the collector) in the
graph.

4.2.2 Producer/Consumer Threads

For the second experiment we split our thread τ1 to a producer thread τ1 and a con-
sumer thread τ3 with a period of 30 ms. We assume after the split that the producer’s
WCET is halved to 500 us. The consumer thread is assumed to be more efficient
when working on lager blocks of data than in the former example (C3=2 ms instead
of 6*500 µs). The rest of the setting remains the same (the worker thread τ2). Table 2
shows the thread properties for the second experiment.

As explained in Section 2.3.3, we calculate the lifetime factor l1 for memory
allocated by the producer τ1 with the corresponding consumer τ3 with period T3.

l1 =
⌈

2T3

T1

⌉
=

⌈
2×30

5

⌉
= 12
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Fig. 5 Free memory in experiment 2

The maximum collector period TGC is

TGC ≤
HCC−2(Ls +∑

n
i=1 aili)−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

≤ 100−2(3.5+1 ·12+3+0)−2 ·4
2
( 1

5 +
3
10 +

0
30

) ms

≤ 55ms

We check the maximum processor utilization:

U =
4

∑
i=1

(
Ci

Ti

)
=

0.5
5

+
3

10
+

2
30

+
12
55

= 0.685≤ 4∗ (2
1
4 −1)≈ 0.76

In Figure 5 the memory trace for the system with one producer, one consumer,
and one independent thread is shown. Again, we see the 100 ms delayed mission start
after the startup and initialization phase, in this example at about 106 ms. Similar to
the former example the first collector cycle performs the flip a few milliseconds after
the mission start. We see the shorter collection period of 55 ms. The allocation pattern
(two times 1 KB and one time 3 KB per 10 ms) is the same as in the former example
as the threads that allocate the memory are still the same.

We have also run this experiment for a longer time than shown in Figure 5 to
see if we find a point in the execution trace where the remaining free memory is less
than the value at 217 ms. The pattern repeats and the observed value at 217 ms is the
minimum.
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Listing 5 Measuring release time jitter

public boolean run() {

int t = Native.rdMem(Const.IO_US_CNT);

if (!notFirst) {

expected = t+period;

notFirst = true;

} else {

int diff = t-expected;

if (diff>max) max = diff;

if (diff<min) min = diff;

expected += period;

}

work();

return true;

}

4.3 Measuring Release Jitter

Our main concern on garbage collection in real-time systems is the blocking time
introduced by the GC due to atomic code sections. The blocking time cannot be
measured directly. However, it will be seen as release time jitter on the high priority
real-time threads. Therefore we measure this release jitter.

Listing 5 shows how we measure the jitter. Method run() is the main method
of the real-time thread and executed on each periodic release. Within the real-time
thread we have no notion about the start time of the thread. As a solution we measure
the actual time on the first iteration and use this time as first release time. In each
iteration the expected time, stored in the variable expected, is incremented by the
period. In each iteration (except the first one) the actual time is compared with the
expected time and the maximum value of the difference is recorded.

As noted before, we have no notion about the correct release times. We measure
only relative to the first release. When the first release is delayed (due to some startup
code or interference with a higher priority thread) we have a positive offset in ex-
pected. On an exact release in a later iteration the time difference will be negative
(in diff). Therefore, we also record the minimum value for the difference between
the actual time and the expected time. The maximum measured release jitter is the
difference between max and min.

To provide a baseline we measure the release time jitter of a single real-time
thread (plus an endless loop in the main method as an idle non-real-time background
thread). No GC thread is scheduled. The code is similar to the code in Listing 5. A
stop condition is inserted that prints out the minimum and maximum time differences
measured after 1 million iterations.

Table 3 shows the measured jitter for different thread periods. We observed no
jitter for periods of 100 µs and longer. At a period of 50 µs the scheduler introduces
a considerable amount of jitter. From this measurement we conclude that 100 µs is
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Period Jitter

200 µs 0 µs
100 µs 0 µs

50 µs 17 µs

Table 3 Maximum release jitter for a single thread

Thread Period Deadline Priority

τh f 100 µs 100 µs 5
τp 1 ms 1 ms 4
τc 10 ms 10 ms 3
τlog 1000 ms 100 ms 2
τgc 200 ms 200 ms 1

Table 4 Thread properties of the test program

the practical shortest period we can handle with our system. We will use this period
for the high-priority real-time thread in the following measurement with an enabled
GC.

4.3.1 Measurements

The test application consisting of three real-time threads (τh f , τp, and τc), one logging
thread τlog, and the GC thread τgc. All three real-time threads measure the difference
between the expected release time and the actual release time (as shown in Figure 5).
The minimum and maximum values are recorded and regularly printed to the console
by the logging thread τlog. Table 4 shows the release parameters for the five threads.
Priority is assigned deadline monotonic. Note that the GC thread has a shorter period
than the logger thread, but a longer deadline. For our approach to work correctly the
GC thread must have the lowest priority. Therefore all other threads with a longer
period than the GC thread must be assigned a shorter deadline.

Thread τh f represents a high-frequency thread without dynamic memory alloca-
tion. This thread should observe minimal disturbance by the GC thread.

The threads τp and τc represent a producer/consumer pair that uses dynamically
allocated memory for communication. The producer appends the data at a frequency
of 1 kHz to a simple list. The consumer thread runs at 100 Hz and processes all
currently available data in the list and removes them from the list. The consumer will
process between 9 and 11 elements (depending on the execution time of the consumer
and the thread phasing).

It has to be noted that this simple and common communication pattern cannot be
implemented with the scoped memory model of the RTSJ. First, to use a scope for
communication, we have to keep the scope alive with a wedge thread [23] when data
is added by the producer. We would need to notify this wedge thread by the consumer
when all data is consumed. However, there is no single instant available where we can
guarantee that the list is empty. A possible solution for this problem is described in
[23] as handoff pattern. The pattern is similar to double buffering, but with an explicit
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Threads Jitter

τh f 0 µs
τh f , τlog 7 µs
τh f , τlog,τp,τc 14 µs
τh f , τlog,τp,τc,τgc 54 µs

Table 5 Jitter measured on a 100 MHz processor for the high priority thread in different configurations

copy of the data. The elegance of a simple list as buffer queue between the producer
and the consumer is lost.

Thread τlog is not part of the real-time systems simulated application code. Its
purpose is to print the minimum and maximum differences between the measured
and expected release times (see former section) of threads τh f and τp to the console
periodically.

Thread τgc is a standard periodic real-time thread executing the GC logic. The
GC thread period was chosen quite short in that example. A period in the range of
seconds would be enough for the memory allocation by τp. However, to stress the in-
terference between the GC thread and the application threads we artificially shortened
the period.

As a first experiment we run only τh f and the logging thread τlog to measure
jitter introduced by the scheduler. The maximum jitter observed for τh f is 7 µs – the
blocking time of the scheduler.

In the second experiment we run all threads except the GC thread. For the first 4
seconds we measure a maximum jitter of 14 µs for thread τh f . After those 4 seconds
the heap is full and GC is necessary. In that case the GC behaves in a stop-the-world
fashion. When a new object request cannot be fulfilled the GC logic is executed in
the context of the allocating thread. As the bytecode new is itself in an atomic re-
gion the application is blocked until the GC finishes. Furthermore, the GC performs
a conservative scan of all thread stacks. We measure a release delay of 63 ms for all
threads due to the blocking during the full collection cycle. From that measurement
we can conclude for the sample application and the available main memory: (a) the
measured maximum period of the GC thread is in the range of 4 seconds; (b) the esti-
mated execution time for one GC cycle is 63 ms. It has to be noted that measurement
is not a substitution for static timing analysis. Providing WCET estimates for a GC
cycle is a challenge for future work.

In our final experiment we enabled all threads. The GC is scheduled periodically
at 200 ms as the lowest priority thread – the scenario we argue for. The GC logic
is set into the concurrent mode on mission start. In this mode the thread stacks are
not scanned for roots. Furthermore, when an allocation request cannot be fulfilled the
application is stopped. This radical stop is intended for testing. In a more tolerant
implementation either an out-of-memory exception can be thrown or the requesting
thread has to be blocked, its thread stack scanned and released when the GC has
finished its cycle.

We ran the experiment for several hours and recorded the maximum release jitter
of the real-time threads. For this test we used slightly different periods (prime num-
bers) to avoid the regular phasing of the threads. The harmonic relation of the original
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periods can lead to too optimistic measurements. The applications never ran out of
memory. The maximum jitter observed for the high priority task τh f was 54 µs. The
maximum jitter for task τp was 108 µs. This higher value on τp is expected as the
execution interferes with the execution of the higher priority task τh f .

5 Discussion

In this section, we discuss our findings from the evaluation of the proposed GC on
the Java processor JOP and related aspects for real-time GC.

5.1 GC Scheduling

The scheduling experiments give as some confidence that the calculation of the max-
imum period of the GC is correct. The implementation of bytecode new has been
instrumented to collect statistics of the heap usage. The time series of the heap usage
shows expected patterns. The free memory drops near to zero at the end of the GC
period, but jumps up after the flip on the start of the next GC period.

5.2 Allocation Rate Analysis

To bound the maximum GC period, the allocation rate of the individual mutator
threads needs to be known. This problem is similar to schedulability analysis where
the WCET of individual tasks needs to be known. The maximum allocation rate anal-
ysis is very similar to WCET analysis. Instead of execution time of individual in-
structions, the allocation size is used as cost function in the analysis. Besides bounds
on loops and recursion depths, a bound on array sizes is needed for this analysis. The
WCET analysis tool for Java processors [34] is currently adapted to perform a max-
imum allocation rate analysis. This type of analysis is also necessary for RTSJ style
scoped memories.

The analysis of memory consumption by objects that are shared between tasks
for communication is more complex. An inter-task analysis is necessary to derive
an upper bound on the time an object stays alive. For simple consumer/producer
task pairs the analysis can be done manually. Automatic analysis of complex object
sharing is a challenging future work project.

5.3 Blocking Times

With our measurements we have shown that quite short blocking times are achievable.
Scheduling introduces a blocking time of about 7–14 µs and the GC adds another
40 µs resulting in a maximum jitter of the highest priority thread of 54 µs. In our
first implementation we performed the object copy in pure Java, resulting in blocking
times around 200 µs. To speedup the copy we moved this function to microcode.
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However, the microcoded memcpy still needs 18 cycles per 32-bit word copy. Direct
support of object copy in hardware completely removes the blocking time [33].

The maximum blocking time of 54 µs on a 100 MHz processor is less than block-
ing times reported for other solutions.

Blocking time for Metronome (called pause times in the papers) is reported to be
6 ms [6] on a 500 MHz PowerPC at 50% CPU utilization. Those large blocking times
are due to the scheduling of the GC at the highest priority with a polling based yield
within the GC thread. A fairer comparison is against the jitter of the pause time. In
[5] the variation of the pause time is given between 500 µs and 2.4 ms on a 1 Ghz
machine. It should be noted that Metronome is a GC intended for mixed real-time
systems whereas we aim only for hard real-time systems.

Robertz performed a similar measurement as we did for his thesis [26] with a
time-triggered GC on a 350 MHz PowerPC. He measured a maximum jitter of 20 µs
(±10 µs) for a high priority task with a period of 500 µs.

It has to be noted that our experiment is a small one and we need more advanced
real-time applications for the evaluation of real-time GC. The problem is that it is
hard to find even static based real-time application benchmarks (at least applications
written for safety critical Java). Running standard benchmarks that measure average
case performance (e.g., SPEC jvm98) is not an option to evaluate a real-time collec-
tor.

5.4 Sizing the Handle Area

The lightweight read barrier with an indirection to find the correct object can either
be a word in the object header or located in a distinct handle area. A handle area uses
less memory as the indirection word is needed only once and not in both copies of an
object. Furthermore, the handle area can also hold other typical object header data,
such as a lock field or the array size.

The main drawback of a handle area is that this area needs to be sized. As we
already know the maximum allocation rate and live data for each thread the maximum
number of handles can be derived by an adaption of the scheduling equations. For
thread τi that allocates ni objects each period the maximum number of handles Nmax
is

Nmax ≤
n

∑
i=1

ni +
n

∑
i=1

⌈
TGC

Ti

⌉
ni

5.5 Can a Out-of-Memory Error Happen?

From a hard real-time point of view the application has to be fully analyzed and
an out-of-memory error shall never happen. We could ignore that fault. However,
from a safety-critical point of view one should provide a backup solution even for
the not-expected case. Instead of throwing an OutOfMemoryError in the allocating
thread, the thread can be blocked until the GC frees enough memory (till the flip in
the new GC cycle). The solution needs some cooperation between the GC code and
the scheduler.
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5.6 Mixed Real-Time Systems

Most implementations of a real-time GC within the RTGC target soft real-time or
mixed real-time systems. The hard real-time part shall use scoped memory and no-
heap real-time threads and the soft realtime part of the application shall use real-time
threads using the heap.

Another option to split the application between hard and soft real-time compo-
nents is to split the garbage collected heap. To protect hard real-time threads they
allocate in a reserved part of the heap. The analysis from Section 2 only needs to
be applied for the hard real-time part. The soft (or non) real-time components are
allowed to allocate in a different part of the heap. If this part of the heap becomes full
a soft real-time thread will block on allocation till the GC frees enough memory. The
hard real-time threads are not influenced.

It has to be noted that data sharing between the two components is still allowed.
As both heap regions are under the control of a single GC thread, pointers between
the two regions are allowed and no further treatment of cross references is needed.

6 Related Work

Garbage collection was first introduced for list processing systems (LISP) in the
1960s. A good overview of GC techniques can be found in [17] and in the GC survey
by Wilson [39].

Mark-sweep and mark-compact collectors need a stack during the marking phase
that can grow in the worst-case up to the number of live objects. Cheney [13] presents
an elegant way how this mark stack can be avoided. His GC is called copying-
collector and divides the heap into two spaces: the to-space and the from-space.
Objects are moved from one space to the other as part of the scan of the object graph.

However, all the described collectors are still stop-the-world collectors. The pause
time of up to seconds in large interactive LISP applications triggered the research on
incremental collectors that distribute collection work more evenly [38,14,8]. These
collectors were sometimes called real-time although they do not fulfill hard real-time
properties that we need today. Baker [8] extends Cheneys [13] copying collector for
incremental GC. However, it uses an expensive read barrier that moves the object to
the to-space as part of the mutator work. Baker proposes the Treadmill [9] to avoid
copying. However, this collector works only with objects of equal size and still needs
an expensive read barrier.

In [27] a garbage-collected memory module is suggested to provide a real-time
collector. A worst-case delay time of 1µs is claimed without giving the processor
speed.

Metronome is a collector intended for mixed real-time systems [7]. Non real-time
applications are used (SPECjvm98) in the experiments. They propose a collector with
constant utilization to meet real-time requirements. However, utilization is not a real-
time measure per se; it should be schedulability or response time instead. In contrast
to our proposal, the GC thread is scheduled at the highest priority in short periods.
To ensure that, despite the high priority of the GC thread, mutator threads will be
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scheduled, the GC thread runs only for a fraction of time within a time window. This
fraction and the size of the time window can be adjusted for different work loads.

A comparison of the schedulability of a GC according to this paper and the
Metronome GC can be found in [18]. The paper provides response time analysis for
a Metronome style GC and shows that it can be used for hard real-time systems. Two
constructed example workloads are given. In one case the Metronome based GC will
run out of memory and in the other case the GC scheduled at lowest priority will run
out of memory. However, the second example has a task with a longer period than the
GC thread. According to our proposal the GC thread should then be scheduled with
a higher priority, which is not considered in the paper. Experimental comparison of
the two GC approaches shows that the response time of the real-time tasks is shorter
when the GC thread is scheduled as proposed in this paper.

Although not mandated, all commercial and academic implementations of the
RTSJ [37,11,4,2] and related real-time Java systems [1] also contain a real-time
garbage collector.

The work closest to our scheduling analysis is presented in [25]. The authors
provide an upper bound of the GC cycle. Although stated that this bound “is thus not
dependent of any particular GC algorithm”, the result applies only for single heap GC
algorithms (e.g. mark-compact) and not for a copying collector. A value for Lmax is
not given in the paper. Furthermore, the increase of the object lifetime due to object
sharing between threads is not considered in that paper.

7 Conclusion

In this paper we have presented a real-time garbage collector in order to benefit from a
more dynamic programming model for real-time applications. The collector is incre-
mental and scheduled as a normal real-time thread and assigned a priority according
to its deadline. To guarantee that the applications will not run out of memory, the
period of the collector thread has to be short enough. We provided the maximum col-
lector periods for a mark-compact collector type and a concurrent-copy collector. We
have also shown how a longer lifetime due to object sharing between threads can be
incorporated into the collector period analysis.

The restrictions from the safety-critical Java programming model and the low
priority collector thread result in two advantages: (a) avoidance of stack root scanning
and (b) short blocking times of high priority threads. At 100 MHz we measured 40 µs
maximum blocking time introduced by the GC thread.

A critical operation for a concurrent, compacting GC is the atomic copy of large
arrays. JOP has been extended by a copy unit that can be interrupted. This unit is
integrated with the memory access unit and redirects the access to either fromspace
or tospace depending on the array/field index and the value of the copy pointer.
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