
JOP Reference Handbook

JOP Reference Handbook
Building Embedded Systems with a Java Processor

Martin Schoeberl

Copyright c© 2009 Martin Schoeberl

Martin Schoeberl
Strausseng. 2-10/2/55
A-1050 Vienna, Austria

Email: martin@jopdesign.com
Visit the accompanying web site on http://www.jopdesign.com/ and
the JOP Wiki at http://www.jopwiki.com/

Published 2009 by CreateSpace,
http://www.createspace.com/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, recording or otherwise, without
the prior written permission of Martin Schoeberl.

Library of Congress Cataloging-in-Publication Data

Schoeberl, Martin

JOP Reference Handbook: Building Embedded Systems
with a Java Processor / Martin Schoeberl
Includes bibliographical references and index.
ISBN 978-1438239699

Manufactured in the United States of America.
Typeset in 11pt Times by Martin Schoeberl

martin@jopdesign.com
http://www.jopdesign.com/
http://www.jopwiki.com/
http://www.createspace.com/

Foreword

This book is about JOP, the Java Optimized Processor. JOP is an implementation of the
Java virtual machine (JVM) in hardware. The main implementation platform is a field-
programmable gate array (FPGA). JOP began as a research project for a PhD thesis. In the
mean time, JOP has been used in several industrial applications and as a research platform.
JOP is a time-predictable processor for hard real-time systems implemented in Java.

JOP is open-source under the GNU GPL and has a growing user base. This book is
written for all of you who build this lively community. For a long time the PhD thesis,
some research papers, and the web site have been the main documentation for JOP. A PhD
thesis focus is on research results and implementation details are usually omitted. This
book complements the thesis and provides insight into the implementation of JOP and the
accompanying JVM. Furthermore, it gives you an idea how to build an embedded real-time
system based on JOP.

V

Acknowledgements

Many users of JOP contributed to the design of JOP and to the tool chain. I also want
to thank the students at the Vienna University of Technology during the four years of the
course “The JVM in Hardware” and the students from CBS, Copenhagen at an embed-
ded systems course in Java for the interesting questions and discussions. Furthermore, the
questions and discussions in the Java processor mailing list provided valuable input for the
documentation now available in form of this book. The following list of contributors to JOP
is roughly in chronological order.

Ed Anuff wrote testmon.asm to perform a memory interface test and BlockGen.java to con-
vert Altera .mif files to Xilinx memory blocks. Flavius Gruian wrote the initial version of
JOPizer to generate the .jop file from the application classes. JOPizer is based on the open
source library BCEL and is a substitute to the formerly used JavaCodeCompact from Sun.
Peter Schrammel and Christof Pitter have implemented the first version of long bytecodes.
Rasmus Pedersen based a class on very small information systems on JOP and invited my to
co-teach this class in Copenhagen. During this time the first version of the WCET analysis
tool was developed by Rasmus. Rasmus has also implemented an Eclipse plugin for the JOP
design flow. Alexander Dejaco and Peter Hilber have developed the I/O interface board for
the LEGO Mindstorms. Christof Pitter designed and implemented the chip-multiprocessor
(CMP) version of JOP during his PhD thesis. Wolfgang Puffitsch first contribution to JOP
was the finalization of the floating point library SoftFloat. Wolfgang, now an active de-
veloper of JOP, contributed several enhancements (e.g., exceptions, HW field access, data
cache,...) and works towards real-time garbage collection for the CMP version of JOP.
Alberto Andriotti contributed several JVM test cases. Stefan Hepp has implemented an op-
timizer at bytecode level during his Bachelor thesis work. Benedikt Huber has redesigned
the WCET analysis tool for JOP during his Master’s thesis. Trevor Harmon, who imple-
mented the WCET tool Volta for JOP during his PhD thesis, helped me with proofreading
of the handbook.

Furthermore, I would like to thank Walter Wilhelm from EEG for taking the risk to ac-
cept a JOP based hardware for the Kippfahrleitung project at a very early development
stage of JOP. The development of JOP has received funding from the Wiener Innova-
tionsföderprogram (Call IKT 2004) and from the EU project JEOPARD.

Contents

Foreword v

Acknowledgements vii

1 Introduction 1
1.1 A Quick Tour on JOP . 1

1.1.1 Building JOP and Running “Hello World” 1
1.1.2 The Design Structure . 2

1.2 A Short History . 3
1.3 JOP Features . 4
1.4 Is JOP the Solution for Your Problem? . 6
1.5 Outline of the Book . 6

2 The Design Flow 9
2.1 Introduction . 9

2.1.1 Tools . 9
2.1.2 Getting Started . 10
2.1.3 Xilinx Spartan-3 Starter Kit . 11

2.2 Booting JOP — How Your Application Starts 12
2.2.1 FPGA Configuration . 12
2.2.2 Java Download . 12
2.2.3 Combinations . 13
2.2.4 Stand Alone Configuration . 14

2.3 The Design Flow . 15
2.3.1 Tools . 15
2.3.2 Targets . 16

2.4 Eclipse . 18
2.5 Simulation . 19

2.5.1 JopSim Simulation . 19
2.5.2 VHDL Simulation . 20

X CONTENTS

2.6 Files Types You Might Encounter . 21
2.7 Information on the Web . 23
2.8 Porting JOP . 23

2.8.1 Test Utilities . 23
2.9 Extending JOP . 24

2.9.1 Native Methods . 25
2.9.2 A new Peripheral Device . 25
2.9.3 A Customized Instruction . 26
2.9.4 Dependencies and Configurations 27

2.10 Directory Structure . 28
2.10.1 The Java Sources for JOP . 30

2.11 The JOP Hello World Exercise . 30
2.11.1 Manual build . 30
2.11.2 Using make . 31
2.11.3 Change the Java Program . 31
2.11.4 Change the Microcode . 31
2.11.5 Use a Different Target Board . 32
2.11.6 Compile a Different Java Application 32
2.11.7 Simulation . 33
2.11.8 WCET Analysis . 33

3 Java and the Java Virtual Machine 35
3.1 Java . 35

3.1.1 History . 37
3.1.2 The Java Programming Language 38

3.2 The Java Virtual Machine . 39
3.2.1 Memory Areas . 40
3.2.2 JVM Instruction Set . 40
3.2.3 Methods . 42
3.2.4 Implementation of the JVM . 43

3.3 Embedded Java . 44
3.4 Summary . 45

4 Hardware Architecture 47
4.1 Overview of JOP . 47
4.2 Microcode . 49

4.2.1 Translation of Bytecodes to Microcode 49

CONTENTS XI

4.2.2 Compact Microcode . 51
4.2.3 Instruction Set . 52
4.2.4 Bytecode Example . 53
4.2.5 Microcode Branches . 54
4.2.6 Flexible Implementation of Bytecodes 54
4.2.7 Summary . 55

4.3 The Processor Pipeline . 55
4.3.1 Java Bytecode Fetch . 56
4.3.2 Microcode Instruction Fetch . 57
4.3.3 Decode and Address Generation 59
4.3.4 Execute . 60
4.3.5 Interrupt Logic . 61
4.3.6 Summary . 62

4.4 The Stack Cache . 63
4.4.1 Java Computing Model . 63
4.4.2 Access Patterns on the Java Stack 66
4.4.3 JVM Stack Access Revised . 67
4.4.4 A Two-Level Stack Cache . 69
4.4.5 Summary . 72

4.5 The Method Cache . 73
4.5.1 Method Cache Architecture . 73
4.5.2 WCET Analysis . 75
4.5.3 Caches Compared . 77
4.5.4 Summary . 79

5 Runtime System 81
5.1 A Real-Time Profile for Embedded Java 81

5.1.1 Application Structure . 82
5.1.2 Threads . 82
5.1.3 Scheduling . 83
5.1.4 Memory . 83
5.1.5 Restrictions on Java . 86
5.1.6 Interaction of RtThread, the Scheduler, and the JVM 87
5.1.7 Implementation Results . 87
5.1.8 Summary . 89

5.2 A Profile for Safety Critical Java . 89
5.2.1 Introduction . 89

XII CONTENTS

5.2.2 SCJ Level 1 . 90
5.3 JVM Architecture . 94

5.3.1 Runtime Data Structures . 94
5.3.2 Class Initialization . 98
5.3.3 Synchronization . 99
5.3.4 Booting the JVM . 100

6 Worst-Case Execution Time 103
6.1 Microcode WCET Analysis . 104

6.1.1 Microcode Path Analysis . 104
6.1.2 Microcode Low-level Analysis . 105
6.1.3 Bytecode Independency . 105
6.1.4 WCET of Bytecodes . 106

6.2 WCET Analysis of the Java Application 109
6.2.1 High-Level WCET Analysis . 109
6.2.2 WCET Annotations . 110
6.2.3 ILP Formulation . 111
6.2.4 An Example . 113
6.2.5 Dynamic Method Dispatch . 115
6.2.6 Cache Analysis . 117
6.2.7 WCET Analyzer . 120

6.3 Evaluation . 122
6.3.1 Benchmarks . 122
6.3.2 Analysis and Measurements . 124

6.4 Discussion . 126
6.4.1 On Correctness of WCET Analysis 126
6.4.2 Is JOP the Only Target Architecture? 126
6.4.3 Object-oriented Evaluation Examples 127
6.4.4 WCET Analysis for Chip-multiprocessors 127
6.4.5 Co-Development of Processor Architecture and WCET Analysis . . 128
6.4.6 Further Paths to Explore . 128

6.5 Summary . 128
6.6 Further Reading . 129

6.6.1 WCET Analysis . 129
6.6.2 WCET Analysis for Java . 130
6.6.3 WCET Analysis for JOP . 131

CONTENTS XIII

7 Real-Time Garbage Collection 133
7.1 Introduction . 133

7.1.1 Incremental Collection . 135
7.1.2 Conservatism . 135
7.1.3 Safety Critical Java . 135

7.2 Scheduling of the Collector Thread . 136
7.2.1 An Example . 137
7.2.2 Minimum Heap Size . 139
7.2.3 Garbage Collection Period . 143

7.3 SCJ Simplifications . 149
7.3.1 Simple Root Scanning . 149
7.3.2 Static Memory . 150

7.4 Implementation . 151
7.4.1 Heap Layout . 152
7.4.2 The Collector . 153
7.4.3 The Mutator . 157

7.5 Evaluation . 161
7.5.1 Scheduling Experiments . 162
7.5.2 Measuring Release Jitter . 167
7.5.3 Measurements . 169
7.5.4 Discussion . 171

7.6 Analysis . 172
7.6.1 Worst Case Memory Consumption 172
7.6.2 WCET of the Collector . 172

7.7 Summary . 173
7.8 Further Reading . 173

8 Low-level I/O 177
8.1 Hardware Objects . 177

8.1.1 An Example . 177
8.1.2 Definition . 179
8.1.3 Access Control . 180
8.1.4 Using Hardware Objects . 182
8.1.5 Hardware Arrays . 182
8.1.6 Garbage Collection . 182
8.1.7 Hardware Object Creation . 184
8.1.8 Board Configurations . 184

XIV CONTENTS

8.1.9 Implementation . 185
8.1.10 Legacy Code . 189

8.2 Interrupt Handlers . 190
8.2.1 Synchronization . 190
8.2.2 Interrupt Handler Registration . 193
8.2.3 Implementation . 193
8.2.4 An Example . 194

8.3 Standard Devices . 195
8.3.1 The System Device . 195
8.3.2 The UART . 195

9 The SimpCon Interconnect 197
9.1 Introduction . 197

9.1.1 Features . 198
9.1.2 Basic Read Transaction . 198
9.1.3 Basic Write Transaction . 199

9.2 SimpCon Signals . 199
9.2.1 Master Signal Details . 199
9.2.2 Slave Signal Details . 201

9.3 Slave Acknowledge . 202
9.4 Pipelining . 204
9.5 Interconnect . 204
9.6 Examples . 206

9.6.1 I/O Port . 206
9.6.2 SRAM interface . 208

9.7 Available VHDL Files . 210
9.7.1 Components . 210
9.7.2 Bridges . 211

9.8 Why a New Interconnection Standard? . 211
9.8.1 Common SoC Interconnections 211
9.8.2 What’s Wrong with the Classic Standards? 213
9.8.3 Evaluation . 214

9.9 Summary . 216

10 Chip Multiprocessing 217
10.1 Memory Arbitration . 217

10.1.1 Main Memory . 217

CONTENTS XV

10.1.2 I/O Devices . 218
10.2 Booting a CMP System . 218
10.3 CMP Scheduling . 219

10.3.1 One Thread per Core . 220
10.3.2 Scheduling on the CMP System 220

11 Evaluation 225
11.1 Hardware Platforms . 225
11.2 Chip Area and Clock Frequency . 226
11.3 Performance . 228
11.4 Applications . 230

11.4.1 The Kippfahrleitung . 231
11.4.2 The SCADA Device TeleAlarm 235
11.4.3 Support for Single Track Railway Control 237
11.4.4 Communication and Common Design Patterns 239
11.4.5 Discussion . 240

11.5 Summary . 241

12 Related Work 243
12.1 Java Coprocessors . 243

12.1.1 Jazelle . 243
12.2 Java Processors . 244

12.2.1 picoJava . 244
12.2.2 aJile JEMCore . 246
12.2.3 Cjip . 247
12.2.4 Lightfoot . 247
12.2.5 LavaCORE . 248
12.2.6 Komodo, jamuth . 248
12.2.7 FemtoJava . 248
12.2.8 jHISC . 249
12.2.9 SHAP . 249
12.2.10 Azul . 249

13 Summary 251
13.1 A Real-Time Java Processor . 251
13.2 A Resource-Constrained Processor . 253
13.3 Future Work . 254

XVI CONTENTS

A Publications 257

B Acronyms 265

C JOP Instruction Set 267

D Bytecode Execution Time 297

E Printed Circuit Boards 309
E.1 Cyclone FPGA Board . 310
E.2 Baseio Board . 314
E.3 Dspio Board . 319
E.4 Simpexp Board . 325

Bibliography 327

Index 343

1 Introduction

This handbook introduces a Java processor for embedded real-time systems, in particu-
lar the design of a small processor for resource-constrained devices with time-predictable
execution of Java programs. This Java processor is called JOP – which stands for Java Op-
timized Processor –, based on the assumption that a full native implementation of all Java
bytecode instructions is not a useful approach.

1.1 A Quick Tour on JOP

In the following section we will give a quick overview on JOP and a short description how
to get JOP running within an FPGA. A detailed description of the build process can be
found in Chapter 2. JOP is a soft-core written in VHDL plus tools in Java, a simplified Java
library (JDK), and application examples. JOP is delivered in source only.

1.1.1 Building JOP and Running “Hello World”

To build JOP you first have to download the source tree. A Makefile (or an Ant file) contains
all necessary steps to build the tools, the processor, and the application. Configuration of
the FPGA and downloading the Java application is also part of the Makefile.

In this description we assume the FPGA board Cycore (see Appendix E.1). This board is
the default target for the Makefile. The board has to be connected to the power supply and
to the PC via a ByteBlaster download cable and a serial cable.

The FPGA is configured via the ByteBlaster cable. The Java application is downloaded
after the FPGA configuration via the serial cable. Besides the download the serial cable
is also used as a communication link between JOP and the PC. System.out and System.in
represent this serial link on JOP.

In order to build the whole system you need a Java compiler1 and an FPGA compiler.
In our case we use the free web edition of Quartus from Altera.2 As we use make and

1Download the Java SE Development Kit (JDK) from http://java.sun.com/javase/downloads/index.
jsp.

2http://www.altera.com/

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.altera.com/

2 1 INTRODUCTION

the preprocessor from the GNU compiler collection, Cygwin3 should be installed under
Windows.

When all tools are setup correctly4 a simple make should build the tools, the processor,
compile the “Hello World” example, configure the FPGA and download the application.
The whole build process will take a few minutes. After typing

make

you see a lot of messages from the various tools. However, the last lines should be actual
messages received from JOP. It should look similar to the following:

JOP start V 20080821
60 MHz, 1024 KB RAM, 1 CPUs
Hello World from JOP!

JVM exit!

Note that JOP prints some internal information, such as version and memory size, at startup.
After that, the message “Hello World from JOP!” can be seen. Our first program runs on
JOP!

As a next step, locate the Hello World example in the source tree5 and change the output
message. The tools and the processor have been built already. So we do not need to compile
everything from scratch. Use the following make target to just compile the Java application
and download the processor and the application:

make japp

The compile process should now be faster and the output similar to before.
The Hello World application is the default target in the Makefile. See Chapter 2 for a

description how this target can be changed. In case you use a different FPGA board you
can find information on how to change the build process also in Chapter 2.

1.1.2 The Design Structure

Browsing the source tree of JOP can give the impression that the design is complex. How-
ever, the basic structure is not that complex. The design consists of three entities:

1. The processor JOP

3http://www.cygwin.com/
4Check at the command prompt that javac is in the path.
5.../jop/java/target/src/test/test/HelloWorld.java

http://www.cygwin.com/

1.2 A SHORT HISTORY 3

2. Supporting tools

3. The Java library and applications

The different entities are also reflected during the configuration and download process.
The download is a two step process:

1. Configuration of the FPGA: JOP is downloaded via a FPGA download cable (e.g.,
ByteBlaster on the PCs parallel port). After FPGA configuration the processor au-
tomatically starts and listens to the second channel (the serial line) for the software
download.

2. Java application download: the compiled and linked application is downloaded usu-
ally via a serial line. JOP stores the application in the main memory and starts exe-
cution at main() after the download.

Further details of the source structure can be found in Section 2.10.

1.2 A Short History

The first version of JOP was created in 2000 based on the adaptation of earlier processor
designs created between 1995 and 2000. The first version was written in Altera’s proprietary
AHDL language. The first program (3 bytecode instructions) ran on JOP on October 2,
2000. The first approach was a general purpose accumulator/register machine with 16-bit
instructions, 32-bit registers, and a pipeline length of 3. It used the on-chip block memory
to implement (somehow unusual) 1024 registers.

The JVM was implemented in the assembler of that machine. That concept was similar to
the microcode in the current JOP version. The decoding of the bytecode was performed by a
long jump table. In the best case (assuming a local, single cycle memory) a simple bytecode
(e.g. iadd) took 12 cycles for fetch and decode and additional 11 cycles for execution.

A redesign followed in April 2001, now coded in VHDL. The second version of JOP
introduced features to speed up the implementation of the JVM with specific instructions for
the stack access and a dedicated stack pointer. The register file was reduced to 16 entries and
the instruction width reduced to 8 bits. The pipeline contained 5 stages and special support
for decoding bytecode instructions was added – a first version of the dynamic bytecode to
microcode address translation as it is used in the current version of JOP. The enhancements
within JOP2 resulted in the reduction of the execution time for a simple bytecode to 3
cycles. A great enhancement, compared to the 23 cycles in JOP1.

4 1 INTRODUCTION

The next redesign (JOP3) followed in June 2001. The challenge was to execute simple
bytecodes fully pipelined in a single cycle. The microcode instruction set was changed to
implement a stack machine and the execution stage combined with the on-chip stack cache.
Microcode instructions where coded in 16 bit and the pipeline was reduced to four stages.
JOP3 is the basis of JOP as it is described in this handbook. The later changes have not
been so radical to call them a redesign.

The first real-world application of JOP was in the project Kippfahrleitung (see Sec-
tion 11.4.1). At the start of the project (October 2001) JOP could only execute a single
static method stored in the on-chip memory. The project greatly pushed the development
of JOP. After successful deployment of the JOP-based control system in the field, several
projects followed (TeleAlarm, Lift, the railway control system). The source of the commer-
cial applications is part of the JOP distribution. Some of these applications are now used as
a test bench for embedded Java performance and to benchmark WCET analysis tools.

More details and the source code of JOP16, JOP27 and the first JOP38 version are avail-
able on the web site.

1.3 JOP Features

This book presents a hardware implementation of the Java virtual machine (JVM), targeting
small embedded systems with real-time constraints. JOP is designed from the ground up
with time-predictable execution of Java bytecode as a major design goal. All functional
units, and especially the interactions between them, are carefully designed to avoid any
time dependency between bytecodes.

JOP is a stack computer with its own instruction set, called microcode in this book.
Java bytecodes are translated into microcode instructions or sequences of microcode. The
difference between the JVM and JOP is best described as the following:

The JVM is a CISC stack architecture, whereas JOP is a RISC stack architec-
ture.

The architectural features and highlights of JOP are:

• Dynamic translation of the CISC Java bytecodes to a RISC, stack based instruction
set (the microcode) that can be executed in a 3 stage pipeline.

6http://www.jopdesign.com/jop1.jsp
7http://www.jopdesign.com/jop2.jsp
8http://www.jopdesign.com/jop3.jsp

http://www.jopdesign.com/jop1.jsp
http://www.jopdesign.com/jop2.jsp
http://www.jopdesign.com/jop3.jsp

1.3 JOP FEATURES 5

• The translation takes exactly one cycle per bytecode and is therefore pipelined. Com-
pared to other forms of dynamic code translation the translation does not add any
variable latency to the execution time and is therefore time predictable.

• Interrupts are inserted in the translation stage as special bytecodes and are transparent
to the microcode pipeline.

• The short pipeline (4 stages) results in short conditional branch delays and a hard to
analyze branch prediction logic or branch target buffer can be avoided.

• Simple execution stage with the two topmost stack elements as discrete registers. No
write back stage or forwarding logic is needed.

• Constant execution time (one cycle) for all microcode instructions. The microcode
pipeline never stalls. Loads and stores of object fields are handled explicitly.

• No time dependencies between bytecodes result in a simple processor model for the
low-level WCET analysis.

• Time predictable instruction cache that caches whole methods. Only invoke and re-
turn instruction can result in a cache miss. All other instructions are guaranteed cache
hits.

• Time predictable data cache for local variables and the operand stack. Access to local
variables is a guaranteed hit and no pipeline stall can happen. Stack cache fill and
spill is under microcode control and analyzable.

• No prefetch buffers or store buffers that can introduce unbounded time dependencies
of instructions. Even simple processors can contain an instruction prefetch buffer that
prohibits exact WCET values. The design of the method cache and the translation unit
avoids the variable latency of a prefetch buffer.

• Good average case performance compared with other non real-time Java processors.

• Avoidance of hard to analyze architectural features results in a very small design.
Therefore an available real estate can be used for a chip multi-processor solution.

• JOP is the smallest hardware implementation of the JVM available to date. This fact
enables usage of low-cost FPGAs in embedded systems. The resource usage of JOP
can be configured to trade size against performance for different application domains.

6 1 INTRODUCTION

• JOP is actually in use in several real-world applications showing that a Java based
embedded system implemented in an FPGA is a viable option.

JOP is implemented as a soft-core in a field programmable gate array (FPGA) giving
a lot of flexibility for the overall hardware design. The processor can easily be extended
by peripheral components inside the same chip. Therefore, it is possible to customize the
solution exactly to the needs of the system.

1.4 Is JOP the Solution for Your Problem?

I had a lot of fun, and still have, developing and using JOP. However, should you use
JOP? JOP is a processor design intended as a time predictable solution for hard real-time
systems. If your application or research focus is on those systems and you prefer Java as
programming language, JOP is the right choice. If you are interested in larger, dynamic
systems, JOP is the wrong choice. If average performance is important for you and you do
not care about worst-case performance other solutions will probably do a better job.

1.5 Outline of the Book

Chapter 2 gives a detailed introduction into the design flow of JOP. It explains how the
individual parts are compiled and which files have to be changed when you want to extend
JOP or adapt it to a new hardware platform. The chapter is concluded by an exercise to
explore the different steps in the design flow.

Chapter 3 provides background information on the Java programming language, the exe-
cution environment, and the Java virtual machine, for Java applications. If you are already
familiar with Java and the JVM, feel free to skip this chapter.

Chapter 4 is the main chapter in which the architecture of JOP is described. The moti-
vation behind different design decisions is given. A Java processor alone is not a complete
JVM. Chapter 5 describes the runtime environment on top of JOP, including the definition
of a real-time profile for Java and the description of the scheduler in Java.

In Chapter 6 worst-case execution time (WCET) analysis for JOP is presented. It is
shown how the time-predictable bytecode instructions form the basis of WCET analysis of
Java applications.

Garbage collection (GC) is an important part of the Java technology. Even in real-time
systems new real-time garbage collectors emerge. In Chapter 7 the formulas to calculate

1.5 OUTLINE OF THE BOOK 7

the correct scheduling of the GC thread are given and the implementation of the real-time
GC for JOP is explained.

JOP uses a simple and efficient system-on-chip interconnection called SimpCon to con-
nect the memory controller and peripheral devices to the processor pipeline. The defini-
tion of SimpCon and the rationale behind the SimpCon specification is given in Chapter 9.
Based on a SimpCon memory arbiter, chip-multiprocessor (CMP) versions of JOP can be
configured. Chapter 10 gives some background information on the JOP CMP system.

In Chapter 11, JOP is evaluated with respect to size and performance. This is followed
by a description of some commercial real-world applications of JOP. Other hardware im-
plementations of the JVM are presented in Chapter 12. Different hardware solutions from
both academia and industry for accelerating Java in embedded systems are analyzed.

Finally, in Chapter 13, the work is summarized and the major contributions are presented.
This chapter concludes with directions for future work using JOP and real-time Java. A
more theoretical treatment of the design of JOP can be found in the PhD thesis [123],
which is also available as book [131].

2 The Design Flow

This chapter describes the design flow for JOP — how to build the Java processor and a
Java application from scratch (the VHDL and Java sources) and download the processor to
an FPGA and the Java application to the processor.

2.1 Introduction

JOP [123], the Java optimized processor, is an open-source development platform available
for different targets (Altera and Xilinx FPGAs and various types of FPGA boards). To sup-
port several targets, the resulting design-flow is a little bit complicated. There is a Makefile
available and when everything is set up correctly, a simple

make

should build everything from the sources and download a Hello World example. However,
to customize the Makefile for a different target it is necessary to understand the complete
design flow. It should be noted that an Ant1 based build process is also available.

2.1.1 Tools

All needed tools are freely available.

• Java SE Development Kit (JDK) Java compiler and runtime

• Cygwin GNU tools for Windows. Packages cvs, gcc and make are needed

• Quarts II Web Edition VHDL synthesis, place and route for Altera FPGAs

The PATH variable should contain entries to the executables of all packages (java and javac,
Cygwin bin, and Quartus executables). Check the PATH at the command prompt with:

1http://ant.apache.org/

http://java.sun.com/javase/downloads/index.jsp
http://www.cygwin.com/
https://www.altera.com/support/software/download/altera_design/quartus_we/dnl-quartus_we.jsp
http://ant.apache.org/

10 2 THE DESIGN FLOW

javac
gcc
make
git
quartus map

All the executables should be found and usually report their usage.

2.1.2 Getting Started

This section shows a quick step-by-step build of JOP for the Cyclone target in the minimal
configuration. All directory paths are given relative to the JOP root directory jop. The build
process is explained in more detail in one of the following sections.

Download the Source

Create a working directory and download JOP from the GIT server:

git clone git : // www.soc.tuwien.ac.at/jop.git

For a write access clone (for developers) use following URL:

git clone ssh: // user@www.soc.tuwien.ac.at/home/git/jop.git

All sources are downloaded to a directory jop. For the following command change to this
directory. Create the needed directories with:

make directories

Tools

The tools contain Jopa, the microcode assembler, JopSim, a Java based simulation of JOP,
and JOPizer, the application builder. The tools are built with following make command:

make tools

Assemble the Microcode JVM, Compile the Processor

The JVM configured to download the Java application from the serial interface is built with:

make jopser

This command also invokes Quartus to build the processer. If you want to build it within
Quartus follow the following instructions:

2.1 INTRODUCTION 11

1. Start Quartus II and open the project jop.qpf from directory quartus/cycmin in Quartus
with File – Open Project....

2. Start the compiler and fitter with Processing – Start Compilation.

3. After successful compilation the FPGA is configured with Tools – Programmer and
Start .

Compiling and Downloading the Java Application

A simple Hello World application is the default application in the Makefile. It is built and
downloaded to JOP with:

make japp

The “Hello World” message should be printed in the command window.
For a different application change the Makefile targets or override the make variables at

the command line. The following example builds and runs some benchmarks on JOP:

make japp −e P1=bench P2=jbe P3=DoAll

The three variables P1, P2, and P3 are a shortcut to set the directory, the package name,
and the main class of the application.

USB based Boards

Several Altera based boards use an FTDI FT2232 USB chip for the FPGA and Java program
download. To change the download flow for those boards change the value of the following
variable in the Makefile to true:

USB=true

The Java download channel is mapped to a virtual serial port on the PC. Check the port
number in the system properties and set the variable COM PORT accordingly.

2.1.3 Xilinx Spartan-3 Starter Kit

The Xilinx tool chain is still not well supported by the Makefile or the Ant design flow.
Here is a short list on how to build JOP for a Xilinx board:

make tools
cd asm
jopser
cd ..

12 2 THE DESIGN FLOW

Now start the Xilinx IDE wirh the project file jop.npl. It will be converted to a new
(binary) jop.ise project. The .npl project file is used as it is simple to edit (ASCII).

• Generate JOP by double clicking ’Generate PROM, ACE, or JTAG File’

• Configure the FPGA according to the board type

The above is a one step build for the processor. The Java application is built and down-
loaded by:

make java app
make download

Now your first Java program runs on JOP/Spartan-3!

2.2 Booting JOP — How Your Application Starts

Basically this is a two step process: (a) configuration of the FPGA and (b) downloading the
Java application. There are different possibilities to perform these steps.

2.2.1 FPGA Configuration

FPGAs are usually SRAM based and lose their configuration after power down. Therefore
the configuration has to be loaded on power up. For development the FPGA can be config-
ured via a download cable (with JTAG commands). This can be done within the IDEs from
Altera and Xilinx or with command line tools such as quartus pgm or jbi32.

For the device to boot automatically, the configuration has to be stored in non volatile
memory such as Flash. Serial Flash is directly supported by an FPGA to boot on power up.
Another method is to use a standard parallel Flash to store the configuration and additional
data (e.g. the Java application). A small PLD reads the configuration data from the Flash
and shifts it into the FPGA. This method is used on the Cyclone and ACEX boards.

2.2.2 Java Download

When the FPGA is configured the Java application has to be downloaded into the main
memory. This download is performed in microcode as part of the JVM startup sequence.
The application is a .jop file generated by JOPizer. At the moment there are three options:

Serial line JOP listens to the serial line and the data is written into the main memory. A
simple echo protocol performs the flow control. The baud rate is usually 115 kBaud.

2.2 BOOTING JOP — HOW YOUR APPLICATION STARTS 13

USB Similar to the serial line version, JOP listens to the parallel interface of the FTDI
FT2232 USB chip. The FT2232 performs the flow control at the USB level and the
echo protocol is omitted.

Flash For stand alone applications the Java program is copied from the Flash (relative
Flash address 0, mapped Flash address is 0x800002) to the main memory (usually a
32-bit SRAM).

The mode of downloading is defined in the JVM (jvm.asm). To select a new mode, the
JVM has to be assembled and the complete processor has to be rebuilt – a full make run.
The generation is performed by the C preprocessor (gcc) on jvm.asm. The serial version is
generated by default; the USB or Flash version are generated by defining the preprocessor
variables USB or FLASH.

VHDL Simulation To speed up the VHDL simulation in ModelSim there is a forth method
where the Java application is loaded by the test bench instead of JOP. This version is gener-
ated by defining SIMULATION. The actual Java application is written by jop2dat into a plain
text file (mem main.dat) and read by the simulation test bench into the simulated main mem-
ory.

There are four small batch-files in directory asm that perform the JVM generation: jopser,
jopusb, jopflash, and jopsim.

2.2.3 Combinations

Theoretically all variants to configure the FPGA can be combined with all variations to
download the Java application. However, only two combinations are useful:

1. For VHDL or Java development configure the FPGA via the download cable and
download the Java application via the serial line or USB.

2. For a stand-alone application load the configuration and the Java program from the
Flash.

2All addresses in JOP are counted in 32-bit quantities. However, the Flash is connected only to the lower 8
bits of the data bus. Therefore a store of one word in the main memory needs four loads from the Flash.

14 2 THE DESIGN FLOW

2.2.4 Stand Alone Configuration

The Cycore board can be configured to configure the FPGA and load the Java program
from Flash at power up. In order to prepare the Cycore board for this configuration the
Flash must be programmed. Depending on the I/O capabilities several options are possible:

SLIP With a SLIP connection the Flash can be programmed via TFTP. For this configura-
tion a second serial line is needed.

Ethernet With an Ethernet connection (e.g., the baseio board) TFTP can be used for Flash
programming.

Serial Line With a single serial line the utilities util.Mem.java and amd.exe can be used to
program the Flash.

The following text describes the Flash programming and PLD reconfiguration for a stand
alone configuration. Fist we have to build a JOP version that will load a Java program from
the Flash:

make jopflash

As usual a jop.sof file will be generated. For easier reading of the configuration it will be
converted to jop.ttf. This file will be programmed into the Flash starting at address 0x40000.
Therefore, we need to save that file and rebuild a JOP version that loads a Java program (the
Flash programmer) from the serial line:

copy quartus\cycmin\jop.ttf ttf \cycmin.ttf
make jopser

As a next step we will build the Java program that will be programmed into the Flash and
save a copy of the .jop file. Hello.java is the embedded version of a Hello World program that
blinks the WD LED at 1 Hz.

make java app −e P1=test P2=test P3=Hello
copy java\target\dist\bin\Hello.jop .

To program the Flash the programmer tool util.Mem will run on JOP and amd.exe is used at
the PC side:

make japp −e P1=common P2=util P3=Mem COM FLAG=
amd Hello.jop COM1
amd ttf\cycmin.ttf COM1

As a last step the PLD will be programmed to enable FPGA configuration form the Flash:

2.3 THE DESIGN FLOW 15

make pld conf

The board shall now boot after a power cycle and the LED will blink. To read the output
from the serial line the small utility e.exe can be used.

In the case the PLD configuration shall be changed back to JTAG FPGA configuration
following make command will reset the PLD:

make pld init

Note, that in a stand alone configuration the watchdog (WD) pin has to be toggled every
second (e.g., by invoking util.Timer.wd(). When the WD is not toggled the FPGA will be
reconfigured after 1.6 seconds.

Due to wrong file permissions the Windows executables amd.exe and USBRunner.exe will
not have the execution permission set. Change the setting with the Windows Explorer. The
tool amd.exe can also be rebuilt with:

make cprog

2.3 The Design Flow

This section describes the design flow to build JOP in greater detail.

2.3.1 Tools

There are a few tools necessary to build and download JOP to the FPGA boards. Most of
them are written in Java. Only the tools that access the serial line are written in C.3

Downloading

These little programs are already compiled and the binaries are checked in into the reposi-
tory. The sources can be found in directory c src.

down.exe The workhorse to download Java programs. The mandatory argument is the
COM-port. Optional switch -e keeps the program running after the download and
echoes the characters from the serial line (System.out in JOP) to stdout. Switch -usb
disables the echo protocol to speed up the download over USB.

3The Java JDK still comes without the javax.comm package and getting this optional package correctly in-
stalled is not that easy.

16 2 THE DESIGN FLOW

e.exe Echoes the characters from the serial line to stdout. Parameter is the COM-port.

amd.exe A utility to send data over the serial line to program the on-board Flash. The
complementary Java program util.Mem must be running on JOP.

USBRunner.exe Download the FPGA configuration via USB with the FTDI2232C chip
(dpsio board).

Generation of Files

These tools are written in Java and are delivered in source form. The source can be found
under java/tools/src and the class files are in jop-tools.jar in directory java/tools/dist/lib.

Jopa The JOP assembler. Assembles the microcoded JVM and produces on-chip memory
initialization files and VHDL files.

BlockGen converts Altera memory initialization files to VHDL files for a Xilinx FPGA.

JOPizer links a Java application and converts the class information to the format that JOP
expects (a .jop file). JOPizer uses the bytecode engineering library4 (BCEL).

Simulation

JopSim reads a .jop file and executes it in a debug JVM written in Java. Command line
option -Dlog=”true” prints a log entry for each executed JVM bytecode.

pcsim simulates the BaseIO expansion board for Java debugging on a PC (using the JVM
on the PC).

2.3.2 Targets

JOP has been successfully ported to several different FPGAs and boards. The main distri-
bution contains the ports for the FPGAs:

• Altera Cyclone EP1C6 or EP1C12

• Xilinx Spartan-3

• Altera Cyclone-II (Altera DE2 board)

4http://jakarta.apache.org/bcel/

http://jakarta.apache.org/bcel/

2.3 THE DESIGN FLOW 17

• Xilinx Virtex-4 (ML40x board)

• Xilinx Spartan-3E (Digilent Nexys 2 board)

For the current list of the supported FPGA boards see the list at the web site.5 Besides
the ports to different FPGAs there are ports to different boards.

Cyclone EP1C6/12

This board is the workhorse for the JOP development and comes in two versions: with an
Cyclone EP1C6 or EP1C12. The schematics can be found in Appendix E.1. The board
contains:

• Altera Cyclone EP1C6Q240 or EP1C12Q240 FPGA

• 1 MB fast SRAM

• 512 KB Flash (for FPGA configuration and program code)

• 32 MB NAND Flash

• ByteBlasterMV port

• Watchdog with LED

• EPM7064 PLD to configure the FPGA from the Flash (on watchdog reset)

• Voltage regulator (1V5)

• Crystal clock (20 MHz) at the PLL input (up to 640 MHz internal)

• Serial interface (MAX3232)

• 56 general purpose I/O pins

The Cyclone specific files are jopcyc.vhd or jopcyc12 and mem32.vhd. This FPGA board is
designed as a module to be integrated with an application specific I/O-board. There exist
following I/O-boards:

simpexp A simple bread board with a voltage regulator and a SUBD connector for the
serial line

5http://www.jopwiki.com/FPGA_boards

http://www.jopwiki.com/FPGA_boards

18 2 THE DESIGN FLOW

I/O board Quartus I/O top level

simpexp, baseio cycmin scio min.vhd
dspio usbmin scio dspiomin.vhd
baseio cycbaseio scio baseio.vhd
bg263 cybg scio bg.vhd
lego cyclego scio lego.vhd
dspio dspio scio dspio.vhd

Table 2.1: Quartus project directories and VHDL files for the different I/O boards

baseio A board with Ethernet connection and EMC protected digital I/O and analog input

bg263 Interface to a GPS receiver, a GPRS modem, keyboard and a display for a railway
application

lego Interface to the sensors and motors of the LEGO Mindstorms. This board is a substi-
tute for the LEGO RCX.

dspio Developed at the University of Technology Vienna, Austria for digital signal pro-
cessing related work. All design files for this board are open-source.

Table 2.1 lists the related VHDL files and Quartus project directories for each I/O board.

Xilinx Spartan-3

The Spartan-3 specific files are jop xs3.vhd and mem xs3.vhd for the Xilinx Spartan-3 Starter
Kit and jop trenz.vhd and mem trenz.vhd for the Trenz Retrocomputing board.

2.4 Eclipse

In folder eclipse there are four Eclipse projects that you can import into your Eclipse
workspace. However, do not use that directory as your workspace directory. Choose
a directory outside of the JOP source tree for the workspace (e.g., your usual Eclipse
workspace) and copy the for project folders joptarget, joptools, pc, and pcsim.

All projects use the Eclipse path variable6 JOP HOME that has to point to the root direc-
tory (.../jop) of the JOP sources. Under Window – Preferences... select General – Workspace

6Eclipse (path) variables are workspace specific.

2.5 SIMULATION 19

Project Content

jop The target sources
joptools Tools such as Jopa, JopSim, and JOPizer
pc Some PC utilities (e.g. Flash programming via UDP/IP)
pcsim Simulation of the basio hardware on the PC

Table 2.2: Eclipse projects

– Linked Resources and create the path variable JOP HOME with New....
Import the projects with File – Import.. and Existing Projects into Workspace. It is sug-

gested to an Eclipse workspace that is not part of the jop source tree. Select as the root
directory (e.g., your Eclipse workspace), select the projects you want to import, select Copy
projects into workspace, and press Finish. Table 2.2 shows all available projects.

Add the libraries from .../jop/java/lib (as external archives) to the build path (right click on
the joptools project) of the project joptools.7

2.5 Simulation

This section contains the information you need to get a simulation of JOP running. There
are two ways to simulate JOP:

• High-level JVM simulation with JopSim

• VHDL simulation (e.g. with ModelSim)

2.5.1 JopSim Simulation

The high level simulation with JopSim is a simple JVM written in Java that can execute the
JOP specific application (the .jop file). It is started with:

make jsim

To output each executing bytecode during the simulation run change in the Makefile the
logging parameter to -Dlog=”true”.

7Eclipse can’t use path variables for external .jar files.

20 2 THE DESIGN FLOW

VHDL file Function Initialization file Generator

sim jop types 100.vhd JOP constant definitions - -
sim rom.vhd JVM microcode ROM mem rom.dat Jopa
sim ram.vhd Stack RAM mem ram.dat Jopa
sim jbc.vhd Bytecode memory (cache) - -
sim memory.vhd Main memory mem main.dat jop2dat
sim pll.vhd A dummy entity for the PLL - -
sim uart.vhd Print characters to stdio - -

Table 2.3: Simulation specific VHDL files

2.5.2 VHDL Simulation

This section is about running a VHDL simulation with ModelSim. All simulation files
are vendor independent and should run on any versions of ModelSim or a different VHDL
simulator. You can simulate JOP even with the free ModelSim XE II Starter Xilinx version,
the ModelSim Altera version or the ModelSim Actel version.

To simulate JOP, or any other processor design, in a vendor neutral way, models of the
internal memories (block RAM) and the external main memory are necessary. Beside this,
only a simple clock driver is necessary. To speed-up the simulation a little bit, a simulation
of the UART output, which is used for System.out.print(), is also part of the package.

Table 2.3 lists the simulation files for JOP and the programs that generates the initial-
ization data. The non-generated VHDL files can be found in directory vhdl/simulation. The
needed VHDL files and the compile order can be found in sim.bat under modelsim.

The actual version of JOP contains all necessary files to run a simulation with ModelSim.
In directory vhdl/simulation you will find:

• A test bench: tb jop.vhd with a serial receiver to print out the messages from JOP
during the simulation

• Simulation versions of all memory components (vendor neutral)

• Simulation of the main memory

Jopa generates various mem xxx.dat files that are read by the simulation. The JVM that is
generated with jopsim.bat assumes that the Java application is preloaded in the main memory.
jop2dat generates a memory initialization file from the Java application file (MainClass.jop)
that is read by the simulation of the main memory (sim memory.vhd).

2.6 FILES TYPES YOU MIGHT ENCOUNTER 21

In directory modelsim you will find a small batch file (sim.bat) that compiles JOP and
the test bench in the correct order and starts ModelSim. The whole simulation process
(including generation of the correct microcode) is started with:

make sim

After a few seconds you should see the startup message from JOP printed in ModelSim’s
command window. The simulation can be continued with run -all and after around 6 ms
simulation time the actual Java main() method is executed. During those 6 ms, which will
probably be minutes of simulation, the memory is initialized for the garbage collector.

2.6 Files Types You Might Encounter

As there are various tools involved in the complete build process, you will find files with
various extensions. The following list explains the file types you might encounter when
changing and building JOP.

The following files are the source files:

.vhd VHDL files describe the hardware part and are compiled with either Quartus or
Xilinx ISE. Simulation in ModelSim is also based on VHDL files.

.v Verilog HDL. Another hardware description language. Used more in the US.

.java Java — the language that runs native on JOP.

.c There are still some tools written in C.

.asm JOP microcode. The JVM is written in this stack oriented assembler. Files are as-
sembled with Jopa. The result are VHDL files, .mif files, and .dat files for ModelSim.

.bat Usage of these DOS batch files still prohibit running the JOP build under Unix.
However, these files get less used as the Makefile progresses.

.xml Project files for Ant. Ant is an attractive substitution to make. Future distributions
on JOP will be ant based.

Quartus II and Xilinx ISE need configuration files that describe your project. All files are
usually ASCII text files.

.qpf Quartus II Project File. Contains almost no information.

22 2 THE DESIGN FLOW

.qsf Quartus II Settings File defines the project. VHDL files that make up your project
are listed. Constraints such as pin assignments and timing constraints are set here.

.cdf Chain Description File. This file stores device name, device order, and programming
file name information for the programmer.

.tcl Tool Command Language. Can be used in Quartus to automate parts of the design
flow (e.g. pin assignment).

.npl Xilinx ISE project. VHDL files that make up your project are listed. The actual
version of Xilinx ISE converts this project file to a new format that is not in ASCII
anymore.

.ucf Xilinx Foundation User Constraint File. Constraints such as pin assignments and
timing constraints are set here.

The Java tools javac and jar produce following file types from the Java sources:

.class A class file contains the bytecodes, a symbol table and other ancillary information
and is executed by the JVM.

.jar The Java Archive file format enables you to bundle multiple files into a single archive
file. Typically a .jar file contains the class files and auxiliary resources. A .jar file is
essentially a zip file that contains an optional META-INF directory.

The following files are generated by the various tools from the source files:

.jop This file makes up the linked Java application that runns on JOP. It is generated by
JOPizer and can be either downloaded (serial line or USB) or stored in the Flash (or
used by the simulation with JopSim or ModelSim)

.mif Memory Initialization File. Defines the initial content of on-chip block memories
for Altera devices.

.dat memory initialization files for the simulation with ModelSim.

.sof SRAM Output File. Configuration file for Altera devices. Used by the Quartus
programmer or by quartus pgm. Can be converted to various (or too many) different
format. Some are listed below.

2.7 INFORMATION ON THE WEB 23

.pof Programmer Object File. Configuration for Altera devices. Used for the Flash loader
PLDs.

.jbc JamTM STAPL Byte Code 2.0. Configuration for Altera devices. Input file for jbi32.

.ttf Tabular Text File. Configuration for Altera devices. Used by flash programming
utilities (amd and udp.Flash to store the FPGA configuration in the boards Flash.

.rbf Raw Binary File. Configuration for Altera devices. Used by the USB download
utility (USBRunner) to configure the dspio board via the USB connection.

.bit Bitstream File. Configuration file for Xilinx devices.

2.7 Information on the Web

Further information on JOP and the build process can be found on the Internet at the fol-
lowing places:

• http://www.jopdesign.com/ is the main web site for JOP

• http://www.jopwiki.com/ is a Wiki that can be freely edited by JOP users.

• http://tech.groups.yahoo.com/group/java-processor/ hosts a mailing list
for discussions on Java processors in general and mostly on JOP related topics

2.8 Porting JOP

Porting JOP to a different FPGA platform or board usually consists of adapting pin defini-
tions and selection of the correct memory interface. Memory interfaces for the SimpCon
interconnect can be found in directory vhdl/memory.

2.8.1 Test Utilities

To verify that the port of JOP is successful there are some small test programs in asm/src.
To run the JVM on JOP the microcode jvm.asm is assembled and will be stored in an on-
chip ROM. The Java application will then be loaded by the first microcode instructions
in jvm.asm into an external memory. However, to verify that JOP and the serial line are
working correctly, it is possible to run small test programs directly in microcode.

http://www.jopdesign.com/
http://www.jopwiki.com/
http://tech.groups.yahoo.com/group/java-processor/

24 2 THE DESIGN FLOW

One test program (blink.asm) does not need the main memory and is a first test step before
testing the possibly changed memory interface. testmon.asm can be used to debug the main
memory interface. Both test programs can be built with the make targets jop blink test and
jop testmon.

Blinking LED and UART output

The test is built with:

make jop blink test

After download, the watchdog LED should blink and the FPGA will print out 0 and 1 on
the serial line. Use a terminal program or the utility e.exe to check the output from the serial
line.

Test Monitor

Start a terminal program (e.g. HyperTerm) to communicate with the monitor program and
build the test monitor with:

make jop testmon

After download the program prints the content of the memory at address 0. The program
understands following commands:

• A single CR reads the memory at the current addres and prints out the address and
memory content

• addr=val; writes val into the memory location at address addr

One tip: Take care that your terminal program does not send an LF after the CR.

2.9 Extending JOP

JOP is a soft-core processor and customizing it for an application is an interesting opportu-
nity.

2.9 EXTENDING JOP 25

2.9.1 Native Methods

The native language of JOP is microcode. A native method is implemented in JOP mi-
crocode. The interface to this native method is through a special bytecode. The mapping
between native methods and the special bytecode is performed by JOPizer. When adding a
new (special) bytecode to JOP, the following files have to be changed:

1. jvm.asm implementation

2. Native.java method signature

3. JopInstr.java mapping of the signature to the name

4. JopSim.java simulation of the bytecode

5. JVM.java (just rename the method name)

6. Startup.java (only when needed in a class initializer)

7. WCETInstruction.java timing information

First implement the native code in JopSim.java for easy debugging. The real microcode
is added in jvm.asm with a label for the special byctecode. The naming convention is jop-
sys name. In Native.java provide a method signature for the native method and enter the
mapping between this signature and the name in jvm.asm and in JopInstr.java. Provide the
execution time in WCETInstruction.java for WCET analysis.

The native method is accessed by the method provided in Native.java. There is no calling
overhead involved in the mechanism. The native method gets substituted by JOPizer with a
special bytecode.

2.9.2 A new Peripheral Device

Creation of a new peripheral devices involves some VHDL coding. However, there are
several examples in jop/vhdl/scio available.

All peripheral components in JOP are connected with the SimpCon [127] interface. For
a device that implements the Wishbone [94] bus, a SimpCon-Wishbone bridge (sc2wb.vhd)
is available (e.g., it is used to connect the AC97 interface in the dspio project).

For an easy start use an existing example and change it to your needs. Take a look into
sc test slave.vhd. All peripheral components (SimpCon slaves) are connected in one module
usually named scio xxx.vhd. Browse the examples and copy one that best fits your needs.

26 2 THE DESIGN FLOW

In this module the address of your peripheral device is defined (e.g. 0x10 for the primary
UART). This I/O address is mapped to a negative memory address for JOP. That means
0xffffff80 is added as a base to the I/O address.

By convention this address mapping is defined in com.jopdesign.sys.Const. Here is the
UART example:

// use negative base address for fast constant load
// with bipush
public static final int IO BASE = 0xffffff80;
...
public static final int IO STATUS = IO BASE+0x10;
public static final int IO UART = IO BASE+0x10+1;

The I/O devices are accessed from Java by native8 functions: Native.rdMem() and Na-
tive.wrMem() in pacakge com.jopdesign.sys. Again an example with the UART:

// busy wait on free tx buffer
// no wait on an open serial line , just wait
// on the baud rate
while ((Native.rdMem(Const.IO STATUS)&1)==0) {

;
}
Native.wrMem(c, Const.IO UART);

Best practise is to create a new I/O configuration scio xxx.vhdl and a new Quartus project
for this configuration. This avoids the mixup of the changes with a new version of JOP. For
the new Quartus project only the three files jop.cdf, jop.qpf, and jop.qsf have to be copied in a
new directory under quartus. This new directory is the project name that has to be set in the
Makefile:

QPROJ=yourproject

The new VHDL module and the scio xxx.vhdl are added in jop.qsf. This file is a plain
ASCII file and can be edited with a standard editor or within Quartus.

2.9.3 A Customized Instruction

A customized instruction can be simply added by implementing it in microcode and map-
ping it to a native function as described before. If you want to include a hardware module

8These are not real functions and are substituted by special bytecodes on application building with JOPizer.

2.9 EXTENDING JOP 27

that implements this instruction a new microinstruction has to be introduced. Besides map-
ping this instruction to a native method the instruction has also be added to the microcode
assembler Jopa.

2.9.4 Dependencies and Configurations

As JOP and the JVM are a mix of VHDL and Java files, of changes some configurations or
changes in central data structures needs an update in several files.

Speed Configuration

By default, JOP is configured for 80 Mhz. To build the 100 MHz configuration, edit quar-
tus/cycmin/jop.qsf and change jop config 80 to jop config 100.

Method Cache Configuration

The default configuration (for the Altera Cyclone) is a 4 KB method cache configured with
16 blocks (i.e., a variable block cache). For the Xilinx targets, the cache size is 2KB because
Xilinx does not (or did not) support easily configurable block RAMs.

To change from a variable block cache to a dual-block cache, you will need to edit the
top-level VHDL. Here is an example from vhdl/top/jopcyc.vhd:

entity jop is

generic (
ram cnt : integer := 2; −− clock cycles for external ram

−− rom cnt : integer := 3; −− clock cycles for external rom OK for 20 MHz
rom cnt : integer := 15; −− clock cycles for external rom for 100 MHz
jpc width : integer := 12; −− address bits of java bytecode pc = cache size
block bits : integer := 4 −− 2∗block bits is number of cache blocks

);

The power of 2 of the jpc width is the cache size, and the power of 2 of the block bits is the
number of blocks. To simulate a dual block cache, block bits has to be set to 1. (To use a
single block cache, cache.vhd has to be modified to force a miss at the cache lookup.)

Stack Size

The on-chip stack size can be configured by changing following constants:

28 2 THE DESIGN FLOW

• ram width in jop config xx.vhd

• STACK SIZE in com.jopdesign.sys.Const

• RAM LEN in com.jopdesign.sys.Jopa

Changing the Class Format

The constants for the offsets of fields in the class format are found in:

• JOPizer: CLS HEAD, dump()

• GC.java uses CLASS HEADR

• JMV.java uses CLASS HEADR + offset (checkcast, instanceof)

2.10 Directory Structure

The top-level directories of the distribution are:

asm Microcode source files. The microcode part of the JVM and test files.

boards Pictures and text for the Eclipse plugin

c src Some utilities in C (e.g. down.exe and e.exe).

doc LATEXsources for this handbook and short notes.

eclipse Eclipse project files

ext External VHDL and Verilog sources

java All Java files

lib External .jar files
pc Tools on the PC
pcsim High-level simulation on the PC
target The Java sources for JOP
tools All Java tools

jbc FPGA configuration files for jbi32.exe (generated)

2.10 DIRECTORY STRUCTURE 29

jopc A C version of a JOP JVM simulation – very outdated

linux Scripts to start a network and SLIP

modelsim ModelSim simulation

pins Pin definitions for FPGA boards

quartus Quartus project files

rbf FPGA configuration files for USBRunner (generated)

sopc JOP as SoPC component and SRAM components

support Stand-alone Flash programming for the Cycore board

ttf FPGA configuration files for Flash programming (generated)

vhdl The processor sources

altera Altera specific components (PLL, RAM)

config Cycore PLD sources

core The processor core

fpu The floating-point unit

memory Main memory connections via SimpCon

scio I/O components and configurations with SimpCon

simpcon SimpCon bridges and arbiter

simulation Memory and UART for ModelSim simulation

start The VHDL version of hello world – a blinking LED

testbenches no real content

top Top-level and configuration (e.g. PLL setting) components

vga A SimpCon VGA controller

xilinx Xilinx specific components (RAM)

xilinx Xilinx project files

30 2 THE DESIGN FLOW

2.10.1 The Java Sources for JOP

The most important directory for all Java sources that run on JOP is in java/target.

dist Generated files

bin The linked application (.jop)
classes The class files
lib The application class files in classes.zip – input for JOPizer

src The source

app The applications
bench The embedded benchmark suit
common Utility classes
jdk base Base classes for the JDK
jdk11 JDK around version 1.1
jdk14 A test port of JDK 1.4 classes
rtapi Experimental RT API dfinitions
test Various test programs

wcet Output from the WCET analyzer (generated)

2.11 The JOP Hello World Exercise

This exercise gives an introduction into the design flow of JOP. JOP will be built from the
sources and a simple Hello World program will run on it.

To understand the build process you have to run the build manually. This understanding
will help you to find the correct files for changes in JOP and to adjust the Makefile for your
needs.

2.11.1 Manual build

Manual build does not mean entering all commands, but calling the correct make target with
the required arguments (if any) in the correct order. The idea of this exercise is to obtain
knowledge of the directory structure and the dependencies of various design units.

Inspect the Makefile targets and the ones that are called from it before running them.

2.11 THE JOP HELLO WORLD EXERCISE 31

1. Create your working directory

2. Download the sources from the opencores CVS server

3. Connect the FPGA board to the PC (and the power supply)

4. Perform the build as described in Section 2.1.2.

As a result you should see a message at your command prompt.

2.11.2 Using make

In the root directory (jop) there is a Makefile. Open it with an editor and try to find the
corresponding lines of code for the steps you did in the first exercise. Reset the FPGA by
cycling the power and run the build with a simple

make

The whole process should run without errors and the result should be identical to the
previous exercise.

2.11.3 Change the Java Program

The whole build process is not necessary when changing the Java application. Once the
processor is built, a Java application can be built and downloaded with the following make
target:

make japp

Change HelloWorld.java and run it on JOP. Now change the class name that contains the main()
method from HelloWorld to Hello and rerun the Java application build. Now an embedded
version of “Hello World” should run on JOP. Besides the usual greeting on the standard
output, the LED on the FPGA board should blink at a frequency of 1 Hz. The first periodic
task, an essential abstraction for real-time systems, is running on JOP!

2.11.4 Change the Microcode

The JVM is written in microcode and several .vhdl files are generated during assembly. For
a test change only the version string9 in jvm.asm to the actual date and run a full make.

9The actual version date will probably be different from the actual sources.

32 2 THE DESIGN FLOW

simpexp dspio

FPGA EP1C6 EP1C12
I/O UART UART, USB, audio codec, sigma-delta codec
FPGA configuration ByteBlaster USBRunner
Java download serial line USB

Table 2.4: Differences between the two target boards

version = 20090626

version = 20110101

The start message should reflect your change. As the microcode was changed a full make
run is necessary. The microcode assembly generates VHDL files and the complete proces-
sor has to be rebuilt.

2.11.5 Use a Different Target Board

In this exercise, you will alter the Makefile for a different target board. Disconnect the first
board and connect the board with an USB port (e.g. the dspio or Lego board).

Table 2.4 lists the differences between the first board (simpexp) and the new one (called
dspio). The correct FPGA is already selected in the Quartus project files (jop.qpf). Alter the
Makefile to set the variable USB to true. This will change:

1. The Quartus project from cycmin to usbmin

2. The Java download is now over USB instead of the serial line

3. The parameters for the download via down.exe are changed to use the virtual com-port
of the USB driver (look into Windows hardware manager to get the correct number)
and the switch -usb for the download is added

Now build the whole project with make. Change the Java program and perform only the
necessary build step.

2.11.6 Compile a Different Java Application

The class that contains the main method is described by three arguments:

2.11 THE JOP HELLO WORLD EXERCISE 33

1. The first directory relative to java/target/src (e.g. app or test)

2. The package name (e.g. dsp)

3. The main class (e.g. HalloWorld)

These three values are used by the Makeile and are set in the variables P1, P2, and P3 in
the Makefile.

Change the Makefile to compile the embedded Java benchmark jbe.DoAll. The parame-
ters for the Java application can also be given to the make with following command line
arguments:

make −e P1=bench P2=jbe P3=DoAll

The three variables P1, P2, and P3 are a shortcut to set the main class of the application.
You can also directly set the variables TARGET APP PATH and MAIN CLASS.

2.11.7 Simulation

This exercise will give you a full view of the possibilities to debug JOP system code or the
processor itself. There are two ways to simulate JOP: A simple debugging JVM written in
Java (JopSim as part of the tool package) that can execute jopized applications and a VHDL
level simulation with ModelSim. The make targets are jsim and sim.

2.11.8 WCET Analysis

An important step in real-time system development is the analysis of the WCET of the
individual tasks. Compile and run the WCET example Loop.java in package wcet. You can
analyze the WCET of the method measure() with following make command:

make java app wcet −e P1=test P2=wcet P3=Loop

Change the code in Loop.java to enable measurement of the execution time and compare it
with the output of the static analysis. In this simple example the WCET can be measured.
However, be aware that most non-trivial code needs static analysis for safe estimates of
WCET values.

3 Java and the Java Virtual Machine

Java technology consists of the Java language definition, a definition of the standard li-
brary, and the definition of an intermediate instruction set with an accompanying execution
environment. This combination helps to make write once, run anywhere possible.

The following chapter gives a short overview of the Java programming language. A more
detailed description of the Java Virtual Machine (JVM) and the explanation of the JVM
instruction set, the so-called bytecodes, follows. The exploration of dynamic instruction
counts of typical Java programs can be found in Section ??.

3.1 Java

Java is a relatively new and popular programming language. The main features that have
helped Java achieve success are listed below:

Simple and object oriented: Java is a simple programming language that appears very
similar to C. This ‘look and feel’ of C means that programmers who know C, can
switch to Java without difficulty. Java provides a simplified object model with single
inheritance1.

Portability: To accommodate the diversity of operating environments, the Java compiler
generates bytecodes – an architecture neutral intermediate format. To guarantee plat-
form independence, Java specifies the sizes of its basic data types and the behavior of
its arithmetic operators. A Java interpreter, the Java virtual machine, is available on
various platforms to help make ‘write once, run anywhere’ possible.

Availability: Java is not only available for different operating systems, it is available at no
cost. The runtime system and the compiler can be downloaded from Sun’s website
for Windows, Linux, and Solaris. Sophisticated development environments, such as
Netbeans or Eclipse, are available under the GNU Public License.

1Java has single inheritance of implementation – only one class can be extended. However, a class can
implement several interfaces, which means that Java has multiple interface inheritance.

36 3 JAVA AND THE JAVA VIRTUAL MACHINE

Operating system

Java virtual machine

Java
native

interface

Java class library (JDK)

Java application

Java programming language

Classloader Verifier Execution

Figure 3.1: Java system overview

Library: The complete Java system includes a rich class library to increase programming
productivity. Besides the functionality of a C standard library, it also contains other
tools, such as collection classes and a GUI toolkit.

Built-in multithreading: Java supports multithreading at the language level: the library
provides the Thread class, the language provides the keyword synchronized for critical
sections and the runtime system provides monitor and condition lock primitives. The
system libraries have been written to be thread-safe: the functionality provided by the
libraries is available without conflicts due to multiple concurrent threads of execution.

Safety: Java provides extensive compile-time checking, followed by a second level of run-
time checking. The memory management model is simple – objects are created with
the new operator. There are no explicit pointer data types and no pointer arithmetic,
but there is automatic garbage collection. This simple memory management model
eliminates a large number of the programming errors found in C and C++ programs.
A restricted runtime environment, the so-called sandbox, is available when executing
small Java applications in Web browsers.

As can be seen in Figure 3.1, Java consists of three main components:

1. The Java programming language as defined in [47]

3.1 JAVA 37

2. The class library, defined as part of the Java specification. All implementations of
Java have to contain the library as defined by Sun

3. The Java virtual machine (defined in [82]) that loads, verifies and executes the binary
representation (the class file) of a Java program

The Java native interface supports functions written in C or C++. This combination is
sometimes called Java technology to emphasize the fact that Java is more than just another
object-oriented language.

However, a number of issues have slowed down the broad acceptance of Java. The orig-
inal presentation of Java as an Internet language led to the misconception that Java was
not a general-purpose programming language. Another obstacle was the first implementa-
tion of the JVM as an interpreter. Execution of Java programs was very slow compared to
compiled C/C++ programs. Although advances in its runtime technology, in particular the
just-in-time compiler, have closed the performance gap, it is still a commonly held view
that Java is slow.

3.1.1 History

The Java programming language originated as part of the Green project specifically for an
embedded device, a handheld wireless PDA. In the early ’90s, Java, which was originally
known as Oak [143, 144], was created as the programming tool for this device. The device
(known as *7) was a small SPARC-based hardware device with a tiny embedded OS. How-
ever, the *7 was never released as a product and Java was officially released in 1995 as the
new language for the Internet. Over the years, Java technology has become a programming
tool for desktop applications, web servers and server applications. These application do-
mains resulted in the split of the Java platform into the Java standard edition (J2SE) and the
enterprise edition (J2EE) in 1999. With every new release, the library (defined as part of
the language) continued to grow. Java for embedded systems was clearly not an area Sun
was interested in pursuing. However, with the arrival of mobile phones, Sun again became
interested in this embedded market. Sun defined different subsets of Java, which have now
been combined into the Java Micro Edition (J2ME).

In 1999, a document defining the requirements for real-time Java was published by the
NIST [88]. Based on these requirements, two groups defined specifications for real-time
Java: the Real-Time Core Extension [141] published under the J Consortium and the Real-
Time Specification for Java (RTSJ) [25]. A comparison of these two specifications and a
comparison with Ada 95’s Real-Time Annex can be found in [30]. The RTSJ was the first
Java Specification Request (JSR 1) under the Java Community Process (JCP) and started

38 3 JAVA AND THE JAVA VIRTUAL MACHINE

Type Description

boolean either true or false
char 16-bit Unicode character (unsigned)
byte 8-bit integer (signed)
short 16-bit integer (signed)
int 32-bit integer (signed)
long 64-bit integer (signed)
float 32-bit floating-point (IEEE 754-1985)
double 64-bit floating-point (IEEE 754-1985)

Table 3.1: Java primitive data types

1999. The first release came out 2002 and further enhancement of the RTSJ (to version
1.1) are covered by the JSR 282 (started in 2005). Under JSR 302 (Safety Critical Java
Technology) a subset of the RTSJ is currently defined for the safety critical domain (e.g.,
standard DO-178B/ED-12B [115]). A detailed description of the J2ME and specifications
for real-time Java can be found in Chapter 4 of [123].

3.1.2 The Java Programming Language

The Java programming language is a general-purpose object-oriented language. Java is
related to C and C++, but with a number of aspects omitted. Java is a strongly typed
language, which means that type errors can be detected at compile time. Other errors,
such as wrong indices in an array, are checked at runtime. The problematic2 pointer in
C and explicit deallocation of memory is completely avoided. The pointer is replaced by
a reference, i.e., an abstract pointer to an object. Storage for an object is allocated from
the heap during creation of the object with new. Memory is freed by automatic storage
management, typically using a garbage collector. The garbage collector avoids memory
leaks from a missing free() and the safety problems exposed by dangling pointers.

The types in Java are divided into two categories: primitive types and reference types.
Table 3.1 lists the available primitive types. Method local variables, class fields and object
fields contain either a primitive type value or a reference to an object.

Classes and class instances, the objects, are the fundamental data and code organization

2C pointers represent memory addresses as data. Pointer arithmetic and direct access to memory leads to
common and hard-to-find program errors.

3.2 THE JAVA VIRTUAL MACHINE 39

structures in Java. There are no global variables or functions as there are in C/C++. Each
method belongs to a class. This ‘everything belongs to a class or an object’ combined with
the class naming convention, as suggested by Sun, avoids name conflicts in even the largest
applications.

New classes can extend exactly one superclass. Classes that do not explicitly extend a
superclass become direct subclasses of Object, the root of the whole class tree. This single
inheritance model is extended by interfaces. Interfaces are abstract classes that only define
method signatures and provide no implementation. A concrete class can implement several
interfaces. This model provides a simplified form of multiple inheritance.

Java supports multitasking through threads. Each thread is a separate flow of control,
executing concurrently with all other threads. A thread contains the method stack as thread
local data – all objects are shared between threads. Access conflicts to shared data are
avoided by the proper use of synchronized methods or code blocks.

Java programs are compiled to a machine-independent bytecode representation as defined
in [82]. Although this intermediate representation is defined for Java, other programming
languages (e.g., ADA [33]) can also be compiled into Java bytecodes.

3.2 The Java Virtual Machine

The Java virtual machine (JVM) is a definition of an abstract computing machine that exe-
cutes bytecode programs. The JVM specification [82] defines three elements:

• An instruction set and the meaning of those instructions – the bytecodes

• A binary format – the class file format. A class file contains the bytecodes, a symbol
table and other ancillary information

• An algorithm to verify that a class file contains valid programs

In the solution presented in this book, the class files are verified, linked and transformed into
an internal representation before being executed on JOP. This transformation is performed
with JOPizer and is not executed on JOP. We will therefore omit the description of the class
file and the verification process.

The instruction set of the JVM is stack-based. All operations take their arguments from
the stack and put the result onto the stack. Values are transferred between the stack and
various memory areas. We will discuss these memory areas first, followed by an explanation
of the instruction set.

40 3 JAVA AND THE JAVA VIRTUAL MACHINE

3.2.1 Memory Areas

The JVM contains various runtime data areas. Some of these areas are shared between
threads, whereas other data areas exist separately for each thread.

Method area: The method area is shared among all threads. It contains static class in-
formation such as field and method data, the code for the methods and the constant
pool. The constant pool is a per-class table, containing various kinds of constants
such as numeric values or method and field references. The constant pool is similar
to a symbol table.

Part of this area, the code for the methods, is very frequently accessed (during in-
struction fetch) and therefore is a good candidate for caching.

Heap: The heap is the data area where all objects and arrays are allocated. The heap is
shared among all threads. A garbage collector reclaims storage for objects.

JVM stack: Each thread has a private stack area that is created at the same time as the
thread. The JVM stack is a logical stack that contains following elements:

1. A frame that contains return information for a method
2. A local variable area to hold local values inside a method
3. The operand stack, where all operations are performed

Although it is not strictly necessary to allocate all three elements to the same type of
memory we will see in Section 4.4 that the argument-passing mechanism regulates
the layout of the JVM stack.

Local variables and the operand stack are accessed as frequently as registers in a
standard processor. A Java processor should provide some caching mechanism of
this data area.

The memory areas are similar to the various segments in conventional processes (e.g. the
method code is analogous to the ‘text’ segment). However, the operand stack replaces the
registers in a conventional processor.

3.2.2 JVM Instruction Set

The instruction set of the JVM contains 201 different instructions [82]. This bytecodes can
be grouped into the following categories:

3.2 THE JAVA VIRTUAL MACHINE 41

Load and store: Load instructions push values from the local variables onto the operand
stack. Store instructions transfer values from the stack back to local variables. 70
different instructions belong to this category. Short versions (single byte) exist to
access the first four local variables. There are unique instructions for each basic type
(int, long, float, double and reference). This differentiation is necessary for the bytecode
verifier, but is not needed during execution. For example iload, fload and aload all
transfer one 32-bit word from a local variable to the operand stack.

Arithmetic: The arithmetic instructions operate on the values found on the stack and push
the result back onto the operand stack. There are arithmetic instructions for int, float
and double. There is no direct support for byte, short or char types. These values are
handled by int operations and have to be converted back before being stored in a local
variable or an object field.

Type conversion: The type conversion instructions perform numerical conversions be-
tween all Java types: as implicit widening conversions (e.g., int to long, float or double)
or explicit (by casting to a type) narrowing conversions.

Object creation and manipulation: Class instances and arrays (that are also objects) are
created and manipulated with different instructions. Objects and class fields are ac-
cessed with type-less instructions.

Operand stack manipulation: All direct stack manipulation instructions are type-less and
operate on 32-bit or 64-bit entities on the stack. Examples of these instructions are
dup, to duplicate the top operand stack value, and pop, to remove the top operand
stack value.

Control transfer: Conditional and unconditional branches cause the JVM to continue ex-
ecution with an instruction other than the one immediately following. Branch tar-
get addresses are specified relative to the current address with a signed 16-bit off-
set. The JVM provides a complete set of branch conditions for int values and refer-
ences. Floating-point values and type long are supported through compare instruc-
tions. These compare instructions result in an int value on the operand stack.

Method invocation and return: The different types of methods are supported by four in-
structions: invoke a class method, invoke an instance method, invoke a method that
implements an interface and an invokespecial for an instance method that requires spe-
cial handling, such as private methods or a superclass method.

42 3 JAVA AND THE JAVA VIRTUAL MACHINE

A bytecode consists of one instruction byte followed by optional operand bytes. The length
of the operand is one or two bytes, with the following exceptions: multianewarray contains 3
operand bytes; invokeinterface contains 4 operand bytes, where one is redundant and one is
always zero; lookupswitch and tableswitch (used to implement the Java switch statement) are
variable-length instructions; and goto w and jsr w are followed by a 4 byte branch offset, but
neither is used in practice as other factors limit the method size to 65535 bytes.

3.2.3 Methods

A Java method is equivalent to a function or procedure in other languages. In object oriented
terminology this method is invoked instead of called. We will use method and invoke in the
remainder of this text. In Java and the JVM, there are five types of methods:

• Static or class methods

• Virtual methods

• Interface methods

• Class initialization

• Constructor of the parent class (super())

For these five types there are only four different bytecodes:

invokestatic: A class method (declared static) is invoked. As the target does not depend on
an object, the method reference can be resolved at load/link time.

invokevirtual: An object reference is resolved and the corresponding method is invoked.
The resolution is usually done with a dispatch table per class containing all imple-
mented and inherited methods. With this dispatch table, the resolution can be per-
formed in constant time.

invokeinterface: An interface allows Java to emulate multiple inheritance. A class can im-
plement several interfaces, and different classes (that have no inheritance relation)
can implement the same interface. This flexibility results in a more complex resolu-
tion process. One method of resolution is a search through the class hierarchy that
results in a variable, and possibly lengthy, execution time. A constant time resolution
is possible by assigning every interface method a unique number. Each class that
implements an interface needs its own table with unique positions for each interface
method of the whole application.

3.2 THE JAVA VIRTUAL MACHINE 43

for (;;) {
instr = bcode[pc++];
switch (instr) {

...
case IADD:

tos = stack[sp]+stack[sp−1];
−−sp;
stack[sp] = tos;
break;

...
}

}
Listing 3.1: A typical JVM interpreter loop

invokespecial: Invokes an instance method with special handling for superclass, private,
and instance initialization. This bytecode catches many different cases. This results
in expensive checks for common private instance methods.

3.2.4 Implementation of the JVM

There are several different ways to implement a virtual machine. The following list presents
these possibilities and analyses how appropriate they are for embedded devices.

Interpreter: The simplest realization of the JVM is a program that interprets the bytecode
instructions. The interpreter itself is usually written in C and is therefore easy to port
to a new computer system. The interpreter is very compact, making this solution a
primary choice for resource-constrained systems. The main disadvantage is the high
execution overhead. From a code fragment of the typical interpreter loop, as shown in
Listing 3.1, we can examine the overhead: The emulation of the stack in a high-level
language results in three memory accesses for a simple iadd bytecode. The instruction
is decoded through an indirect jump. Indirect jumps are still a burden for standard
branch prediction logic.

Just-In-Time Compilation: Interpreting JVMs can be enhanced with just-in-time (JIT)
compilers. A JIT compiler translates Java bytecodes to native instructions during
runtime. The time spent on compilation is part of the application execution time. JIT
compilers are therefore restricted in their optimization capacity. To reduce the com-
pilation overhead, current JVMs operate in mixed mode: Java methods are executed

44 3 JAVA AND THE JAVA VIRTUAL MACHINE

in interpreter mode and the call frequency is monitored. Often-called methods, the
hot spots, are then compiled to native code.

JIT compilation has several disadvantages for embedded systems, notably that a com-
piler (with the intrinsic memory overhead) is necessary on the target system. Due to
compilation during runtime, execution times are hardly predictable.3

Batch Compilation: Java can be compiled, in advance, to the native instruction set of the
target. Precompiled libraries are linked with the application during runtime. This is
quite similar to C/C++ applications with shared libraries. This solution undermines
the flexibility of Java: dynamic class loading during runtime. However, this is not a
major concern for embedded systems.

Hardware Implementation: A Java processor is the implementation of the JVM in hard-
ware. The JVM bytecode is the native instruction set of such a processor. This solu-
tion can result in quite a small processor, as a stack architecture can be implemented
very efficiently. A Java processor is memory-efficient as an interpreting JVM, but
avoids the execution overhead. The main disadvantage of a Java processor is the lack
of capability to execute C/C++ programs. This book describes JOP as an example of
a JVM hardware implementation.

3.3 Embedded Java

In embedded systems the architecture of JVMs are more diverse than on desktop or server
systems. Figure 3.2 shows variations of Java implementations in embedded systems and an
example of the control flow for a web server application. The standard approach of a JVM
running on top of an operating system (OS) is shown in sub-figure (a). A network connec-
tion bypasses the JVM via native functions and uses the TCP/IP stack implementation and
the device drivers of the OS.

A JVM without an OS is shown in sub-figure (b). This solution is often called running
on the bare metal. The JVM acts as the OS and provides the thread scheduling and the
low-level access to the hardware. In that case the network stack can be written entirely in
Java. JNode4 is an approach to implement the OS entirely in Java. This solution becomes
popular even in server applications.5

3Even if the time for the compilation is known, the WCET for a method has to include the compile time!
Furthermore, WCET analysis has to know in advance what code will be produced by JIT compilation.

4http://www.jnode.org/
5BEA System offers the JVM LiquidVM that includes basic OS functions and does not need a guest OS.

http://www.jnode.org/

3.4 SUMMARY 45

Hardware
Java processor (JVM)

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application Web server

Hardware

OS (Linux)

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application

N
at

iv
e

Web server

Hardware

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application

N
at

iv
e

Web server

(a) (b) (c)

Figure 3.2: Implementation variations for an embedded JVM: (a) standard layers for Java
with an operating system – equivalent to desktop configurations, (b) a JVM on
the bare metal, and (c) a JVM as a Java processor.

Sub-figure (c) shows an embedded solution where the JVM is part of the hardware layer.
That means it is implemented in a Java processor. With this solution the native layer can be
completely avoided and all code (application and system code) is written entirely in Java.

Figure 3.2 shows how the flow from the application goes down to the hardware. The
example consists of a web server and an Internet connection via Ethernet. In case (a) the
application web server talks with java.net in the JDK. The flow goes through a native inter-
face to the TCP/IP implementation and the Ethernet device driver within the OS (usually
written in C). The device driver talks with the Ethernet chip. In (b) the OS layer is omitted:
the TCP/IP layer and the Ethernet device driver are now part of the Java library. In (c)
the JVM is part of the hardware layer and a direct access from the Ethernet driver to the
Ethernet hardware is mandatory. Note how part of the network stack moves up from the
OS layer to the Java library. Version (c) shows a pure Java implementation of the whole
network stack.

3.4 Summary

Java is a unique combination of the language definition, a rich class library and a runtime
environment. A Java program is compiled to bytecodes that are executed by a Java vir-

46 3 JAVA AND THE JAVA VIRTUAL MACHINE

tual machine. Strong typing, runtime checks and avoidance of pointers make Java a safe
language. The intermediate bytecode representation simplifies porting of Java to different
computer systems. An interpreting JVM is easy to implement and needs few system re-
sources. However, the execution speed suffers from interpreting. JVMs with a just-in-time
compiler are state-of-the-art for desktop and server systems. These compilers require large
amounts of memory and have to be ported for each processor architecture, which means
they are not the best choice for embedded systems. A Java processor is the implementation
of the JVM as a concrete machine. A Java processor avoids the slow execution model of an
interpreting JVM and the memory requirements of a compiler, thus making it an interesting
execution system for Java in embedded systems.

4 Hardware Architecture

This chapter presents the architecture of JOP and the motivation behind the various dif-
ferent design decisions we faced. The first sections give an overview of JOP, describe the
microcode and the pipeline.

Pipelined instruction processing calls for high memory bandwidth. Caches are needed in
order to avoid bottlenecks resulting from the main memory bandwidth. As seen in Chap-
ter 3, there are two memory areas that are frequently accessed by the JVM: the stack and
the method area. In this chapter, time-predictable cache solutions for both areas that are
implemented in JOP are presented.

4.1 Overview of JOP

This section gives an overview of JOP architecture. Figure 4.1 shows JOP’s major function
units. A typical configuration of JOP contains the processor core, a memory interface and
a number of I/O devices. The module extension provides the link between the processor
core, and the memory and I/O modules.

The processor core contains the three microcode pipeline stages microcode fetch, decode
and execute and an additional translation stage bytecode fetch. The ports to the other mod-
ules are the two top elements of the stack (TOS and NOS), input to the top-of-stack (Data),
bytecode cache address and data, and a number of control signals. There is no direct con-
nection between the processor core and the external world.

The memory controller implements the simple memory load and store operations and
the field and array access bytecodes. It also contains the method cache. The memory in-
terface provides a connection between the main memory and the memory controller. The
extension module controls data read and write. The busy signal is used by the microcode
instruction wait1 to synchronize the processor core with the memory unit. The core reads
bytecode instructions through dedicated buses (BC address and BC data) from the memory

1The busy signal can also be used to stall the whole processor pipeline. This was the change made to JOP by
Flavius Gruian [48]. However, in this synchronization mode, the concurrency between the memory access
module and the main pipeline is lost.

48 4 HARDWARE ARCHITECTURE

Control

JOP

Busy

BC Addr

BC Data

CPU

Scratchpad
memory I/O

interface

Memory
interface

Data

Extension

Multiplier

Memory
controller

Method
cache

SimpCon

S
im

pC
on

S
im

pC
on

Data

Interrupt

Control

Core pipeline

Bytecode
fetch

Fetch

Decode

Stack

TOS

NOS

Figure 4.1: Block diagram of JOP

controller. The request for a method to be placed in the cache is performed through the ex-
tension module, but the cache hit detection and load is performed by the memory controller
independently of the processor core (and therefore concurrently).

The I/O interface contains peripheral devices, such as the system time and timer interrupt
for real-time thread scheduling, a serial interface and application-specific devices. Read
and write to and from this module are controlled by the memory controller. All external
devices2 are connected to the I/O interface.

The extension module performs two functions: (a) it contains hardware accelerators
(such as the multiplier unit in this example) and (b) the multiplexer for the read data that
is loaded into the top-of-stack register. The write data from the top-of-stack (TOS) and
next-of-stack (NOS) are connected directly to all modules.

The division of the processor into those modules greatly simplifies the adaptation of JOP

2The external device can be as simple as a line driver for the serial interface that forms part of the interface
module, or a complete bus interface, such as the ISA bus used to connect e.g. an Ethernet chip.

4.2 MICROCODE 49

for different application domains or hardware platforms. Porting JOP to a new FPGA board
usually results in changes in the memory interface alone. Using the same board for different
applications only involves making changes to the I/O interface. JOP has been ported to
several different FPGAs and prototyping boards and has been used in different real-world
applications (see Chapter 11), but it never proved necessary to change the processor core.

4.2 Microcode

The following discussion concerns two different instruction sets: bytecode and microcode.
Bytecodes are the instructions that make up a compiled Java program. These instructions
are executed by a Java virtual machine. The JVM does not assume any particular im-
plementation technology. Microcode is the native instruction set for JOP. Bytecodes are
translated, during their execution, into JOP microcode. Both instruction sets are designed
for an extended3 stack machine.

4.2.1 Translation of Bytecodes to Microcode

To date, no hardware implementation of the JVM exists that is capable of executing all
bytecodes in hardware alone. This is due to the following: some bytecodes, such as new,
which creates and initializes a new object, are too complex to implement in hardware. These
bytecodes have to be emulated by software.

To build a self contained JVM without an underlying operating system, direct access to
the memory and I/O devices is necessary. There are no bytecodes defined for low-level
access. These low-level services are usually implemented in native functions, which means
that another language (C) is native to the processor. However, for a Java processor, bytecode
is the native language.

One way to solve this problem is to implement simple bytecodes in hardware and to
emulate the more complex and native functions in software with a different instruction set
(sometimes called microcode). However, a processor with two different instruction sets
results in a complex design.

Another common solution, used in Sun’s picoJava [145], is to execute a subset of the
bytecode native and to use a software trap to execute the remainder. This solution entails
an overhead (a minimum of 16 cycles in picoJava, see 12.2.1) for the software trap.

3An extended stack machine is one in which there are instructions available to access elements deeper down
in the stack.

50 4 HARDWARE ARCHITECTURE

Ja
va

 P
C

JO
P

P
C

...
iload_1
iload_2
imul
istore_3
...

...
iadd: add nxt

isub: sub nxt

imul: stmul
pop
...
ldmul nxt

...

...
&iadd
&isub
&imul
&idiv
&irem
...

Java
bytecode

Jump
table JOP microcode

Java instruction Start address of imul
in JVM ROM

Figure 4.2: Data flow from the Java program counter to JOP microcode

In JOP, this problem is solved in a much simpler way. JOP has a single native instruction
set, the so-called microcode. During execution, every Java bytecode is translated to either
one, or a sequence of microcode instructions. This translation merely adds one pipeline
stage to the core processor and results in no execution overheads (except for a bytecode
branch that takes 4 instead of 3 cycles to execute). The area overhead of the translation stage
is 290 LCs, or about 15% of the LCs of a typical JOP configuration. With this solution, we
are free to define the JOP instruction set to map smoothly to the stack architecture of the
JVM, and to find an instruction coding that can be implemented with minimal hardware.

Figure 4.2 gives an example of the data flow from the Java program counter to JOP
microcode. The figure represents the two pipeline stages bytecode fetch/translate and mi-
crocode fetch. The fetched bytecode acts as an index for the jump table. The jump table
contains the start addresses for the bytecode implementation in microcode. This address
is loaded into the JOP program counter for every bytecode executed. JOP executes the
sequence of microcode until the last one. The last one is marked with nxt in microcode
assembler. This nxt bit in the microcode ROM triggers a new translation i.e., a new address
is loaded into the JOP program counter. In Figure 4.2 the implementation of bytecode idiv
is an example of a longer sequence that ends with microcode instruction ldm c nxt.

The difference to other forms of instruction translation in hardware is that this solution
is time predictable. The translation takes one cycle (one pipeline stage) for each bytecode,
independent from the execution history. Instruction folding, e.g., implemented in picoJava
[90, 145], is also a form of instruction translation in hardware. Folding is used to translate
several (stack oriented) bytecode instructions to a RISC type instruction. This translation
needs an instruction buffer and the fill level of this instruction buffer depends on the execu-

4.2 MICROCODE 51

tion history. The length of this history that has to be considered for analysis is not bounded.
Therefore this form of instruction translation is not exactly time predictable.

4.2.2 Compact Microcode

For the JVM to be implemented efficiently, the microcode has to fit to the Java bytecode.
Since the JVM is a stack machine, the microcode is also stack-oriented. However, the JVM
is not a pure stack machine. Method parameters and local variables are defined as locals.
These locals can reside in a stack frame of the method and are accessed with an offset
relative to the start of this locals area.

Additional local variables (16) are available at the microcode level. These variables serve
as scratch variables, like registers in a conventional CPU. Furthermore, the constant pool
pointer (cp), the method pointer (mp), and pointers to the method tables of JVM.java and
JVMHelp.java are stored in these variables. The 16 variables are located in the on-chip stack
memory. However, arithmetic and logic operations are performed on the stack.

Some bytecodes, such as ALU operations and the short form access to locals, are directly
implemented by an equivalent microcode instruction (with a different encoding). Addi-
tional instructions are available to access internal registers, main memory and I/O devices.
A relative conditional branch (zero/non zero of TOS) performs control flow decisions at
the microcode level. For optimum use of the available memory resources, all instructions
are 8 bits long. There are no variable-length instructions and every instruction, with the
exception of wait, is executed in a single cycle. To keep the instruction set this dense, the
following concept is applied: immediate values and branch offsets are addressed through
one indirection. The instruction just contains an index for the constants.

Two types of operands, immediate values and branch distances, normally force an in-
struction set to be longer than 8 bits. The instruction set is either expanded to 16 or 32 bits,
as in typical RISC processors, or allowed to be of variable length at byte boundaries. A first
implementation of the JVM with a 16-bit instruction set showed that only a small number
of different constants are necessary for immediate values and relative branch distances.

In the current realization of JOP, the different immediate values are collected while the
microcode is being assembled and are put into the initialization file for the on-chip memory.
These constants are accessed indirectly in the same way as the local variables. They are
similar to initialized variables, apart from the fact that there are no operations to change
their value during runtime, which would serve no purpose and would waste instruction
codes. The microcode local variables, the microcode constants and the stack share the same
on-chip memory. Using a single memory block simplifies the multiplexer in the execution
stage.

52 4 HARDWARE ARCHITECTURE

A similar solution is used for branch distances. The assembler generates a VHDL file
with a table for all found branch constants. This table is indexed using instruction bits dur-
ing runtime. These indirections during runtime make it possible to retain an 8-bit instruction
set, and provide 16 different immediate values and 32 different branch constants. For a gen-
eral purpose instruction set, these indirections would impose too many restrictions. As the
microcode only implements the JVM, this solution is a viable option.

To simplify the logic for instruction decoding, the instruction coding is carefully chosen.
For example, one bit in the instruction specifies whether the instruction will increment
or decrement the stack pointer. The offset to access the locals is directly encoded in the
instruction. This is not the case for the original encoding of the equivalent bytecodes (e.g.
iload 0 is 0x1a and iload 1 is 0x1b). Whenever a multiplexer depends on an instruction,
the selection is directly encoded in the instruction.

4.2.3 Instruction Set

JOP implements 54 different microcode instructions. These instructions are encoded in 8
bits. With the addition of the nxt and opd bits in every instruction, the effective instruction
length is 10 bits.

Bytecode equivalent: These instructions are direct implementations of bytecodes and re-
sult in one cycle execution time for the bytecode (except st and ld): pop, and, or, xor,
add, sub, st<n>, st, ushr, shl, shr, nop, ld<n>, ld, dup

Local memory access: The first 16 words in the internal stack memory are reserved for
internal variables. The next 16 words contain constants. These memory locations are
accessed using the following instructions: stm, stmi, ldm, ldmi, ldi

Register manipulation: The stack pointer, the variable pointer and the Java program
counter are loaded or stored with: stvp, stjpc, stsp, ldvp, ldjpc, ldsp, star

Bytecode operand: The operand is loaded from the bytecode RAM, converted to a 32-bit
word and pushed on the stack with: ld opd 8s, ld opd 8u, ld opd 16s, ld opd 16u

External memory access: The autonomous memory subsystem and the I/O subsystem are
accessed by using the following instructions: stmra, stmwa, stmwd, wait, ldmrd, stbcrd,
ldbcstart, stald, stast, stgf, stpf, stcp

Multiplier: The multiplier is accessed with: stmul, ldmul

Microcode branches: Two conditional branches in microcode are available: bz, bnz

4.2 MICROCODE 53

iadd: add nxt // 1 to 1 mapping

// a and b are scratch variables for the
// JVM code.
swap: stm a // save TOS in variable a

stm b // save TOS−1 in variable b
ldm a // push a on stack
ldm b nxt // push b on stack and fetch next bytecode

Listing 4.1: Implementation of iadd and swap

Bytecode branch: All 17 bytecode branch instructions are mapped to one instruction: jbr

A detailed description of the microcode instructions can be found in Appendix C.

4.2.4 Bytecode Example

The example in Figure 4.1 shows the implementation of a single cycle bytecode and an
infrequent bytecode as a sequence of JOP instructions. The suffix nxt marks the last in-
struction of the microcode sequence. In this example, the iadd bytecode is mapped to the
equivalent add microcode and executed in a single cycle, whereas swap takes four cycles to
execute, and after the last instruction (ldm b nxt), the first instruction for the next bytecode is
executed. The scratch variables, as shown in the second example, are stored in the on-chip
memory that is shared with the stack cache.

Some bytecodes are followed by operands of between one and three bytes in length (ex-
cept lookupswitch and tableswitch). Due to pipelining, the first operand byte that follows the
bytecode instruction is available when the first microcode instruction enters the execution
stage. If this is a one-byte long operand, it is ready to be accessed. The increment of the
Java program counter after the read of an operand byte is coded in the JOP instruction (an
opd bit similar to the nxt bit).

In Listing 4.2, the implementation of sipush is shown. The bytecode is followed by a
two-byte operand. Since the access to bytecode memory is only one4 byte per cycle, opd
and nxt are not allowed at the same time. This implies a minimum execution time of n+1
cycles for a bytecode with n operand bytes.

4The decision is to avoid buffers that would introduce time dependencies over bytecode boundaries.

54 4 HARDWARE ARCHITECTURE

sipush: nop opd // fetch next byte
nop opd // and one more
ld opd 16s nxt // load 16 bit operand

Listing 4.2: Bytecode operand load

add // sets the condition for the branch
nop // one cycle condition delay slot
bz label // a branch on TOS zero
instr1 // is executed
instr2 // is executed
instr3 // executed on fall through

Listing 4.3: Microcode condition delay and branch delay slots

4.2.5 Microcode Branches

At the microcode level two conditional branches that test the TOS are available: bz branch
on zero, and bnz branch on not zero. The branches are followed by two delay slots, i.e.,
the following two instructions are executed independent of the branch condition outcome.
Furthermore, the branch condition is also pipelined, i.e., it has to be available one cycle
earlier. Listing 4.3 shows the condition delay and the branch delay slots.

4.2.6 Flexible Implementation of Bytecodes

As mentioned above, some Java bytecodes are very complex. One solution already de-
scribed is to emulate them through a sequence of microcode instructions. However, some
of the more complex bytecodes are very seldom used. To further reduce the resource im-
plications for JOP, in this case local memory, bytecodes can even be implemented by using
Java bytecodes. That means bytecodes (e.g., new or floating point operations) can be imple-
mented in Java. This feature also allows for the easy configuration of resource usage versus
performance.

During the assembly of the JVM, all labels that represent an entry point for the bytecode
implementation are used to generate the translation table. For all bytecodes for which no
such label is found, i.e. there is no implementation in microcode, a not-implemented address
is generated. The instruction sequence at this address invokes a static method from a system
class. This class contains 256 static methods, one for each possible bytecode, ordered by

4.3 THE PROCESSOR PIPELINE 55

the bytecode value. The bytecode is used as the index in the method table of this system
class. A single empty static method consumes three 32-bit words in memory. Therefore,
the overhead of this special class is 3 KB, which is 9% of a minimal hello world program
(34 KB memory footprint).

4.2.7 Summary

In order to handle the great variation in the complexity of Java bytecodes, the bytecodes are
translated to a different instruction set, the so-called microcode. This microcode is still an
instruction set for a stack machine, but more RISC-like than the CISC-like JVM bytecodes.

At the time of this writing 43 of the 201 different bytecodes are implemented by a single
microcode instruction, 92 by a microcode sequence, and 41 bytecodes are implemented in
Java. Furthermore, JOP contains additional bytecodes that are used to implement low-level
operations, such as direct memory access. Those bytecodes are mapped to native, static
methods in com.jopdesign.sys.Native. In the next section we will see how this translation is
handled in JOP’s pipeline and how it can simplify interrupt handling.

4.3 The Processor Pipeline

JOP is a fully pipelined architecture with single cycle execution of microcode instructions
and a novel approach of translation from Java bytecode to these instructions. Figure 4.3
shows the datapath for JOP, representing the pipeline from left to right. Blocks arranged
vertically belong to the same pipeline stage.

Three stages form the JOP core pipeline, executing microcode instructions. An additional
stage in the front of the core pipeline fetches Java bytecodes – the instructions of the JVM
– and translates these bytecodes into addresses in microcode. Bytecode branches are also
decoded and executed in this stage. The second pipeline stage fetches JOP instructions
from the internal microcode memory and executes microcode branches. Besides the usual
decode function, the third pipeline stage also generates addresses for the stack RAM (the
stack cache). As every stack machine microcode instruction (except nop, wait, and jbr) has
either pop or push characteristics, it is possible to generate fill or spill addresses for the
following instruction at this stage. The last pipeline stage performs ALU operations, load,
store and stack spill or fill. At the execution stage, operations are performed with the two
topmost elements of the stack.

The stack architecture allows for a short pipeline, which results in short branch delays.
Two branch delay slots are available after a conditional microcode branch. A stack machine

56 4 HARDWARE ARCHITECTURE

Bytecode

Fetch and
translate

Microcode

Fetch

Microcode

Decode

Microcode

Execute

Stack

Address
generation

Stack

Access

next bytecode

bytecode branch condition

microcode branch condition

branch

bytecode branch spill,
fill

Figure 4.3: Datapath of JOP

with two explicit registers for the two topmost stack elements and automatic fill/spill to the
stack cache needs neither an extra write-back stage nor any data forwarding. See Section 4.4
for a detailed description.

The method cache (Bytecode Cache), microcode ROM, and stack RAM are implemented
with single cycle access in the FPGA’s internal memories.

4.3.1 Java Bytecode Fetch

In the first pipeline stage, as shown in Figure 4.4, the Java bytecodes are fetched from the
internal memory (Method cache). The bytecode is mapped through the translation table
into the address (jpaddr) for the microcode ROM. Interrupts and exceptions are handled by
redirection of the microcode address to the handler code.

The fetched bytecode results in an absolute jump in the microcode (the second stage). If
the bytecode is mapped one-to-one with a JOP instruction, the following fetched bytecode
again results in a jump in the microcode in the following cycle. If the bytecode is a complex
one, JOP continues to execute microcode. At the end of this instruction sequence, the next
bytecode, and therefore the new jump address, is requested (signal nxt).

The method cache serves as the instruction cache and is filled on method invoke and
return. Details about this time-predictable instruction cache can be found in Section 4.5.

4.3 THE PROCESSOR PIPELINE 57

jp
c

jp
cb

r
Method cache

ad
dr

data

1

nxt, opd
jmp

TOS

op
d

hi
gh

op
d

lo
w

jin
st

r

Translation
table

jpaddr

interrupt,
exception

int addr

+

+

Figure 4.4: Java bytecode fetch and translation

The bytecode is also stored in a register for later use as an operand (requested by signal
opd). Bytecode branches are also decoded and executed in this stage. Since jpc is also
used to read the operands, the program counter is saved in jpcbr during an instruction fetch.
jinstr is used to decode the branch type and jpcbr to calculate the branch target address.

4.3.2 Microcode Instruction Fetch

The second pipeline stage, as shown in Figure 4.5, fetches microcode instructions from the
internal microcode memory and executes microcode branches.

The JOP microcode, which implements the JVM, is stored in the microcode ROM. The
program counter pc is incremented during normal execution. If the instruction is labeled
with nxt a new bytecode is requested from the first stage and pc is loaded with jpaddr.

58 4 HARDWARE ARCHITECTURE

pc

jp
cb

r

Microcode
ROM

ad
dr

data

1

nxt, br,
wait

jpaddr

ir

+

+
Branch
offset

instruction

nxt, opd

Figure 4.5: Microcode instruction fetch

jpaddr is the starting address for the implementation of that bytecode. The label nxt is the
flag that marks the end of the microcode instruction stream for one bytecode. Another flag,
opd, indicates that a bytecode operand needs to be fetched in the first pipeline stage. Both
flags are stored in the microcode ROM.

The register brdly contains the target address for a conditional branch. The same offset
is shared by a number of branch destinations. A table (branch offset) is used to store these
relative offsets. This indirection means that only 5 bits need to be used in the instruction
coding for branch targets and thereby allow greater offsets. The three tables translation
table (from the bytecode fetch stage), microcode ROM, and branch offset are generated
during the assembly of the JVM code. The outputs are plain VHDL files. For an imple-
mentation in an FPGA, recompiling the design after changing the JVM implementation is a
straightforward operation. For an ASIC with a loadable JVM, it is necessary to implement

4.3 THE PROCESSOR PIPELINE 59

Decode

sp

vp[0..3]

vp+jopd

ir

ar

dir

sp+1

vp[0..3]

vp+jopd

ir

ar

dir
w

ra
dd

r_
dl

y

instruction

de
c

re
g

rd
 a

dd
r

w
r a

dd
r

sel_x

Stack
RAM

Figure 4.6: Decode and address generation

a different solution.
FPGAs available to date do not allow asynchronous memory access. They therefore force

us to use the registers in the memory blocks. However, the output of these registers is not
accessible. To avoid having to create an additional pipeline stage just for a register-register
move, the read address register of the microcode ROM is fed by the pc multiplexer. The
memory address register effectively contains the same value as the pc.

4.3.3 Decode and Address Generation

Besides the usual decode function, the third pipeline, as shown in Figure 4.6, also generates
addresses for the stack RAM.

As we can see in Section 4.4 Table 4.2, read and write addresses are either relative to
the stack pointer or to the variable pointer. The selection of the pre-calculated address can
be performed in the decode stage. When an address relative to the stack pointer is used
(either as read or as write address, never for both) the stack pointer is also decremented or
incremented in the decode stage.

60 4 HARDWARE ARCHITECTURE

Stack
RAM

di
n

w
r a

dd
r

rd
 a

dd
r

ld, logic

shift

im
m

 v
al

sp, vp, jpc

dout

din

B

Type
conversion

jo
pd

 d
lyjopd

-

+

A
Figure 4.7: Execution stage

Stack machine instructions can be categorized from a stack manipulation perspective as
either pop or push. This allows us to generate fill or spill TOS-1 addresses for the following
instruction during the decode stage, thereby saving one extra pipeline stage.

4.3.4 Execute

At the execution stage, as shown in Figure 4.7, operations are performed using two discrete
registers: TOS and TOS-1, labeled A and B.

Each arithmetic/logical operation is performed with registers A and B as the source (top-
of-stack and next-of-stack), and register A as the destination. All load operations (local

4.3 THE PROCESSOR PIPELINE 61

variables, internal register, external memory and periphery) result in a value being loaded
into register A. There is no need for a write-back pipeline stage. Register A is also the
source for the store operations. Register B is never accessed directly. It is read as an
implicit operand or for stack spill on push instructions. It is written during the stack spill
with the content of the stack RAM or the stack fill with the content of register A.

Beside the Java stack, the stack RAM also contains microcode variables and constants.
This resource-sharing arrangement not only reduces the number of memory blocks needed
for the processor, but also the number of data paths to and from the register A.

The inverted clock on data-in and on the write address register of the stack RAM is used
to perform the RAM write in the same cycle as the execute operation.

A stack machine with two explicit registers for the two topmost stack elements and auto-
matic fill/spill needs neither an extra write-back stage nor any data forwarding. Details of
this two-level stack architecture are described in Section 4.4.

4.3.5 Interrupt Logic

Interrupts and (precise) exceptions are considered hard to implement in a pipelined proces-
sor [62], meaning implementation tends to be complex (and therefore resource consuming).
In JOP, the bytecode-microcode translation is used cleverly to avoid having to handle inter-
rupts and exceptions (e.g., stack overflow) in the core pipeline.

Interrupts are implemented as special bytecodes. These bytecodes are inserted by the
hardware in the Java instruction stream. When an interrupt is pending and the next fetched
byte from the bytecode cache is an instruction (as indicated by the nxt bit in the microcode),
the associated special bytecode is used instead of the instruction from the bytecode cache.
The result is that interrupts are accepted at bytecode boundaries. The worst-case preemp-
tion delay is the execution time of the slowest bytecode that is implemented in microcode.
Bytecodes that are implemented in Java (see Section 4.2.6) can be interrupted.

The implementation of interrupts at the bytecode-microcode mapping stage keeps inter-
rupts transparent in the core pipeline and avoids complex logic. Interrupt handlers can be
implemented in the same way as standard bytecodes are implemented i.e. in microcode or
Java.

This special bytecode can result in a call of a JVM internal method in the context of the
interrupted thread. This mechanism implicitly stores almost the complete context of the
current active thread on the stack. This feature is used to implement the preemptive, fixed
priority real-time scheduler in Java [118].

The main source for an interrupt is the µs accurate timer interrupt used by the real-time
scheduler. I/O device interrupts can also be connected to the interrupt controller. Hardware

62 4 HARDWARE ARCHITECTURE

generated exceptions, such as stack overflow or array bounds checks, generate a system
interrupt. The exception reason can be found in a register.

4.3.6 Summary

In this section, we have analyzed JOP’s pipeline. The core of the stack machine constitutes
a three-stage pipeline. In the following section, we will see that this organization is an
optimal solution for the stack access pattern of the JVM.

An additional pipeline stage in front of this core pipeline stage performs bytecode fetch
and the translation to microcode. This organization has zero overheads for more complex
bytecodes and results in the short pipeline that is necessary for any processor without branch
prediction. This additional translation stage also presents an elegant way of incorporating
interrupts virtually for free.

4.4 THE STACK CACHE 63

4.4 The Stack Cache

The Java programming language defines not only the language but also a binary represen-
tation of the program and an abstract machine, the JVM, to execute this binary. The JVM is
similar to the Forth abstract machine in that it is also a stack machine. However, the usage
of the stack differs from Forth in such a way that a Forth processor is not an ideal hardware
platform to execute Java programs.

In this section, the stack usage in the JVM is analyzed. We will see that, besides the
access to the top elements of the stack, an additional access path to an arbitrary element of
the stack is necessary for an efficient implementation of the JVM.

As the stack is a heavily accessed memory region, the stack – or part of it – has to be
placed in the upper level of the memory hierarchy. This part of the stack is referred to as a
stack cache. We will show that the JVM does not need a full three-port access to the stack.
This allows for a simple and elegant design of the stack cache for a Java processor.

Other stack cache implementations use three port memories (e.g., in Komodo [76]) or
discrete register files (e.g., picoJava [145] and the aJile JEMCore [55]). The comparison of
the JOP stack organization with the other two approaches can be found in [121].

4.4.1 Java Computing Model

The JVM is not a pure stack machine in the sense of, for instance, the stack model in Forth.
The JVM operates on a LIFO stack as its operand stack. The JVM supplies instructions to
load values on the operand stack, and other instructions take their operands from the stack,
operate on them and push the result back onto the stack. For example, the iadd instruction
pops two values from the stack and pushes the result back onto the stack. These instruc-
tions are the stack machine’s typical zero-address instructions. The maximum depth of this
operand stack is known at compile time. In typical Java programs, the maximum depth is
very small. To illustrate the operation notation of the JVM, Table 4.1 shows the evaluation
of an expression for a stack machine notation and the JVM bytecodes. Instruction iload n
loads an integer value from a local variable at position n and pushes the value on TOS.

The JVM contains another memory area for method local data. This area is known as
local variables. Primitive type values, such as integer and float, and references to objects are
stored in these local variables. Arrays and objects cannot be allocated in a local variable, as
in C/C++. They have to be placed on the heap. Different instructions transfer data between
the operand stack and the local variables. Access to the first four elements is optimized
with dedicated single byte instructions, while up to 256 local variables are accessed with a
two-byte instruction and, with the wide modifier, the area can contain up to 65536 values.

64 4 HARDWARE ARCHITECTURE

A = B + C * D

Stack JVM

push B iload 1
push C iload 2
push D iload 3
* imul
+ iadd
pop A istore 0

Table 4.1: Standard stack notation and the corresponding JVM instructions

These local variables are very similar to registers and it appears that some of these locals
can be mapped to the registers of a general purpose CPU or implemented as registers in a
Java processor. On method invocation, local variables could be saved in a frame on a stack,
different from the operand stack, together with the return address, in much the same way as
in C on a typical processor. This would result in the following memory hierarchy:

• On-chip hardware stack for ALU operations

• A small register file for frequently-accessed variables

• A method stack in main memory containing the return address and additional local
variables

However, the semantics of method invocation suggest a different model. The arguments
of a method are pushed on the operand stack. In the invoked method, these arguments are
not on the operand stack but are instead accessed as the first variables in the local variable
area. The real method local variables are placed at higher indices. Listing 4.4 gives an
example of the argument passing mechanism in the JVM. These arguments could be copied
to the local variable area of the invoked method. To avoid this memory transfer, the entire
variable area (the arguments and the variables of the method) is allocated on the operand
stack. However, in the invoked method, the arguments are buried deep in the stack.

This asymmetry in the argument handling prohibits passing down parameters through
multiple levels of subroutine calls, as in Forth. Therefore, an extra stack for return addresses
is of no use for the JVM. This single stack now contains the following items in a frame per
method:

4.4 THE STACK CACHE 65

The Java source:

int val = foo(1, 2);
...
public int foo(int a, int b) {

int c = 1;
return a+b+c;

}

Compiled bytecode instructions for the JVM:

The invocation sequence:
aload 0 // Push the object reference
iconst 1 // and the parameter onto the
iconst 2 // operand stack.
invokevirtual #2 // Invoke method foo:(II) I .
istore 1 // Store the result in val .

public int foo(int , int):
iconst 1 // The constant is stored in a method
istore 3 // local variable (at position 3).
iload 1 // Arguments are accessed as locals
iload 2 // and pushed onto the operand stack.
iadd // Operation on the operand stack.
iload 3 // Push c onto the operand stack.
iadd
ireturn // Return value is on top of stack.

Listing 4.4: Example of parameter passing and access

66 4 HARDWARE ARCHITECTURE

var_2
var_1
var_0

Operand stack

arg_2
arg_1
arg_0

var_2
var_1
var_0

Context of
Caller

Operand stack

var_3
var_2
var_1
var_0

Context of
Caller

VP

SP

VP

Old frame

SP

Context of
Caller

Operand stack

... ...

...

Figure 4.8: Stack change on method invocation

• The local variable area

• Saved context of the caller

• The operand stack

A possible implementation of this layout is shown in Figure 4.8. A method with two argu-
ments, arg 1 and arg 2 (arg 0 is the this pointer), is invoked in this example. The invoked
method sees the arguments as var 1 and var 2. var 3 is the only local variable of the method.
SP is a pointer to the top of the stack and VP points to the start of the variable area.

4.4.2 Access Patterns on the Java Stack

The pipelined architecture of a Java processor executes basic instructions in a single cycle.
A stack that contains the operand stack and the local variables results in the following
access patterns:

Stack Operation: Read of the two top elements, operate on them and push back the result
on the top of the stack. The pipeline stages for this operation are:
value1← stack[sp], value2← stack[sp-1]

4.4 THE STACK CACHE 67

result← value1 op value2, sp← sp-1
stack[sp]← result

Variable Load: Read a data element deeper down in the stack, relative to a variable base
address pointer (VP), and push this data on the top of the stack. This operation needs
two pipeline stages:
value← stack[vp+offset], sp← sp+1
stack[sp]← value

Variable Store: Pop the top element of the stack and write it in the variable relative to the
variable base address:
value← stack[sp]
stack[vp+offset]← value, sp← sp-1

For pipelined execution of these operations, a three-port memory or register file (two read
ports and one write port) would be necessary.

In following section, we will discuss access patterns of the JVM and their implication on
the functional units of the pipeline. A fast and small architecture for the stack cache of a
Java processor is described.

4.4.3 JVM Stack Access Revised

If we analyze the JVM’s access patterns to the stack in more detail, we can see that a two-
port read is only performed with the two top elements of the stack. All other operations
with elements deeper in the stack, local variables load and store, only need one read port.
If we only implement the two top elements of the stack in registers, we can use a standard
on-chip RAM with one read and one write port.

We will show that all operations can be performed with this configuration. Let A be the
top-of-stack, B the element below top-of-stack. The memory that serves as the second level
cache is represented by the array sm. Two indices in this array are used: p points to the
logical third element of the stack and changes as the stack grows or shrinks, v points to the
base of the local variables area in the stack and n is the address offset of a variable. op is a

68 4 HARDWARE ARCHITECTURE

two operand stack operation with a single result (i.e. a typical ALU operation).

Case 1: ALU operation
A← A op B
B← sm[p]
p← p – 1
The two operands are provided by the two top level registers. A single read access
from sm is necessary to fill B with a new value.

Case 2: Variable load (Push)
sm[p+1]← B
B← A
A← sm[v+n]
p← p + 1
One read access from sm is necessary for the variable read. The former TOS value
moves down to B and the data previously in B is written to sm.

Case 3: Variable store (Pop)
sm[v+n]← A
A← B
B← sm[p]
p← p - 1
The TOS value is written to sm. A is filled with B and B is filled in an identical
manner to Case 1, needing a single read access from sm.

We can see that all three basic operations can be performed with a stack memory with one
read and one write port. Assuming a memory is used that can handle concurrent read and
write access, there is no structural access conflict between A, B and sm. That means that all
operations can be performed concurrently in a single cycle.

As we can see in Figure 4.8 the operand stack and the local variables area are distinct
regions of the stack. A concurrent read from and write to the stack is only performed on a
variable load or store. When the read is from the local variables area the write goes to the
operand area; a read from the operand area is concurrent with a write to the local variables
area. Therefore there is no concurrent read and write to the same location in sm. There
is no constraint on the read-during-write behavior of the memory (old data, undefined or
new data), which simplifies the memory design. In a design where read and write-back
are located in different pipeline stages, as in the architectures described above, either the

4.4 THE STACK CACHE 69

memory must provide the new data on a read-during-write, or external forward logic is
necessary.

From the three cases described, we can derive the memory addresses for the read and
write port of the memory, as shown in Table 4.2.

Read address Write address

p p+1
v+n v+n

Table 4.2: Stack memory addresses

4.4.4 A Two-Level Stack Cache

As a result of the previous analysis the stack cache of JOP is organized at two levels: first
level in two discrete registers for the TOS and NOS; second level as on-chip memory with
one read and one write port.

The Datapath

The architecture of the two-level stack cache can be seen in Figure 4.9. Register A rep-
resents the top-of-stack and register B the data below the top-of-stack. ALU operations
are performed with these two registers and the result is placed in A. During such an ALU
operation, B is filled with new data from the stack RAM. A new value from the local vari-
able area is loaded directly from the stack RAM into A. The data previously in A is moved
to B and the data from B is spilled to the stack RAM. A is stored in the stack RAM on a
store instruction to the local variable. The data from B is moved to A and B is filled with a
new value from the stack RAM. With this architecture, the stack machine pipeline can be
reduced to three stages:

1. IF – instruction fetch

2. ID – instruction decode

3. EX – execute, load or store

70 4 HARDWARE ARCHITECTURE

ALU
Read
Addr.

Write
Addr.

Write
Data

Stack
RAM

A

B

Figure 4.9: The two-level stack cache

Data Forwarding – A Non-Issue

Data dependencies in the instruction stream result in the so-called data hazards [63] in the
pipeline. Data forwarding is a technique that moves data from a later pipeline stage back to
an earlier one to solve this problem. The term forward is correct in the temporal domain as
data is transferred to an instruction in the future. However, it is misleading in the structural
domain as the forward direction is towards the last pipeline stage for an instruction.

As the probability of data dependency is very high in a stack-based architecture, one
would expect several data forwarding paths to be necessary. However, in the two-level ar-
chitecture, with its resulting three-stage pipeline, no data hazards will occur and no data
forwarding is therefore necessary. This simplifies the decoding stage and reduces the num-
ber of multiplexers in the execution path. We will show that none of the three data hazard
types [63] is an issue in this architecture. With instructions i and j, where i is issued before
j, the data hazard types are:

Read after write: j reads a source before i writes it. This is the most common type of
hazard and, in the architectures described above, is solved by using the ALU buffers and
the forwarding multiplexer in the ALU datapath. On a stack architecture, write takes three
forms:

• Implicit write of TOS during an ALU operation

• Write to the TOS during a load instruction

4.4 THE STACK CACHE 71

• Write to an arbitrary entry of the stack with a store instruction

A read also occurs in three different forms:

• Read two top values from the stack for an ALU operation

• Read TOS for a store instruction

• Read an arbitrary entry of the stack with the load instruction

With the two top elements of the stack as discrete registers, these values are read, operated
on and written back in the same cycle. No read that depends on TOS or TOS-1 suffers
from a data hazard. Read and write access to a local variable is also performed in the same
pipeline stage. Thus, the read after write order is not affected. However, there is also an
additional hidden read and write: the fill and spill of register B:

B fill: B is written during an ALU operation and on a variable store. During an ALU
operation, the operands are the values from A and the old value from B. The new
value for B is read from the stack memory and does not depend on the new value
of A. During a variable store operation, A is written to the stack memory and does
not depend on B. The new value for B is also read from the stack memory and
it is not obvious that this value does not depend on the written value. However, the
variable area and the operand stack are distinct areas in the stack (this changes only on
method invocation and return), guaranteeing that concurrent read/write access does
not produce a data hazard.

B spill: B is read on a load operation. The new value of B is the old value of A and does
not therefore depend on the stack memory read. B is written to the stack. For the read
value from the stack memory that goes to A, the argument concerning the distinct
stack areas in the case of B fill described above still applies.

Write after read: j writes a destination before it is read by i. This cannot take place as all
reads and writes are performed in the same pipeline stage keeping the instruction order.

Write after write: j writes an operand before it is written by i. This hazard is not present
in this architecture as all writes are performed in the same pipeline stage.

72 4 HARDWARE ARCHITECTURE

4.4.5 Summary

In this section, the stack architecture of the JVM was analyzed. We have seen that the JVM
is different from the classical stack architecture. The JVM uses the stack both as an operand
stack and as the storage place for local variables. Local variables are placed in the stack at
a deeper position. To load and store these variables, an access path to an arbitrary position
in the stack is necessary. As the stack is the most frequently accessed memory area in the
JVM, caching of this memory is mandatory for a high-performing Java processor.

A common solution, found in a number of different Java processors, is to implement
this stack cache as a standard three-port register file with additional support to address this
register file in a stack like manner. The architectures presented above differ in the realization
of the register file: as a discrete register or in on-chip memory. Implementing the stack
cache as discrete registers is very expensive. A three-port memory is also an expensive
option for an ASIC and unusual in an FPGA. It can be emulated by two memories with a
single read and write port. However, this solution also doubles the amount of memory.

Detailed analysis of the access patterns to the stack showed that only the two top elements
of the stack are accessed in a single cycle. Given this fact, the architecture uses registers to
cache only the two top elements of the stack. The next level of the stack cache is provided
by a simple on-chip memory. The memory automatically spills and fills the second register.
Implementing the two top elements of the stack as fixed registers, instead of elements that
are indexed by a stack pointer, also greatly simplifies the overall pipeline.

4.5 THE METHOD CACHE 73

4.5 The Method Cache

Worst-case execution time (WCET) analysis [109] of real-time programs is essential for
any schedulability analysis. To provide a low WCET value, a good processor model is nec-
essary. However, caches for the instructions and data is a classic example of the paradigm
Make the common case fast, which complicates WCET analysis. Avoiding or ignoring this
feature in real-time systems, due to its unpredictable behavior, results in a very pessimistic
WCET value. Plenty of effort has gone into research into integrating the instruction cache
in the timing analysis of tasks [11, 60, 81] and the influence of the cache on task preemption
[78, 31]. The influence of different cache architectures on WCET analysis is described in
[61].

We will tackle this problem from the architectural side – an instruction cache organization
in which simpler and more accurate WCET analysis is more important than average case
performance.

In this section, we will explore the method cache, as it is implemented in JOP, with a
novel replacement policy. In Java bytecode only relative branches exist, and a method is
therefore only left when a return instruction has been executed.5 It has been observed that
methods are typically short (see [123]) in Java applications. These properties are utilized
by a cache architecture that stores complete methods. A complete method is loaded into
the cache on both invocation and return. This cache fill strategy lumps all cache misses
together and is very simple to analyze.

The method cache was first presented in [120] and is now also used by the Java processor
SHAP [102]. Furthermore, the idea has been adapted for a processor that executes compiled
C programs [86].

4.5.1 Method Cache Architecture

In this section, we will develop a solution for a time-predictable instruction cache. Typical
Java programs consist of short methods. There are no branches out of the method and all
branches inside are relative. In the described architecture, the full code of a method is
loaded into the cache before execution. The cache is filled on invocations and returns. This
means that all cache fills are lumped together with a known execution time. The full loaded
method and relative addressing inside a method also result in a simpler cache. Tag memory
and address translation are not necessary.

In the method cache several cache blocks (similar to cache lines) are used for a method.
The main difference from a conventional cache is that the blocks for a method are all loaded

5An uncaught exception also results in a method exit.

74 4 HARDWARE ARCHITECTURE

a() {
for (;;) {

b ();
c ();

}
...

}
Listing 4.5: Code fragment for the replacement example

at once and need to be consecutive. Choosing the block size is now a major design decision.
Smaller block sizes allow better memory usage, but the search time for a hit also increases.

With varying numbers of blocks per method, an LRU replacement is impractical. When
the method found to be LRU is smaller than the loaded method, this new method invalidates
two cached methods.

For the replacement, we will use a pointer next that indicates the start of the blocks to be
replaced on a cache miss. Two practical replace policies are:

Next block: At the very first beginning, next points to the first block. When a method of
length l is loaded into the block n, next is updated to (n + l) mod block count. This
replacement policy is effectively FIFO.

Stack oriented: next is updated in the same way as before on a method load. It is also
updated on a method return – independent of a resulting hit or miss – to point to the
first block of the leaving method.

We will show the operation of these different replacement policies in an example with three
methods: a(), b() and c() of block sizes 2, 2 and 1. The cache consists of 4 blocks and is
therefore too small to hold all the methods during the execution of the code fragment shown
in Listing 4.5. Tables 4.3 and 4.4 show the cache content during program execution for both
replacement policies. The content of the cache blocks is shown after the execution of the
invoke or return instruction. An uppercase letter indicates that this block has been newly
loaded. A right arrow depicts the block to be replaced on a cache miss (the next pointer).
The last row shows the number of blocks that are filled during the execution of the program.

In this example, the stack oriented approach needs fewer fills, as only methods b() and
c() are exchanged and method a() stays in the cache. However, if, for example, method b()
is the size of one block, all methods can be held in the cache using the the next block policy,

4.5 THE METHOD CACHE 75

a() b() ret c() ret b() ret c() ret b() ret

Block 1 A →a →a C c B b b →- B b
Block 2 A a a →- A →a →a C c B b
Block 3 →- B b b A a a →- A →a →a
Block 4 - B b b →- B b b A a a

Fill 2 4 5 7 9 11 13 15

Table 4.3: Next block replacement policy

a() b() ret c() ret b() ret c() ret b() ret

Block 1 A →a a a a →a a a a →a a
Block 2 A a a a a a a a a a a
Block 3 →- B →b C →c B →b C →c B →b
Block 4 - B b →- - B b →- - B b

Fill 2 4 5 7 8 10

Table 4.4: Stack oriented replacement policy

but b() and c() would be still exchanged using the stack policy. Therefore, the first approach
is used in the JOP’s cache.

4.5.2 WCET Analysis

The instruction cache is designed to simplify WCET analysis. Due to the fact that all cache
misses are only included in two instructions (invoke and return), the instruction cache can be
ignored on all other instructions. The time needed to load a complete method is calculated
using the memory properties (latency and bandwidth) and the length of the method. On an
invoke, the length of the invoked method is used, and on a return, the method length of the
caller is used to calculate the load time.

With a single method cache this calculation can be further simplified. For every invoke
there is a corresponding return. That means that the time needed for the cache load on return
can be included in the time for the invoke instruction. This is simpler because both meth-
ods, the caller and the callee, are known at the occurrence of the invoke instruction. The
information about which method was the caller need not be stored for the return instruction

76 4 HARDWARE ARCHITECTURE

to be analyzed.

With more than one method in the cache, a cache hit detection has to be performed as
part of the WCET analysis. If there are only two blocks, this is trivial, as (i) a hit on invoke
is only possible if the method is the same as the last invoked (e.g. a single method in a loop)
and (ii) a hit on return is only possible when the method is a leaf in the call tree. In the latter
case, it is always a hit.

When the cache contains more blocks (i.e. more than two methods can be cached), a part
of the call tree has to be taken into account for hit detection. The method cache further
complicates the analysis, as the method length also determines the cache content. However,
this analysis is still simpler than a cache modeling of a direct-mapped instruction cache, as
cache block replacement depends on the call tree instead of instruction addresses.

WCET analysis of cache hits for the method cache is most beneficial for methods invoked
in a loop, where the methods are classified as first miss. The basic idea of the method cache
analysis is as follows: Within a loop it is statically analyzed if all methods invoked and the
invoking method, which contains the loop, fit together in the method cache. If this is the
case, all methods will at most miss once. The concrete implementation of the the analysis
algorithm is described in [66].

Except for leaf methods, the cache load can be triggered by an invoke instruction of
by a return instruction. On an invoke some of the miss penalty is hidden by concurrent
microcode execution. Therefore, we have to assume the higher cost of loading methods
into the cache on a return instruction for non-leaf methods. Leaf nodes can naturally only
miss on an invoke.

In traditional caches, data access and instruction cache fill requests can compete for the
main memory bus. For example, a load or store at the end of the processor pipeline com-
petes with an instruction fetch that results in a cache miss. One of the two instructions is
stalled for additional cycles by the other instruction. With a data cache, this situation can
be even worse. The worst-case scenario for the memory stall time for an instruction fetch
or a data load is two miss penalties when both cache reads are a miss. This unpredictable
behavior leads to very pessimistic WCET bounds.

A method cache, with cache fills only on invoke and return, does not interfere with data
access to the main memory. Data in the main memory is accessed with getfield and put-
field, instructions that never overlap with invoke and return. This property removes another
uncertainty found in traditional cache designs.

4.5 THE METHOD CACHE 77

4.5.3 Caches Compared

In this section, we compare two different cache architectures in a quantitative way. Al-
though our primary concern is predictability, performance remains important. We will
therefore first present the results from a conventional direct-mapped instruction cache.
These measurements provide a baseline for the evaluation of the described cache archi-
tecture.

Cache performance varies with different application domains. As the system is intended
for real-time applications, the benchmark for these tests should reflect this fact. However,
there are no standard benchmarks available for embedded real-time systems. A real-time
application was therefore adapted to create this benchmark. The application is from one
node of a distributed motor control system [117] (see also Section 11.4.1). A simulation of
the environment (sensors and actors) and the communication system (commands from the
master station) forms part of the benchmark for simulating the real-world workload.

The data for all measurements was captured using a simulation of JOP and running the
application for 500,000 clock cycles. During this time, the major loop of the application was
executed several hundred times, effectively rendering any misses during the initialization
code irrelevant to the measurements. As the embedded application is quite small (1366
LOC), small instruction caches have been simulated.

WCET analysis based comparison of the method cache and of standard instruction caches
is currently under development. Therefore, we perform only average case measurements for
a comparison between a time-predictable cache organization and a standard cache organiza-
tion. With a simulation of JOP, we measure the cache misses and miss penalties for different
configurations of the method cache and a direct-mapped cache. The miss penalty and the
resulting effect on the execution time depend on the main memory system. Therefore, we
simulate three different memory technologies: static RAM (SRAM), synchronous DRAM
(SDRAM), and double data rate (DDR) SDRAM. For the SRAM, a latency of 1 clock cy-
cle and an access time of 2 clock cycles per 32-bit word are assumed. For the SDRAM,
a latency of 5 cycles (3 cycles for the row address and 2 cycles for the CAS latency) is
assumed. The SDRAM delivers one word (4 bytes) per cycle. The DDR SDRAM has a
shorter latency of 4.5 cycles and transfers data on both the rising and falling edge of the
clock signal.

The resulting miss cycles are scaled to the bandwidth consumed by the instruction fetch
unit. The result is the number of cache fill cycles per fetched instruction byte. In other
words: the average main memory access time in cycles per instruction byte. A value of 0.1
means that for every 10 fetched instruction bytes, one clock cycle is spent to fill the cache.

Table 4.5 shows the result for different configurations of a direct-mapped cache. Which

78 4 HARDWARE ARCHITECTURE

Table 4.5: Direct-mapped cache, average memory access time

Cache size Block size SRAM SDRAM DDR

1 KB 8 B 0.18 0.25 0.19
1 KB 16 B 0.22 0.22 0.16
1 KB 32 B 0.31 0.24 0.15

2 KB 8 B 0.11 0.15 0.12
2 KB 16 B 0.14 0.14 0.10
2 KB 32 B 0.22 0.17 0.11

Table 4.6: Method cache, average memory access time

Cache size Block size SRAM SDRAM DDR

1 KB 16 B 0.36 0.21 0.12
1 KB 32 B 0.36 0.21 0.12
1 KB 64 B 0.36 0.22 0.12
1 KB 128 B 0.41 0.24 0.14

2 KB 32 B 0.06 0.04 0.02
2 KB 64 B 0.12 0.08 0.04
2 KB 128 B 0.19 0.11 0.06
2 KB 256 B 0.37 0.22 0.13

configuration performs best depends on the relationship between memory bandwidth and
memory latency. The data in bold emphasize the best block size for the different memory
technologies. As expected, memories with a higher latency and bandwidth perform better
with larger block sizes. For small block sizes, the latency clearly dominates the access
time. Although the SRAM has half the bandwidth of the SDRAM and a quarter of the DDR
SDRAM, it is faster than the SDRAM memories with a block size of 8 byte. In most cases
a block size of 16 bytes is fastest.

Table 4.6 shows the average memory access time per instruction byte for the method
cache. Because we load full methods, we have chosen larger block sizes than for a standard
cache. All configurations benefit from a memory system with a higher bandwidth. The
method cache is less latency sensitive than the direct-mapped instruction cache. For the
small 1 KB cache the access time is almost independent of the block size. The capacity

4.5 THE METHOD CACHE 79

misses dominate. From the 2 KB configuration we see that smaller block sizes result in less
cache misses. However, smaller block sizes result in more hardware for the hit detection
since the method cache is in effect fully associatively. Therefore, we need a balance between
the number of blocks and the performance.

The cache conflict is high for the small configuration with 1 KB cache. The direct-
mapped cache, backed up with a low-latency main memory, performs better than the method
cache. When high-latency memories are used, the method cache performs better than the
direct mapped cache. This is expected as the long latency for a transfer is amortized when
more data (the whole method) is filled in one request.

A small block size of 32 Bytes is needed in the 2 KB method cache to outperform the
direct mapped cache with the low-latency main memory as represented by the SRAM. For
higher latency memories (SDRAM and DDR), a method cache with a block size of 128
bytes outperforms the direct mapped instruction cache.

The comparison does not show if the method cache is more easily predictable than other
cache solutions. It shows that caching full methods performs similarly to standard caching
techniques.

4.5.4 Summary

From the properties of the Java language – usually small methods and relative branches
– we derived the novel idea of a method cache, i.e. a cache organization in which whole
methods are loaded into the cache on method invocation and the return from a method. This
cache organization is time-predictable, as all cache misses are lumped together in these two
instructions. Using only one block for a single method introduces considerable overheads
in comparison with a conventional cache, but is very simple to analyze. We extended this
cache to hold more methods, with several smaller blocks per method.

Comparing these organizations quantitatively with a benchmark derived from a real-time
application, we have seen that the method cache performs similarly to (and in some configu-
rations even better than) a direct-mapped cache. Only filling the cache on method invocation
and return simplifies WCET analysis and removes another source of uncertainty, as there is
no competition for the main memory access between instruction cache and data cache.

5 Runtime System

A Java processor alone is not a complete JVM. This chapter describes the definition of a
real-time profile for Java and the description of the JVM internal data structures to represent
classes and objects.

5.1 A Real-Time Profile for Embedded Java

As standard Java is under-specified for real-time systems and the RTSJ does not fit for
small embedded systems a new and simpler real-time profile is defined in this section and
implemented on JOP. The guidelines of the specification are:

• High-integrity profile

• Easy syntax

• Easy to implement

• Low runtime overhead

• No syntactic extension of Java

• Minimum change of Java semantics

• Support for time measurement if a WCET analysis tool is not available

• Known overheads (documentation of runtime behavior and memory requirements of
every JVM operation and all methods have to be provided)

The real-time profile under discussion is inspired by the restricted versions of the RTSJ
described in [111] and [77]. It is intended for high-integrity real-time applications and as a
test case to evaluate the architecture of JOP as a Java processor for real-time systems.

The proposed definition is not compatible with the RTSJ. Since the application domain
for the RTSJ is different from high-integrity systems, it makes sense for it not to be compat-
ible with the RTSJ. Restrictions can be enforced by defining new classes (e.g. setting thread

82 5 RUNTIME SYSTEM

priority in the constructor of a real-time thread alone, enforcing minimum interarrival times
for sporadic events).

To verify that this specification is expressive enough for high-integrity real-time appli-
cations, Ravenscar-Java (RJ) [77], with the additional necessary RTSJ classes, has been
implemented on top of it. However, RJ inherits some of the complexity of the RTSJ. There-
fore, the implementation of RJ has a larger memory and runtime overhead than this simple
specification.

When the specification for Safety-Critical Java (JSR 302)1 [64] will be finalized the pro-
file will be adapted for this specification.

5.1.1 Application Structure

The application is divided in two different phases: initialization and mission. All non time-
critical initialization, global object allocations, thread creation and startup are performed
in the initialization phase. All classes need to be loaded and initialized in this phase. The
mission phase starts after invocation of startMission(). The number of threads is fixed and the
assigned priorities remain unchanged. The following restrictions apply to the application:

• Initialization and mission phase

• Fixed number of threads

• Threads are created at initialization phase

• All shared objects are allocated at initialization

5.1.2 Threads

Concurrency is expressed with two types of schedulable objects:

Periodic activities are represented by threads that execute in an infinite loop invoking wait-
ForNextPeriod() to get rescheduled in predefined time intervals.

Asynchronous sporadic activities are represented by event handlers. Each event handler
is in fact a thread, which is released by an hardware interrupt or a software generated
event (invocation of fire()). Minimum interarrival time has to be specified on creation
of the event handler.

1http://jcp.org/en/jsr/detail?id=302

http://jcp.org/en/jsr/detail?id=302

5.1 A REAL-TIME PROFILE FOR EMBEDDED JAVA 83

The classes that implement the schedulable objects are:

RtThread represents a periodic task. As usual task work is coded in run(), which gets
invoked on missionStart(). A scoped memory object can be attached to an RtThread at
creation.

SwEvent represents a software-generated event. It is triggered by fire() and needs to over-
ride handle().

Listing 5.1 shows the definition of the basic classes. Listing 5.2 shows the principle
coding of a worker thread. An example for creation of two real-time threads and an event
handler can be seen in Listing 5.3.

5.1.3 Scheduling

The scheduler is a preemptive, priority-based scheduler with unlimited priority levels and
a unique priority value for each schedulable object. No real-time threads or events are
scheduled during the initialization phase.

The design decision to use unique priority levels, instead of FIFO within priorities, is
based on following facts: Two common ways to assign priorities are rate monotonic and, in
a more general form, deadline monotonic assignment. When two tasks are given the same
priority, we can choose one of them and assign a higher priority to that task and the task set
will still be schedulable. This results in a strictly monotonic priority order and we do not
need to deal with FIFO order. This eliminates queues for each priority level and results in a
single, priority ordered task list with unlimited priority levels.

Synchronized blocks are executed with priority ceiling emulation protocol. In the current
implementation top priority is assumed for all objects. This avoids priority inversions on
objects that are not accessible from the application (e.g. objects inside a library).

5.1.4 Memory

The profile does not support a garbage collector.2 All memory should be allocated at the
initialization phase. Without a garbage collector, the heap implicitly becomes immortal
memory (as defined by the RTSJ). Scoped memory is currently in a prototyping stage, but
will be supported in the future.

2This restriction can be relaxed when the real-time GC for JOP is used (see Chapter 7).

84 5 RUNTIME SYSTEM

public class RtThread {

public RtThread(int priority , int period)
public RtThread(int priority , int period, int offset)
public RtThread(int priority , int period, Memory mem)
public RtThread(int priority , int period, int offset ,

Memory mem)

public void setProcessor(int id)

public void run()
public boolean waitForNextPeriod()

public static void startMission ()

public static void sleepMs(int millis)
public static void busyWait(int us)
public static RtThread currentRtThread()

}

public class SwEvent extends RtThread {

public SwEvent(int priority , int minTime)
public SwEvent(int priority , int minTime, Memory mem)

public final void fire ()
public void handle()

}
Listing 5.1: Schedulable objects

5.1 A REAL-TIME PROFILE FOR EMBEDDED JAVA 85

public class Worker extends RtThread {

private SwEvent event;

public Worker(int p, int t ,
SwEvent ev) {

super(p, t ,
// create a scoped memory area
new Memory(10000)

);
event = ev;
init ();

}

private void init () {
// all initialzation stuff
// has to be placed here

}

public void run() {

for (;;) {
work(); // do some work
event. fire (); // and fire an event

// wait for next period
if (! waitForNextPeriod()) {

missedDeadline();
}

}
// should never reach this point

}
}

Listing 5.2: A periodic real-time thread

86 5 RUNTIME SYSTEM

// create an Event
Handler h = new Handler(3, 1000);

// create two worker threads with
// priorities according to their periods
FastWorker fw = new FastWorker(2, 2000);
Worker w = new Worker(1, 10000, h);

// change to mission phase for all
// periodic threads and event handler
RtThread.startMission();

// do some non real−time work
// and invoke sleep() or yield ()
for (;;) {

watchdogBlink();
RtThread.sleepMs(500);

}
Listing 5.3: Start of the application

5.1.5 Restrictions on Java

A list of some of the language features that should be avoided for WCET analyzable real-
time threads and bound memory usage:

WCET: Only analyzable language constructs are allowed (see [109]).

Static class initialization: Static class initializer are invoked at JVM boot. No cyclic de-
pendency is allowed and the initialization order is determined at class link time. This
violation of the JVM specification is necessary for tight WCET values of bytecodes
new, getstatic, and putstatic, which usually trigger class initialization.

Inheritance: Reduce usage of interfaces and overridden methods.

String concatenation: In the immortal memory scope, only string concatenation with
string literals is allowed.

Finalization: finalize() has a weak definition in Java. Because real-time systems run forever,
objects in the heap, which is immortal in this specification, will never be finalized.

5.1 A REAL-TIME PROFILE FOR EMBEDDED JAVA 87

Dynamic Class Loading: Due to the implementation and WCET analysis complexity dy-
namic class loading is avoided.

5.1.6 Interaction of RtThread, the Scheduler, and the JVM

Figure 5.1 shows an interaction example of the scheduler, the application, and the JVM.
The interaction diagram shows the message sequences between two application tasks, the
scheduler, the JVM and the hardware. The hardware represents interrupt and timer logic.
Task 2 is a periodic task with a higher priority than Task 1.

The first event is a timer event to unblock Task 2 for a new period. The generated timer
event results in a call of the scheduler. The scheduler performs its scheduling decision and
issues a context switch to Task 2. With every context switch the timer is reprogrammed
to generate an interrupt at the next time triggered event for a higher priority task. Task 2
performs the periodic work and ceases execution by invocation of waitForNextPeriod(). The
scheduler is called and requests an interrupt from the hardware resulting in the same call
sequence as with a timer. The software generated interrupt imposes negligible overhead
and results in a single entry point for the scheduler. Task 1 is the only ready task in this
example and is resumed by the scheduler.

5.1.7 Implementation Results

The initial idea was to implement scheduling and dispatching in microcode. However, many
Java bytecodes have a one to one mapping to a microcode instruction, resulting in a single
cycle execution. The performance gain of an algorithm coded in microcode is therefore
negligible. As a result, almost all of the scheduling is implemented in Java. Only a small
part of the dispatcher, a memory copy, is implemented in microcode and exposed with a
special bytecode.

Experimental results of basic scheduling benchmarks, such as periodic thread jitter, con-
text switch time for threads and asynchronous events, can be found in [119].

To implement system functions, such as scheduling, in Java, access to JVM and processor
internal data structures have to be available. However, Java does not allow memory access
or access to hardware devices. In JOP, this access is provided by additional bytecodes.
In the Java environment, these bytecodes are represented as static native methods. The
compiled invoke instruction for these methods (invokestatic) is replaced by these additional
bytecodes in the class file. This solution provides a very efficient way to incorporate low-
level functions into a pure Java system. The translation can be performed during class
loading to avoid non-standard class files.

88 5 RUNTIME SYSTEM

Task 1 SchedulerTask 2 JVM Hardware

block genInt

set interrupt

interrupt

schedule

dispatch

switch

resume task

Scheduling
decision

Context
switch

wFNP

interrupt

schedule

dispatch

Scheduling
decision

Context
switch

timer

User defined FrameworkApplication

resume task

set timer

set timer

switch

Figure 5.1: Interaction and message exchange between the application, the scheduler, the
JVM, and the hardware

5.2 A PROFILE FOR SAFETY CRITICAL JAVA 89

A pure Java system, without an underlying RTOS, is an unusual system with some inter-
esting new properties. Java is a safer execution environment than C (e.g. no pointers) and
the boundary between kernel and user space can become quite loose. Scheduling, usually
part of the operating system or the JVM, is implemented in Java and executed in the same
context as the application.

This property provides an easy path to a framework for user-defined scheduling. In [118]
a framework for a user defined scheduler for JOP is presented. The events that result in the
scheduling decision are listed. Hooks for these events allow the implementation of a user
defined scheduler.

5.1.8 Summary

This section consider a simple profile for real-time Java and the implementation of real-time
scheduling on a Java processor. The novelty of the described approach is in implementing
functions usually associated with an RTOS in Java. That means that real-time Java is not
based on an RTOS, and therefore not restricted to the functionality provided by the RTOS.
With JOP, a self-contained real-time system in pure Java becomes possible. The imple-
mentation of the specification is successfully used as the basis for a commercial real-time
application in the railway industry.

5.2 A Profile for Safety Critical Java

The proposed profile is an refinement of the profile described in Section 5.1. Further de-
velopment of applications on JOP shall be based on this profile and the current applications
(e.g. ÖBB bg and Lift) should be migrated to this profile.

5.2.1 Introduction

Safety-critical Java (SCJ) builds upon a broad research base on using Java (and Ada) for
hard real-time systems, sometimes also called high integrity systems. The Ravenscar profile
defines a subset of Ada to support development of safety-critical systems [39]. Based on
the concepts of Ravenscar Ada a restriction of the RTSJ was first proposed in [111]. These
restrictions are similar to SCJ level 1 without the mission concept. The idea was further
extended in [77] and named the Ravenscar Java profile (RJ). RJ is an extended subset of
RTSJ that removes features considered unsafe for high integrity systems. Another profile
for safety-critical systems was proposed within the EU project HIJA [1].

90 5 RUNTIME SYSTEM

PERC Pico from Aonix [6] defines a Java environment for hard real-time systems. PERC
Pico defines its own class hierarchy for real-time Java classes which are based on the RTSJ
libraries, but are not a strict subset thereof. PERC Pico introduces stack-allocated scopes,
an elaborate annotation system, and an integrated static analysis system to verify scope
safety and analyze memory and CPU time resource requirements for hard real-time software
components. Some of the annotations used to describe the libraries of the SCJ are derived
indirectly from the annotation system used in PERC Pico.

Another definition of a profile for safety-critical Java was published in [137]. In contrast
to RJ the authors of that profile argue for new classes instead of reusing RTSJ based classes
to avoid inheriting unsafe RTSJ features and to simplify the class hierarchy. A proposal
for mission modes within the former profile [126] permits recycling CPU time budgets for
different phases of the application. Compared to the mission concept of SCJ that proposal
allows periodic threads to vote against the shutdown of a mission. The concept of mission
memory is not part of that proposal.

In this chapter we focus on the safety-critical Java (SCJ) specification, a new standard
for safety critical applications developed by the JSR 302 expert group [64]. We should note
that the JSR 302 has not been finalized, thus we present the version from [126]. When
the JSR 302 stabilizes it will be implemented for JOP and will be the future version of the
real-time profile.

5.2.2 SCJ Level 1

Level 1 of the SCJ requires that all threads be defined during an initial initialization phase.
This phase is run only once at virtual machine startup. The second phase, called the mission
phase, begins only when all threads have been started. This phase runs until virtual ma-
chine shutdown. Level 1 supports only two kinds of schedulable objects: periodic threads
and sporadic events. The latter can be generated by either hardware or software. This re-
strictions keeps the schedulability analysis simple. In SCJ priority ceiling emulation is the
default monitor control policy. The default ceiling is top priority.

The Java wait and notify primitives are not allowed in SCJ level 0 and 1. This further
simplifies analysis. The consequence is that a thread context switch can only occur if a
higher priority thread is released or if the current running thread yields (in the case of SCJ
by returning from the run() method).

In the RTSJ, periodic tasks are expressed by unbounded loops with, at some point, a call
to the waitForNextPeriod() (or wFNP() for short) method of class RealtimeThread. This has the
effect of yielding control to the scheduler which will only wake the thread when its next
period starts or shortly thereafter. In SCJ, as a simplification, periodic logic is encapsulated

5.2 A PROFILE FOR SAFETY CRITICAL JAVA 91

package javax. safetycritical ;

public abstract class RealtimeThread {

protected RealtimeThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

protected RealtimeThread(String event,
RelativeTime minInterval,
RelativeTime deadline, int memSize)

abstract protected boolean run();

protected boolean cleanup() {
return true;

}
}

public abstract class PeriodicThread
extends RealtimeThread {

public PeriodicThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

public PeriodicThread(RelativeTime period)
}

Listing 5.4: Periodic thread definition for SCJ

in a run() method which is invoked at the start of every period of a given schedulable object.
When the thread returns from run() it is blocked until the next period.

Listing 5.4 shows part of the definition of the SCJ thread classes from [137]. Listing 5.5
shows the code for a periodic thread. This class has only one run() method which performs
a periodic computation.

The loop construct with wFNP() is not used. The main intention to avoid the loop con-
struct, with the possibility to split application logic into mini phases, is simplification of the

92 5 RUNTIME SYSTEM

new PeriodicThread(
new RelativeTime(...)) {

protected boolean run() {
doPeriodicWork();
return true;

}
};

Listing 5.5: A periodic application thread in SCJ

WCET analysis. Only a single method has to be analyzed per thread instead of all possible
control flow path between wFNP() invocations.

We contrast the SCJ threading with Listing 5.6 where a periodic RTSJ thread is shown.
Suspension of the thread to wait for the next period is performed by an explicit invocation
of wFNP(). The coding style in this example makes analysis of the code more difficult than
necessary. First the initialization logic is mixed with the code of the mission phase, this
means that a static analysis may be required to discover the boundary between the startup
code and the periodic behavior. The code also performs mode switches with calls to wFNP()
embedded in the logic. This makes the worst case analysis more complex as calls to wFNP()
may occur anywhere and require deep understanding of feasible control flow paths. Another
issue, which does not affect correctness, is the fact that object references can be preserved
in local variables across calls to wFNP(). As we will see later this has implications for the
GC.

The notation of a run() method that is invoked periodically also simplifies garbage col-
lection (see Chapter 7). When the GC thread is scheduled at a lower priority than the
application threads it will never interrupt the run() method. The GC will only execute when
all threads have returned from the run() method and the stack is empty. Therefore, stack
scanning for roots can be omitted.

5.2 A PROFILE FOR SAFETY CRITICAL JAVA 93

public void run() {

State local = new State();
doSomeInit();
local .setA();
waitForNextPeriod();

for (;;) {
while (! switchToB()) {

doModeAwork();
waitForNextPeriod();

}
local .setB();
while (! switchToA()) {

doModeBWork();
waitForNextPeriod();

}
local .setA();

}
}

Listing 5.6: Possible logic for a periodic thread in the RTSJ

94 5 RUNTIME SYSTEM

5.3 JVM Architecture

This section presents the details of the implementation of the JVM on JOP. The represen-
tation of objects and the stack frame is chosen to support JOP as a processor for real-time
systems. However, since the data structures are realized through microcode they can be
easily changed for a system with different needs.

5.3.1 Runtime Data Structures

Memory is addressed as 32-bit data, which means that memory pointers are incremented for
every four bytes. No single byte or 16-bit access is necessary. The abstract type reference
is a pointer (via a handle indirection) to memory that represents the object or an array. The
reference is pushed on the stack before an instruction can operate on it. A null reference is
represented by the value 0.

Stack Frame

On invocation of a method, the invoker’s context is saved in a newly allocated frame on the
stack. It is restored when the method returns. The saved context consists of the following
registers:

SP: Immediately before invocation, the stack pointer points to the last argument for the
called function. This value is reduced by the argument count (i.e. the arguments are
consumed) and saved in the new stack frame.

PC: The pointer to the next bytecode instruction after the invoke instruction.

VP: The pointer to the memory area on the stack that contains the locals.

CP: The pointer to the constant pool of the class from the invoking method.

MP: The pointer to the method structure of the invoking method.

SP, PC and VP are registers in JOP while CP and MP are local variables of the JVM.
Figure 5.2 provides an example of the stack before and after invoking a method. In this
example, the called method has two arguments and contains two local variables. If the
method is a virtual one, the first argument is the reference to the object (the this-pointer).
The arguments implicitly become locals in the called method and are accessed in the same
way as local variables. The start of the stack frame (Frame in the figure) needs not to be

5.3 JVM ARCHITECTURE 95

var_0
var_1
var_2

Previous SP

Previous MP

Previous CP

Previous VP

Previous PC

Operand stack
...

arg_0
arg_1

var_0
var_1
var_2

Previous SP

Previous MP

Previous CP

Previous VP

Previous PC

Operand stack
...

var_0
var_1
var_2
var_3

Previous SP

Previous MP

Previous CP

Previous VP

Previous PC

VP

SP
VP

Frame

SP

Old frame

Figure 5.2: Stack change on method invocation

saved. It is not needed during execution of the method or on return. To access the starting
address of the frame (e.g. for an exception) it can be calculated with information from the
method structure:

Frame = V P+arg cnt + locals cnt

Object Layout

Figure 5.3 shows the representation of an object in memory. The object reference points
to a handle area and the first element in the handle area points to the first instance vari-
able of the object. At the offset 1 in the handle area, a pointer is located to access class
information. To speed-up method invocation, it points directly to the method table of the
objects class instead of the beginning of the class data. The handle indirection simplifies
the implementation of a compacting GC (see Chapter 7).

96 5 RUNTIME SYSTEM

Instance variable 1

Method vector base

Handle

Instance variable 2

...

Instance variable n

Object reference
Handle area Object

Figure 5.3: Object format

First element

Array length

Handle

Second element

...

Element n

Array reference
Handle area Array

Figure 5.4: Array format

Array Layout

Figure 5.4 shows the representation of an array in memory. The array reference points to a
handle area and the first element in the handle area points to the first element of the array.
At the offset 1 in the handle area, the length of the array can be found.

Class Structure

Runtime class information, as shown in Figure 5.5, consists of the instance size, GC info,
the dispatch table for the methods, a reference to the super class, the constant pool, and
an optional interface table. The class variables (static fields) are located at the start of the
memory to speedup access to the fields (the constant pool index of getstatic and putstatic
is converted at class link time to the address in memory). Furthermore all reference static
fields are located in one continuous region for simple GC root scanning. A pointer to the
static primitive fields of the class is needed for the implementation of hardware objects.

The class reference is obtained from the constant pool when a new object is created. The
method vector base pointer is a reference from an object to its class (see Figure 5.3). It

5.3 JVM ARCHITECTURE 97

Constant pool length

Instance size

Ref. to static primitive

GC info

Super class

Interface table

Method
Structure 0

Class reference

Interface reference 0

Method
Structure 1

Method
Structure 2

...

Constant 1

Constant 2

...

Interface reference 1

...

Virtual method
table

Constant pool

Interface table

Class reference

Method vector base

Current method (MP)

Constant pool (CP)

Figure 5.5: Runtime class structure

98 5 RUNTIME SYSTEM

Method length

locals # args

Start address

Constant pool

Figure 5.6: Method structure

is used on invokevirtual. The index is the argument of the bytecode to avoid an additional
memory access in invoke (the original index into the constant pool is overwritten by the
direct index at class link time). A pointer to the method structure of the current method is
saved in the JVM variable MP. The method structure, as shown in Figure 5.6, contains the
starting address and length of the method (in 32-bit words), argument and local variable
count and a pointer to the constant pool of the class. Since the constant pool is an often
accessed memory area, a pointer to it is cached in the JVM variable CP.

The interface table contains references to the method structures of the implementation.
Only classes that implement an interface contain this table. To avoid searching the class
hierarchy on invokeinterface, each interface method is assigned a unique index. This ar-
rangement provides constant execution time, but can lead to large interface tables.

The constant pool contains various constants of a class. The entry at index 0 is the length
of the pool. All constants, which are symbolic in the class files, are resolved during class
linking. The different constant types and their values after resolving are listed in Table 5.1.
The names for the types are the same as in the JVM specification [82].

5.3.2 Class Initialization

According to [82] the static initializers of a class C are executed immediately before one
of the following occurs: (i) an instance of C is created; (ii) a static method of C is invoked
or (iii) a static field of C is used or assigned. The issue with this definition is that it is not
allowed to invoke the static initializers at JVM startup and it is not so obvious when it gets
invoked.

It follows that the bytecodes getstatic, putstatic, invokestatic and new can lead to class ini-
tialization and the possibility of high WCET values. In the JVM, it is necessary to check
every execution of these bytecodes if the class is already initialized. This leads to a loss of
performance and is violated in some existing implementations of the JVM. For example,
the first version of CACAO [75] invokes the static initializer of a class at compilation time.
Listing 5.7 shows an example of this problem.

JOPizer tries to find a correct order of the class initializers and puts this list into the
application file. If a circular dependency is detected the application will not be built. The

5.3 JVM ARCHITECTURE 99

Constant type Description

Class A pointer to a class (class reference)
Fieldref For static fields: a direct pointer to the field

For object fields: the position relative to the object
reference

Methodref For static methods: a direct pointer to the method structure
For virtual methods: the offset in the method table
(= index*2) and the number of arguments

InterfaceMethodref A system wide unique index into the interface table
String A pointer to the string object that represents the string

constant
Integer The constant value
Float The constant value
Long This constant value spans two entries in the constant pool
Double Same as for long constants
NameAndType Not used
Utf8 Not used

Table 5.1: Constant pool entries

class initializers are invoked at JVM startup.

5.3.3 Synchronization

Synchronization is possible with methods and on code blocks. Each object has a monitor
associated with it and there are two different ways to gain and release ownership of a moni-
tor. Bytecodes monitorenter and monitorexit explicitly handle synchronization. In other cases,
synchronized methods are marked in the class file with the access flags. This means that all
bytecodes for method invocation and return must check this access flag. This results in an
unnecessary overhead on methods without synchronization. It would be preferable to en-
capsulate the bytecode of synchronized methods with bytecodes monitorenter and monitorexit.
This solution is used in Suns picoJava-II [146]. The code is manipulated in the class loader.
Two different ways of coding synchronization, in the bytecode stream and as access flags,
are inconsistent. With JOPizer the same manipulation of the methods is performed to wrap
the method code in a synchronized block when the method is defined synchronized.

100 5 RUNTIME SYSTEM

public class Problem {

private static Abc a;
public static int cnt; // implicitly set to 0

static {
// do some class initializaion
a = new Abc(); // even this is ok.

}

public Problem() {
++cnt;

}
}

// anywhere in some other class, in situation ,
// when no instance of Problem has been created
// the following code can lead to
// the execution of the initializer
int nrOfProblems = Problem.cnt;

Listing 5.7: Class initialization can occur very late

5.3.4 Booting the JVM

One interesting issue for an embedded system is how the boot-up is performed. On power-
up, the FPGA starts the configuration state machine to read the FPGA configuration data
either from a Flash or via a download cable (for development). When the configuration has
finished, an internal reset is generated. After that reset, microcode instructions are executed
starting from address 0. At this stage, we have not yet loaded any application program
(Java bytecode). The first sequence in microcode performs this task. The Java application
can be loaded from an external Flash or via a serial line (or an USB port) from a PC. The
microcode assembly configured the mode. Consequently, the Java application is loaded into
the main memory. To simplify the startup code we perform the rest of the startup in Java
itself, even when some parts of the JVM are not yet setup.

5.3 JVM ARCHITECTURE 101

In the next step, a minimal stack frame is generated and the special method Startup.boot()
is invoked. From now on JOP runs in Java mode. The method boot() performs the following
steps:

1. Send a greeting message to stdout

2. Detect the size of the main memory

3. Initialize the data structures for the garbage collector

4. Initialize java.lang.System

5. Print out JOP’s version number, detected clock speed, and memory size

6. Invoke the static class initializers in a predefined order

7. Invoke the main method of the application class

6 Worst-Case Execution Time

Worst-case execution time (WCET) estimates of tasks are essential for designing and veri-
fying real-time systems. WCET estimates can be obtained either by measurement or static
analysis. The problem with using measurements is that the execution times of tasks tend
to be sensitive to their inputs. As a rule, measurement does not guarantee safe WCET es-
timates. Instead, static analysis is necessary for hard real-time systems. Static analysis is
usually divided into a number of different phases:

Path analysis generates the control flow graph (a directed graph of basic blocks) of the
program and annotates (manual or automatic) loops with bounds.

Low-level analysis determines the execution time of basic blocks obtained by the path
analysis. A model of the processor and the pipeline provides the execution time for
the instruction sequence.

Global low-level analysis determines the influence of hardware features such as caches on
program execution time. This analysis can use information from the path analysis to
provide less pessimistic values.

WCET Calculation The final WCET is calculated by transforming the control flow graph
with the timing information of basic blocks1 with the program annotations for loops
to an integer linear programming (ILP) problem. This problem is solved by an ILP
solver. This approach is also called implicit path enumeration (IPET).

For the low-level analysis, a good timing model of the processor is needed. The main
problem for the low-level analysis is the execution time dependency of instructions in mod-
ern processors that are not designed for real-time systems. JOP is designed to be an easy
target for WCET analysis. The WCET of each bytecode can be predicted in terms of the
number of cycles it requires. There are no timing dependencies between bytecodes.

WCET analysis has to be done at two levels: at the microcode level and at the bytecode
level. The microcode WCET analysis is performed only once for a processor configuration

1A basic block is a sequence of instructions without any jumps or jump targets within this sequence.

104 6 WORST-CASE EXECUTION TIME

and described in the next section. The result from this microcode analysis is the timing
model of the processor. The timing model is the input for WCET analysis at the bytecode
level (i.e. the Java application) as explained in Section 6.2.

The first WCET analysis tool that targets JOP has been developed by Rasmus Pedersen
[134]. Benedikt Huber implemented a new version of the analyzer with support of byte-
codes implemented in Java and a better method cache approximation has [67]. The new
tool also contains a module to extract the low-level bytecode timing from the microcode
assembler program (jvm.asm) automatically.

6.1 Microcode WCET Analysis

Each bytecode is implemented by microcode. We can obtain the WCET of a single byte-
code by performing WCET analysis at the microcode level. To prove that there are no
time dependencies between bytecodes, we have to show that no processor states are shared
between different bytecodes.

6.1.1 Microcode Path Analysis

To obtain the WCET values for the individual bytecodes we perform the path analysis at
the microcode level. First, we have to ensure that a number of restrictions (from [109]) of
the code are fulfilled:

• Programs must not contain unbounded recursion. This property is satisfied by the
fact that there exists no call instruction in microcode.

• Function pointers and computed gotos complicate the path analysis and should there-
fore be avoided. Only simple conditional branches are available at the microcode
level.

• The upper bound of each loop has to be known. This is the only point that has to be
verified by inspection of the microcode.

To detect loops in the microcode we have to find all backward branches (e.g. with a negative
branch offset).2 The branch offsets can be found in a VHDL file (offtbl.vhd) that is generated
during microcode assembly. In the current implementation of the JVM there are ten differ-
ent negative offsets. However, not each offset represents a loop. Most of these branches

2The loop branch can be a forward branch. However, the basic blocks of the loop contain at least one backward
branch. Therefore we can identify all loops by searching for backward branches only.

6.1 MICROCODE WCET ANALYSIS 105

are used to share common code. Three branches are found in the initialization code of the
JVM. They are not part of a bytecode implementation and can be ignored. The only loop
that is found in a regular bytecode is in the implementation of imul to perform a fixed delay.
The iteration count for this loop is constant.

A few bytecodes are implemented in Java3 and can be analyzed in the same way as appli-
cation code. The bytecodes idiv and irem contain a constant loop. The bytecode lookupswitch4

performs a linear search through a table of branch offsets. The WCET depends on the table
size that can be found as part of the instruction.

As the microcode sequences are very short, the calculation of the control flow graph for
each bytecode is done manually.

6.1.2 Microcode Low-level Analysis

To calculate the execution time of basic blocks in the microcode, we need to establish the
timing of microcode instructions on JOP. All microcode instructions except wait execute in
a single cycle, reducing the low-level analysis to a case of merely counting the instructions.

The wait instruction is used to stall the processor and wait for the memory subsystem to
finish a memory transaction. The execution time of the wait instruction depends on the mem-
ory system and, if the memory system is predictable, has a known WCET. A main memory
consisting of SRAM chips can provide this predictability and this solution is therefore ad-
vised. The predictable handling of DMA, which is used for the instruction cache fill, is
explained in Section 4.5. The wait instruction is the only way to stall the processor. Hard-
ware events, such as interrupts (see Section 4.3.5), do not stall the processor.

Microcode is stored in on-chip memory with single cycle access. Each microcode in-
struction is a single word long and there is no need for either caching or prefetching at this
stage. We can therefore omit the low-level analysis. No pipeline analysis [42], with its
possible unbounded timing effects, is necessary.

6.1.3 Bytecode Independency

We have seen that all microcode instructions except wait take one cycle to execute and are
therefore independent of other instructions. This property directly translates to indepen-
dency of bytecode instructions.

3The implementation can be found in the class com.jopdesign.sys.JVM.
4lookupswitch is one way of implementing the Java switch statement. The other bytecode, tableswitch, uses

an index in the table of branch offsets and has therefore a constant execution time.

106 6 WORST-CASE EXECUTION TIME

The wait microcode instruction provides a convenient way to hide memory access time.
A memory read or write can be triggered in microcode and the processor can continue
with microcode instructions. When the data from a memory read is needed, the processor
explicitly waits, with the wait instruction, until it becomes available.

For a memory store, this wait could be deferred until the memory system is used next
(similar to a write buffer). It is possible to initiate the store in a bytecode such as putfield and
continue with the execution of the next bytecode, even when the store has not been com-
pleted. In this case, we introduce a dependency over bytecode boundaries, as the state of the
memory system is shared. To avoid these dependencies that are difficult to analyze, each
bytecode that accesses memory waits (preferably at the end of the microcode sequence) for
the completion of the memory request.

Furthermore, if we would not wait at the end of the store operation we would have to
insert an additional wait at the start of every read operation. Since read operations are more
frequent than write operations (15% vs. 2.5%, see [123]), the performance gain from the
hidden memory store is lost.

6.1.4 WCET of Bytecodes

The control flow of the individual bytecodes together with the basic block length (that
directly corresponds with the execution time) and the time for memory access result in the
WCET (and BCET) values of the bytecodes. These values can be found in Appendix D.

Basic Bytecodes

Most bytecode instructions that do not access memory have a constant execution time.
They are executed by either one microcode instruction or a short sequence of microcode
instructions. The execution time in clock cycles equals the number of microinstructions
executed. As the stack is on-chip, it can be accessed in a single cycle. We do not need to
incorporate the main memory timing into the instruction timing. Most simple bytecodes
execute in a single cycle. Table 6.1 shows example instructions, their timing, and their
meaning. Access to object, array, and class fields depend on the timing of the main memory.

Object Oriented Bytecodes

Object oriented instructions, array access, and invoke instructions access the main memory.
Therefore, we have to model the memory access time. We assume a simple SRAM with a
constant access time. Access time that exceeds a single cycle includes additional wait states

6.1 MICROCODE WCET ANALYSIS 107

Opcode Instruction Cycles Funtion

3 iconst 0 1 load constant 0 on TOS
4 iconst 1 1 load constant 1 on TOS

16 bipush 2 load a byte constant on TOS
17 sipush 3 load a short constant on TOS
21 iload 2 load a local on TOS
26 iload 0 1 load local 0 on TOS
27 iload 1 1 load local 1 on TOS
54 istore 2 store the TOS in a local
59 istore 0 1 store the TOS in local 0
60 istore 1 1 store the TOS in local 1
89 dup 1 duplicate TOS
90 dup x1 5 complex stack manipulation
96 iadd 1 integer addition

153 ifeq 4 conditional branch

Table 6.1: Execution time of simple bytecodes in cycles

(rws for a memory read and wws for a memory write). With a memory with rws wait states,
the execution time for, e.g., getfield is

tgetfield = 11+2rws

The memory subsystem performs reads and writes in parallel to the execution of mi-
crocode. Therefore, some access cycles can be hidden. The following example gives the
exact execution time of bytecode ldc2 w in clock cycles:

tldc2 w = 17+
{

rws−2 : rws > 2
0 : rws ≤ 2

+
{

rws−1 : rws > 1
0 : rws ≤ 1

Thus, for a memory with two cycles access time (rws = 1), as we use it for a 100 MHz
version of JOP with a 15 ns SRAM, the wait state is completely hidden by microcode
instructions for this bytecode.

Memory access time also determines the cache load time on a miss. For the current
implementation the cache load time is calculated as follows: the wait state cws for a single
word cache load is:

cws =
{

rws : rws > 1
1 : rws ≤ 1

108 6 WORST-CASE EXECUTION TIME

On a method invoke or return, the respective method has to be loaded into the cache on a
cache miss. The load time l is:

l =
{

6+(n+1)(1+ cws) : cache miss
4 : cache hit

where n is the size of the method in number of 32-bit words. For short methods, the load
time of the method on a cache miss, or part of it, is hidden by microcode execution. As an
example, the exact execution time for the bytecode invokestatic is:

t = 74+ rws +
{

rws−3 : rws > 3
0 : rws ≤ 3

+
{

rws−2 : rws > 2
4 : rws ≤ 2

+
{

l−37 : l > 37
0 : l ≤ 37

For invokestatic a cache load time l of up to 37 cycles is completely hidden. For the
example SRAM timing the cache load of methods up to 36 bytes long is hidden. The WCET
analysis tool, as described in the next section, knows the length of the invoked method and
can therefore calculate the time for the invoke instruction cycle accurate.

Bytecodes in Java

Bytecodes can be implemented in Java on JOP. In this case, a static method from a JVM
internal class gets invoked when such a bytecode is executed. For WCET analysis this
bytecode is substituted by an invoke instruction to this method. The influence on the cache
(the bytecode execution results in a method load) can be analyzed in the same way as for
ordinary static methods.

Native Methods

Most of the JVM internal functionality in JOP, such as input, output, and thread scheduling,
is implemented in Java. However, Java and the JVM do not allow direct access to memory,
peripheral devices or processor registers. For this low-level access to system resources,
we need native methods. For a Java processor, the native language is still Java bytecode.
We solve this issue by substituting the native method invocation by a special bytecode
instruction on class loading. Those special bytecodes are implemented in JOP microcode
in the same way as regular bytecodes (see Section 4.2. The execution time of the native
methods (or in other words special bytecodes) is given in the same way as the execution
time for standard bytecodes.

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 109

6.2 WCET Analysis of the Java Application

In hard real-time systems, the estimation of the worst-case execution time (WCET) is essen-
tial. WCET analysis is in general an undecidable problem. Program restrictions, as given
in [109], make this problem decidable:

1. Programs must not contain any recursion

2. Absence of function pointers

3. The upper bound of each loop has to be known

Recursive algorithms have to be transformed to iterative ones. For our WCET analyzer,
the loop bounds are detected by data-flow analysis or have to be annotated in the program
source. However, we want to relax the second restriction regarding function pointers. Func-
tion pointers are similar to inherited or overridden methods: they are dispatched at runtime.
For an object-oriented language this mechanism is fundamental. In contrast to function
pointers, e.g., in C, we can statically analyze which methods can be invoked when the
whole program is known. Therefore, we allow dynamic dispatching of methods in Java in
our analysis.

We replace the function pointer restriction by the following restriction: Dynamic class
loading is not allowed. As the full application has to be available for WCET analysis,
dynamic class loading cannot be supported. For embedded real-time systems this is not a
severe restriction.

6.2.1 High-Level WCET Analysis

The high-level WCET analysis, presented in this section, is based on standard technologies
[110, 79]. From the class files that make up the application, the relevant information is
extracted. The CFG of the basic blocks is extracted from the bytecodes. Annotations for
the loop counts are either provided by the data-flow analysis or are extracted from comments
in the source. Furthermore, the class hierarchy is examined to find all possible targets for a
method invoke and the data-flow analysis tightens the set of possible receivers.

Java bytecode generation has to follow stringent rules [82] in order to pass the class file
verification of the JVM. Those restrictions lead to an analysis friendly code; e.g. the stack
size is known at each instruction. The control flow instructions are well defined. Branches
are relative and the destination is within the same method. In the normal program, there is

110 6 WORST-CASE EXECUTION TIME

no instruction that loads a branch destination in a local variable or onto the stack.5 Detection
of basic blocks in Java bytecode and construction of the CFG is thus straight forward.

In Java class files there is more information available than in compiled C/C++ executa-
bles. All links are symbolic and it is possible to reconstruct the class hierarchy from the
class files. Therefore, we can statically determine all possible targets for a virtual method
invoke.

WCET analysis at the bytecode level has several advantages when the execution time of
the individual bytecodes are known. When compiled with debug information references
to the source are stored in the class file. With this information it is possible to extract
annotations in the Java source code. We use this feature to annotated loop bounds within
comments in the Java source. This form of annotation is simple and less intrusive than using
a predefined dummy class as suggested in [23].

6.2.2 WCET Annotations

Simple loop bounds are detected by the data-flow analysis [104]. For cases where the
bounds are not detectable, we additionally support annotations in the source. The annota-
tions are written as comments (see Listing 6.1). It would be more convenient to use standard
Java annotations introduced with Java 1.5, as they are checked at compile time. However,
at the moment Java annotations are not allowed at code block level. A proposal to remove
this restriction is currently under review (JSR 308). When compiling Java, the source line
information is included in the class file. Therefore, when a loop is detected in the CFG,
the relevant source line for the loop header is looked up in the source and the annotation is
extracted from the comment.

Annotations given as source comments are simple and less intrusive than using a prede-
fined dummy class [23]. Two variants of the loop bounding annotation are supported: one
with an exact bound6 (=) and one that places an upper bound on the iterations (<=). The
extension to more elaborate annotations, as suggested in [109] and [23], can provide even
tighter WCET bounds.

5The exception are bytecodes jsr and ret that use the stack and a local variable for the return address of a
method local subroutine. This construct can be used to implement the finally clauses of the Java program-
ming language. However, this problematic subroutine can be easily inlined [12]. Furthermore, Sun’s Java
compilers version 1.4.2 and later compile finally blocks without subroutines.

6The exact bound has been used to find best-case values for some test settings.

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 111

6.2.3 ILP Formulation

The calculation of the WCET is transformed to an ILP problem [110]. In the CFG, each
vertex represents a basic block Bi with execution time ci. With the basic block execution
frequency ei the WCET is:

WCET = max
N

∑
i=1

ciei

The sum is the objective function for the ILP problem. The maximum value of this expres-
sion results in the WCET of the program.

Furthermore, each edge is also assigned an execution frequency f . These execution
frequencies represent the control flow through the WCET path. Two primary constraints
form the ILP problem: (i) For each vertex, the sum of f j for the incoming edges has to be
equal to the sum of the fk of the outgoing edges; (ii) The frequency of the edges connecting
the loop body with the loop header, is less than or equal to the frequency of the edges
entering the loop multiplied by the loop bound.

From the CFG, which represents the program structure, we can extract the flow con-
straints. With the execution frequency f of the edges and the two sets Ii for the incoming
edges to basic block Bi and Oi for the outgoing edges, the execution frequency ei of Bi is:

ei = ∑
j∈Ii

f j = ∑
k∈Oi

fk

The frequencies f are the integer variables calculated by solving the ILP problem. Further-
more, we add two special vertices to the graph: The start node S and the termination node
T . The start node S has only one outgoing edge that points to the first basic block of the
program. The execution frequency fs of this edge is set to 1. The termination node T has
only incoming edges with the sum of the frequencies also set to 1; all return statements of
a method are connected to the node T . This means that the program is executed once and
can only terminate once through T .

Loop bounds are additional constraints for the ILP problem. A special vertex, the loop
header, is connected by following edges:

1. Incoming edges that enter the loop with frequency fh

2. One outgoing edge entering the loop body with frequency fl

3. Incoming edges that close the loop

4. One loop exit edge

112 6 WORST-CASE EXECUTION TIME

public static int loop(boolean b, int val) {

int i , j ;

for (i=0; i<10; ++i) { // @WCA loop=10
if (b) {

for (j=0; j<3; ++j) { // @WCA loop=3
val ∗= val ;

}
} else {

for (j=0; j<4; ++j) { // @WCA loop=4
val += val;

}
}

}
return val ;

}
Listing 6.1: The example used for WCET analysis

With the maximum loop count (the loop bound) n we formulate the loop constraint as

fl ≤ n∑ fh

This explanation is a little bit simplified, as more complex loop conditions have several
edges to the loop body. Therefore, the tool considers the set of incoming edges to the loop
header that close the loop for the ILP constraint.

Without further global constraints the problem can be solved locally for each method.
We start at the leaves of the call tree and calculate the WCET for each method. The WCET
value of a method is included in the invoke instruction of the caller method. To incorporate
global constraints, such as cache constraints [80], a single CFG is built that contains the
whole program by inserting edges from the invoke instruction to the invoked method and
back. This is conceptually equivalent to inlining each method.

In Section 6.2.6, we will show how the cache constraints for the method cache can be
integrated into the analysis.

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 113

S

B1
2

fs

B2
7

f1

B3
5

f2

B11
24

f3

B4
2

f4

B7
2

f5

T

ft

B5
6

f6

B8
6

f10

B6
30

f7

B10
8

f8 f9

f14

f12

B9
12

f11f13

Figure 6.1: CFG of the example

6.2.4 An Example

To illustrate the WCET analysis flow we provide a small example. Listing 6.1 shows the
Java source code that contains nested loops with a condition. The simple loop bounds are
detected by the data-flow analysis (DFA). We just show in the example how the annotation
syntax looks like. In our target hardware, the multiplication takes longer than the addition.
Therefore, in this example, it is not obvious which branch will result in the WCET path.

Table 6.2 shows the bytecodes and basic blocks of the example, as generated by our
WCET analysis tool. The fourth column gives the execution time of the bytecodes in clock
cycles. The fifth column gives the execution time of the basic blocks. These are the values
used for the ILP equations.

From the basic blocks, we can construct the CFG as shown in Figure 6.1. The vertices
represent the basic blocks and include the execution time in clock cycles. We can identify
block B2 as the loop header for the outer loop. B3 is the branch node. B5 and B8 are the

114 6 WORST-CASE EXECUTION TIME

Block Addr. Bytecode Cycles BB Cycles

B1 0: iconst 0 1
1: istore 2 1 2

B2 2: iload 2 1
3: bipush 2
5: if icmpge 55 4 7

B3 8: iload 0 1
9: ifeq 30 4 5

B4 12: iconst 0 1
13: istore 3 1 2

B5 14: iload 3 1
15: iconst 3 1
16: if icmpge 48 4 6

B6 19: iload 1 1
20: iload 1 1
21: imul 19
22: istore 1 1
23: iload 3 1
24: iconst 1 1
25: iadd 1
26: istore 3 1
27: goto 14 4 30

B7 30: iconst 0 1
31: istore 3 1 2

B8 32: iload 3 1
33: iconst 4 1
34: if icmpge 48 4 6

B9 37: iload 1 1
38: iload 1 1
39: iadd 1
40: istore 1 1
41: iload 3 1
42: iconst 1 1
43: iadd 1
44: istore 3 1
45: goto 32 4 12

B10 48: iload 2 1
49: iconst 1 1
50: iadd 1
51: istore 2 1
52: goto 2 4 8

B11 55: iload 1 1
56: ireturn 23 24

Table 6.2: Java bytecode and basic blocks

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 115

loop headers for the inner loops.
From the CFG, we can extract the flow constraints by the following fact: The execution

frequency of a basic block is equal to the execution frequency of all incoming edges and
equal to the execution frequency of all outgoing edges. E.g., for block B2 the execution
frequency e2 is:

e2 = f1 + f14 = f2 + f3

The loop constraints are formulated by constraining the frequency of the loop’s back
edges. The loop bounds are automatically transferred from the DFA module or extracted
from the source annotations. For the outer loop in the example this is:

f14 = 10 f1

In Listing 6.2, the resulting equations for the integer linear programming problem, as
generated by our tool, are listed. We use the open-source ILP solver lp solve.7

The ILP solver lp solve gives a result of 1393 cycles. We run this example on the Java
processor for verification. As the execution time depends only on a single boolean variable,
b (see Listing 6.1), it is trivial to measure the actual WCET. We measure the execution time
with a cycle counter for the execution time of the outer loop, i.e., from the start of block
B1 until the exit of the loop at block B2. The last block, B11, which contains the return
statement, is not part of the measurement. The measured result is 1369 cycles. When we
add the 24 cycles for the block B11 to our measured WCET, we get 1393 cycles. This
measured result is exactly the same as the analytical result!

6.2.5 Dynamic Method Dispatch

Dynamic runtime-dispatching of inherited or overridden instance methods is a key feature
of object-oriented programming. Therefore, we allow dynamic methods as a controlled
form of function pointers. The full class hierarchy can be extracted from the class files of
the application. From the class hierarchy, we can extract all possible receiver methods for
an invocation. When all possible receivers are included as alternatives, the resulting WCET
bound can be very pessimistic. Therefore, this set can be tightened by a flow-sensitive
receiver analysis [104].

We include all possible receivers as alternatives in the ILP constraints. It has to be noted
that, without further analysis or annotations, this can lead to pessimistic WCET estimates.

7http://lpsolve.sourceforge.net/5.5/

http://lpsolve.sourceforge.net/5.5/

116 6 WORST-CASE EXECUTION TIME

/∗ Objective function ∗/
max: t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11;
/∗ flow constraints ∗/
S: fs = 1;
B1: fs = f1 ;
B2: f14 + f1 = f2 + f3 ;
B3: f2 = f4 + f5 ;
B4: f4 = f6 ;
B5: f9 + f6 = f7 + f8 ;
B6: f7 = f9 ;
B7: f5 = f10;
B8: f10 + f13 = f11 + f12;
B9: f11 = f13;
B10: f12 + f8 = f14;
B11: f3 = ft ;
T: ft = 1;
/∗ loop bounds ∗/
f14 = 10 f1;
f9 = 3 f6 ;
f13 = 4 f10;
/∗ execution time (with incoming edges) ∗/
t1 = 2 fs ;
t2 = 7 f14 + 7 f1 ;
t3 = 5 f2 ;
t4 = 2 f4 ;
t5 = 6 f9 + 6 f6 ;
t6 = 30 f7;
t7 = 2 f5 ;
t8 = 6 f10 + 6 f13;
t9 = 12 f11;
t10 = 8 f12 + 8 f8 ;
t11 = 24 f3;

Listing 6.2: ILP equations of the example

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 117

B1

iload_1
iload_2
aload_0

f1

invoke A.foo

f2

invoke B.foo

f3

istore_3

Figure 6.2: Split of the basic block for instance methods

We split the basic block that contains the invoke instruction into three new blocks: The
preceding instructions, the invoke instruction, and following instructions. Consider follow-
ing basic block:

iload 1
iload 2
aload 0
invokevirtual foo
istore 3

When different versions of foo() are possible receiver methods, we model the invocation
of foo() as alternatives in the graph. The example for two classes A and B that are part of the
same hierarchy is shown in Figure 6.2. Following the standard rules for the incoming and
outgoing edges the resulting ILP constraint for this example is:

f1 = f2 + f3

6.2.6 Cache Analysis

From the properties of the Java language — usually small methods and relative branches —
we derived the novel idea of a method cache [120], i.e., an instruction cache organization
in which whole methods are loaded into the cache on method invocation and on the return
from a method.

118 6 WORST-CASE EXECUTION TIME

B1

iload_1
iload_2

invoke foo
ifeq

f1

B5

f5

B6

f6

B2

f2

B3

f3

Figure 6.3: Basic block with an invoke instruction

The method cache is designed to simplify WCET analysis. Due to the fact that all cache
misses are only included in two instructions (invoke and return), the instruction cache can be
ignored on all other instructions. The time needed to load a complete method is calculated
using the memory properties (latency and bandwidth) and the size of the method. On an
invoke, the size of the invoked method is used, and on a return, the method size of the caller.

Integration of the method cache into WCET analysis is straight forward. As the cache
hits or misses can only happen at method invocation, or return from a method, we can model
the miss times as extra vertices in the graph. Figure 6.3 shows an example with 6 connected
basic blocks. Basic block B4 is shown as a box and has three incoming edges (f1, f2, f3)
and two outgoing edges (f5, f6). B4 contains the invocation of method foo(), surrounded by
other instructions. The execution frequency e4 of block B4 in the example is

e4 = f1 + f2 + f3 = f5 + f6

We split a basic block that contains a method invoke (B4 in our example) into several
blocks, so one block contains only the invoke instruction. Misses on invoke and return are
modeled as extra blocks with the miss penalty as execution time.

The miss for the return happens during the return instruction. On a miss, the caller
method has to be loaded into the cache. Therefore, the miss penalty depends on the caller
method size. However, as the return instruction is the last instruction executed in the called
method, we can model the return miss time at the caller side after the invoke instruction.
This approach simplifies the analysis as both methods, the caller and the called, with their
respective sizes, are known at the occurrence of the invoke instruction.

Figure 6.4 shows the resulting graph after the split of block B4 and the inserted vertices
for the cache misses. The miss penalty is handled in the same way as execution time of

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 119

B1

iload_1
iload_2

f1

invoke foo

fih
invoke
miss

fim

B2

f2

B3

f3

ifeq

frh
return
miss

frm

B5

f5

B6

f6

Figure 6.4: Split of the basic block and cache miss blocks

basic blocks for the ILP objective function. The additional constraints for the control flow
in our example are

e4 = fih + fim

e4 = frh + frm

with the invocation hit and miss frequencies fih and fim and the return hit and miss frequen-
cies frh and frm.

It has to be noted that misses are always more expensive than hits. A conservative bound
on the hit frequency is a safe approximation when the exact information is missing. As the
hit or miss time is contained within a single bytecode execution, there are no issues with
timing anomalies [84].

As a next step, we have to formulate the relation between the hit and the miss frequency.
In [120], several variants of the method cache are described:

120 6 WORST-CASE EXECUTION TIME

1. A single block that can only cache a single method

2. Several blocks that each can cache a single method

3. A variable block cache where a method can span several blocks

The first two variants are simple to integrate into WCET analysis, but lead to high WCET
bounds. In the following, the analysis of the third variant is described, details on analysis
of the first two variants can be found in [134].

The variable block cache divides the cache in several blocks similar to cache lines in
a conventional cache. However, a single method has to be loaded in a continuous region
of the cache. The effective replacement policy of the variable block cache is FIFO. FIFO
caches need a long access history for standard classification techniques [112]. Due to the
FIFO replacement, one can construct examples where a method in a loop can be classified
as single miss, but that miss does not need to happen at the first iteration or it can happen
on a return from an invoked method.

WCET analysis of cache hits for the method cache is most beneficial for methods invoked
in a loop, where the methods are classified as first miss. The basic idea of the method cache
analysis is as follows: Within a loop it is statically analyzed if all methods invoked and
the invoking method, which contains the loop, fit together in the method cache. If this is
the case, all methods miss at most once in the loop. The concrete implementation of the
analysis algorithm is a little bit different.

However, the miss of a method that is not a leaf method can happen either at invoke of
this method or on the return (from a deeper nested method) to this method. On JOP some
of the cache load cycles can be hidden due to the concurrent execution of microcode. At
the more complex invoke instruction more cash load time is hidden. Therefore, the miss
penalty on a return is higher. All methods from the fitting set that are not leafs need to
consider the miss penalty of a return bytecode. Leaf nodes can naturally only miss on an
invoke.

With the variable block cache, it could be argued that WCET analysis becomes too com-
plex, but the technique presented above is easy to apply and only needs to perform a simple
static analysis. In contrast to a direct-mapped instruction cache, we only need to consider
invoke instructions and do not need to know the actual bytecode address of any instruction.

6.2.7 WCET Analyzer

The WCET analyzer (WCA) is an open source Java program first described in [134] and
later redesigned [66]. It is based on the standard IPET approach [110], as described in Sec-

6.2 WCET ANALYSIS OF THE JAVA APPLICATION 121

tion 6.2.3. Hereby, WCET is computed by solving a maximum cost circulation problem in
a directed graph representing the program’s control flow. In contrast to the former descrip-
tion, WCA associates the execution cost to the edges instead of the vertices. For modeling
the execution time of JOP those two approaches are equivalent. However, WCA is prepared
for other architectures with different execution times of a branch taken or not taken.

The tool performs the low-level analysis at the bytecode level. The behavior of the
method cache is integrated with the static all-fit approximation (see Section 6.2.6). The
well known execution times of the different bytecodes (see Section 6.1.4) simplify this part
of the WCET analysis, which is usually the most complex one, to a great extent. As there
are no pipeline dependencies, the calculation of the execution time for a basic block is
merely just adding the individual cycles for each instruction.

To access the class files, we use the Byte Code Engineering Library (BCEL) [34]. BCEL
allows inspection and manipulation of class files and the bytecodes of the methods. The
WCA extracts the basic blocks from the methods and builds the CFG. Within the CFG,
the WCA detects both the loops and the loop head. From the source line attribute of the
loop head, the annotation of the loop count is extracted. WCA uses the open-source ILP
solver lp solve. lp solve is integrated into the WCA by directly invoking it via the Java library
binding.

After completing WCET analysis, WCA creates detailed reports to provide feedback
to the user and annotate the source code as far as possible. All reports are formatted as
HTML pages. Each individual method is listed with basic blocks and execution time of
bytecodes, basic blocks, and cache miss times. This output is similar to Table 6.2, but with
more detailed information. The WCA also generates a graphical representation of the CFG
for each method and for the whole program. Furthermore, the source is annotated with
execution time and the WCET path is marked, as shown in Figure 6.5 for the example from
Listing 6.1. For this purpose, the solution of the ILP is analyzed, first annotating the nodes
of the CFG with execution costs, and then mapping the costs back to the source code.

The Makefile contains the target wcet for the WCET tool. The following example performs
WCET analysis of the method measure of the crc example and uses DFA for the loop bound
detection. The method that is the root of the application to be analyzed can be set in variable
WCET METHOD.

make java app wcet −e P1=test P2=wcet P3=ShortCrc WCET DFA=yes

122 6 WORST-CASE EXECUTION TIME

Figure 6.5: WCET path highlighting in the source code.

6.3 Evaluation

For the evaluation of the WCET tool, we analyze and measure a collection of real-time
benchmarks. The measurement gives us confidence that we have no serious bugs in the
analysis and an idea of the pessimism of the analyzed WCET. It has to be noted that we
actually cannot guarantee to measure the real WCET. If we could measure the WCET, we
would not need to perform WCET analysis at all.

Furthermore, WCET analysis gives a safe bound, but this bound may be conservative.
Due to the abstractions in the analysis the WCET bound may not be associated with a real
feasible execution path. There is no general guarantee that we have knowledge about the
worst case path.

6.3.1 Benchmarks

The benchmarks used are shown in Table 6.3, with a short description and the source code
size in lines of code (LOC). The benchmarks consists of three groups: small kernel bench-
marks, WCET benchmarks provided by the Mälardalen Real-Time Research Center, 8 and
three real-world applications.

The benchmark crc calculates a 16-bit CRC for short messages. LineFollower is the code of

8Freely available from http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

6.3 EVALUATION 123

Benchmark Program Description LOC

Kernel crc CRC calculation for short messages 8
LineFollower A simple line follower robot 89
SVM Embedded machine learning algorithm 115

Mälardalen BinarySearch Binary search program 78
Bubble Bubblesort program 63
Crc Cyclic redundancy check 154
ExpInt Exponential integral function 89
FDCT Fast discrete cosine transform 222
Fibonacci Simple iterative Fibonacci calculation 37
InsertionSort Insertion sort program 60
JanneComplex Complex nested loops 72
MatrixCount Count numbers in a matrix 85
MatrixMult Matrix multiplication 104
NestedSearch Search in a multi-dimensional array 487
QuickSort Quicksort program 166
Select Select smallest element from array 136
SLE Simultaneous linear equations 128

Applications Lift Lift controller 635
Kfl Kippfahrleitung application 1366
EjipCmp Multicore UDP/IP benchmark 1892

Table 6.3: WCET benchmark examples

a simple line-following robot. The SVM benchmark represents an embedded version of the
machine learning algorithm called support vector machine (SVM). The SVM is modified
minimally to work in the real-time setting [93]. The second group are benchmarks provided
by the Mälardalen Real-Time Research Center [85] and ported to Java by Trevor Harmon
[58].

The benchmarks Lift and Kfl are real-world examples that are in industrial use. Lift is a
simple lift controller, where Kfl is a node in a distributed mast control application. The
EjipCmp benchmark is an embedded TCP/IP stack written in Java with an example applica-
tion consisting of a UDP/IP server and a UDP/IP client, exchanging messages via a loop-
back network layer driver. The TCP/IP stack and the example applications are optimized
for a chip-multiprocessor system (e.g., with non-blocking communication). In our setup,
however, we execute all five tasks serially on a uniprocessor and perform WCET analysis

124 6 WORST-CASE EXECUTION TIME

Measured Estimated Pessimism
Program (cycles) (cycles) (ratio)

crc 1449 1513 1.04
LineFollower 2348 2411 1.03
SVM 104880 107009 1.02

BinarySearch 631 636 1.01
Bubble 1262717 1815734 1.44
Crc 191825 383026 2.00
ExpInt 324419 429954 1.33
FDCT 19124 19131 1.00
Fibonacci 1127 1138 1.01
InsertionSort 8927 15410 1.73
JanneComplex 886 6991 7.89
MatrixCount 16420 16423 1.00
MatrixMult 1088497 1088509 1.00
NestedSearch 51777 64687 1.25
QuickSort 9942 115383 11.61
Select 5362 55894 10.42
SLE 20408 50514 2.48

Lift 5446 8466 1.55
Kfl 10411 39555 3.80
EjipCmp 15297 21965 1.44

Table 6.4: Measured and estimated WCET with result in clock cycles

for the aggregation of the five tasks.
The configuration of JOP for the evaluation is with a 4 KB method cache configured for

16 blocks. The memory access times are 2 cycles for a read and 3 cycles for a write.

6.3.2 Analysis and Measurements

Table 6.4 shows the measured execution time and the analyzed WCET. The last column
gives an idea of the pessimism of the WCET analysis. It has to be noted (again) that we
actually cannot guarantee to measure the real WCET. If we could measure the WCET, we
would not need to perform WCET analysis at all. The WCET analysis result of a method
is defined as follows: WCA reports the WCET of the executable code within a method

6.3 EVALUATION 125

including the return statement. The invoke of the to-be-analyzed method is not part of the
analysis. With respect to cache analysis the return from the method does not include any
miss time – invoke and return miss time are considered as part of the invoke instruction. For
the measurement we use a cycle counter and take a time stamp before the first instruction
of the method and after the return from the method.

For very simple programs, such as crc, robot, and SVM the pessimism is quite low. The
same is true for several of the benchmarks from the Mälardalen benchmark suit. Some
are almost cycle accurate. The small overestimation of, e.g., 5 cycles for BinarySearch,
results from our measurement methodology and the definition of what the WCET of a
single method is. To avoid instrumenting all benchmarks with time stamp code we wrap
the benchmarks in a method measure(), vary which benchmark is invoked in measure(), and
analyze this method. Therefore, measure() contains an invoke and the control is return to
measure(). In the case of small benchmarks the method cache still contains measure() on
the return from the benchmark method. However, WCA does not include measure() as a
possible method for the static method cache analysis (it is performed on a invoke and no
invoke of measure() is seen by WCA). Therefore, the return from the benchmark method is
classified as miss.

The pessimism of most of the other benchmarks, including the two applications Lift and
EjipCmp, are in an acceptable range below a factor of 2. Three benchmarks, JanneCom-
plex, QuickSort, and Select, stand out with a high pessimism. JanneComplex is an artificial
benchmark with a complex loop dependency of an inner loop and the annotation results in a
conservative estimation. However, it has to be noted that the benchmarks from Mälardalen
are designed to challenge WCET tools. We assume that a safety-critical programmer would
not use QuickSort as a first choice for time-predictable code.

The pessimism of Kfl is quite high. The difference between the measurement, and the
analysis in the Kfl example, results from the fact that our measurement does not cover the
WCET path. We only simulate input values and commands for the mission phase. However,
the main loop of Kfl also handles service functions. Those functions are not part of the
mission phase, but make up the WCET path. If we omit the non-feasible path to the service
routine the WCET drops down to 22875 and the overestimation is 2.2.

The Kfl example show the issue when a real-time application is developed without a
WCET analysis tool available. Getting the feedback from the analysis earlier in the de-
sign phase can help the programmer to adapt to a WCET aware programming style. In
one extreme, this can end up in the single-path programming style [108]. A less radical
approach can use some heuristics for a WCET aware programming style. For instance,
avoiding the service routines in the application main loop.

The results given in Table 6.4 are comparable to the results presented in [134]. Most

126 6 WORST-CASE EXECUTION TIME

benchmarks now take less cycles than in 2006 as the performance of JOP has been ad-
vanced. The exceptions are two benchmarks, LineFollower and Kfl, which now have a higher
WCET. The line-following robot example was rewritten in a more object-oriented way. Fi-
nally, the different number for the Kfl resulted from a bug in the WCA that was corrected
after the publication in 2006.

6.4 Discussion

We found that the approach of a time-predictable processor and static WCET analysis is
a feasible solution for future safety-critical systems. However, there are some remaining
questions that are discussed in the following sections.

6.4.1 On Correctness of WCET Analysis

Safe WCET approximation depends on the correct modeling of the target architecture and
the correct implementation of the analysis tools. During the course of this paper we have
found a bug in the WCA from 2006 and have also found bugs in the low-level timing
description of JOP. However, the open-source approach for the processor and the tools
increases the chance that bugs are found. Furthermore, we have compared the results of the
new implementation of WCA with two independent implementations of WCET analysis
for JOP: The Volta project by Trevor Harmon [57] and the former implementation of WCA
[134]. The results differ only slightly due to different versions of JOP that Volta, used and
a less accurate cache analysis implemented in the second tool. It should be noted that JOP
and the WCA are still considered on-going research prototypes for real-time systems. We
would not (yet) suggest to deploy JOP in the next safety-critical application.

6.4.2 Is JOP the Only Target Architecture?

JOP is the primary low-level target for the WCET analysis tool as it is: (a) a simple proces-
sor, (b) open-source, and (c) the execution timing is well-documented (see Appendix D).
Furthermore, the JOP design is actually the root of a family of Java processors. Flavius
Gruian has built a JOP compatible processor, with a different pipeline organization, with
Bluespec Verilog [50]. The SHAP Java processor [157], although now with a different
pipeline structure and hardware assisted garbage collection, also has its roots in the JOP
design. We assume that these processors are also WCET analysis friendly. The question
remains how easy the analysis can be adapted for other Java processors.

6.4 DISCUSSION 127

The same analysis is not possible for other Java processors. Either the information on the
bytecode execution time is missing9 or some processor features (e.g., the high variability
of the latency for a trap in picoJava) would result in very conservative WCET estimates.
Another example that prohibits exact analysis is the mechanism to automatically fill and
spill the stack cache in picoJava [145, 146]. The time when the memory (cache) is occupied
by this spill/fill action depends on a long instruction history. Also the fill level of the 16-
byte-deep prefetch buffer, which is needed for instruction folding, depends on the execution
history. All these automatic buffering features have to be modeled quite conservatively. A
pragmatic solution is to assume empty buffers at the start of a basic block. As basic blocks
are quite short, most of the buffering/prefetching does not help to lower the WCET.

Only for the Cjip processor is the execution time well documented [69]. However, the
measured execution time of some bytecodes is higher than the documented values [123].
Therefore the documentation is not complete to provide a safe processor model of the Cjip
for WCET analysis.

The real-time Java processor jamuth [149] is a possible target for the WCA. There is
on-going work with Sascha Uhrig to integrate the timing model of jamuth into the WCA. A
preliminary version of that model has been tested. The analysis tool need to be changed to
model a few pipeline dependencies.

Still, WCET analysis of Java programs on RISC processors with a compiling JVM is a
challenge. With a compiling JVM, the WCET friendly bytecodes are further compiled into
machine code. Information is lost in the second transformation. This is not the case with a
dedicated Java processor such as JOP.

6.4.3 Object-oriented Evaluation Examples

Most of the benchmarks used are written in a rather conservative programming style. The
Mälardalen benchmarks are small kernels that do not stress the cache analysis. We would
like to use more object-oriented real-time examples for the evaluation. Then, we can eval-
uate if object-oriented programming style with dynamic method dispatch and rather small
methods is a feasible option for future real-time systems.

6.4.4 WCET Analysis for Chip-multiprocessors

Chip-multiprocessors (CMP) are now considered as the future technology for high-
performance embedded systems. Christof Pitter has built a CMP version of JOP that
includes a time-predictable memory arbiter [97]. During the course of his thesis he has

9We tried hard to get this information for the aJile processor.

128 6 WORST-CASE EXECUTION TIME

adapted the low-level timing calculation of the WCET tool to integrate the memory access
times with the time-sliced arbiter. Therefore, it is possible to derive WCET values for tasks
running on a CMP system with shared main memory. To best of our knowledge, this is the
first time-predictable CMP system where WCET analysis is available.

The first estimation of bytecode timings for the CMP system considers only individual
bytecodes. However, with variable memory access times due to memory arbitration this
estimate is conservative. An extension to basic block analysis and using model checking
to analyze possible interactions between the memory arbitration process and the program
execution should result in tighter WCET estimates.

The JOP CMP system showed the importance of tighter method cache analysis. Com-
pared to the simple approach of the original WCA tool, the new static cache approximation
yielded in 15% tighter WCET estimates for a 8 core CMP system.

6.4.5 Co-Development of Processor Architecture and WCET Analysis

JOP is an example of a time-predictable computer architecture. An extension of this ap-
proach to RISC and VLIW based processors is presented in [132]. We consider a co-
development of time-predictable computer architecture and WCET analysis for the archi-
tectural features as an ideal approach for future real-time systems. A new time-predictable
feature (e.g., a data cache organization) can only be evaluated when the analysis is avail-
able. The analysis, and what can be analyzed within practical execution time and memory
demands, shall guide the computer architect of future time-predictable processors.

6.4.6 Further Paths to Explore

The combination of a bytecode based optimizer (a prototype is available as part of the JOP
sources) with WCET analysis can be applied to minimize the WCET path. The optimizer
can be guided by the results from the application. This iterative flow can be used to mini-
mize the worst-case path instead of the average-case path in the application.

6.5 Summary

In this chapter, the WCET analysis tool based on the ILP approach has been presented. The
architecture of the Java processor greatly simplifies the low-level part of WCET analysis, as
it can be performed at the Java bytecode level. An instruction cache, named method cache,
stores complete methods, and is integrated into the WCET analysis tool.

6.6 FURTHER READING 129

The WCET analysis tool, with the help of DFA detected loop bounds, provides WCET
values for the schedulability analysis. Complex loops still need to be annotated in the
source. A receiver type analysis helps to tighten the WCET of object-oriented programs.
We have also integrated the method cache into the analysis. The cache can be analyzed at
the method level and does not need the full program CFG. Besides the calculation of the
WCET, the tool provides user feedback by generating bytecode listings with timing infor-
mation and a graphical representation of the CFG with timing and frequency information.
This representation of the WCET path through the code can guide the developer to write
WCET aware real-time code.

The experiments with the WCET analyzer tool have demonstrated that we have achieved
our goal: JOP is a simple target for WCET analysis. Most bytecodes have a single execution
time (WCET = BCET), and the WCET of a task (the analysis at the bytecode level) depends
only on the control flow. No pipeline or data dependencies complicate the low-level part of
WCET analysis.

6.6 Further Reading

There are a lot of papers available on WCET analysis and modeling of low-level processor
features. This section gives an overview of the related work for our WCET analyzer.

6.6.1 WCET Analysis

Shaw presents in [139] timing schemas to calculate minimum and maximum execution
time for common language constructs. The rules allow to collapse the CFG of a program
until a final single value represents the WCET. However, with this approach it is not straight
forward to incorporate global low-level attributes, such as pipelines or caches. The resulting
bounds are not tight enough to be practically useful.

Computing the WCET with an integer linear programming (ILP) solver is proposed in
[110] and [79]. The approach is named graph-based and implicit path enumeration respec-
tively. We base our WCET analyzer on the ideas from these two groups.

The WCET is calculated by transforming the calculation to an integer linear program-
ming problem. Each basic block10 is represented by an edge ei in the T-graph (timing
graph) with the weight of the execution time of the basic block. Vertices vi in the graph
represent the split and join points in the control flow. Furthermore, each edge is also as-
signed an execution frequency fi. The constraints resulting from the T-graph and additional

10A basic block is a sequence of instructions without any jumps or jump targets within this sequence.

130 6 WORST-CASE EXECUTION TIME

functional constraints (e.g. loop bounds) are solved by an ILP solver. The T-graph is similar
to a CFG, where the execution time is modeled in the vertices. The motivation to model the
execution time in the edges results from the observation that most basic blocks end with a
conditional branch. A conditional branch usually has a different execution time, depending
on whether it is taken or not. This difference is represented by two edges with different
weights.

In [79] a similar approach with ILP is proposed. However, they use the CFG as the basis
to build the ILP problem. The approach is extended to model the instruction cache with
cache conflict graphs. The evaluation with an Intel i960 processor shows tight results for
small programs [80]. However, the conservative modeling of the register window (over-
flow/underflow on each function call/return) adds 50 cycles to each call and return. This
observation is another argument for a WCET aware processor architecture.

WCET analysis of object-oriented languages is presented by Gustafsson [51]. Gustafsson
uses abstract interpretation for automatic flow analysis to find loop bounds and in feasible
paths. The work is extended to a modular WCET tool with instruction cache analysis and
pipeline analysis [43]. A summary of new complexities to WCET analysis is given in [52].

Cache memories for the instructions and data are classic examples of the paradigm: Make
the common case fast. Avoiding or ignoring this feature in real-time systems, due to its
unpredictable behavior, results in a very pessimistic WCET bound. Plenty of effort has gone
into research to integrate the instruction cache into the timing analysis of tasks [11, 60],
the cache’s influence on task preemption [78, 31], and integration of the cache analysis
with the pipeline analysis [59]. Heckmann et. al described the influence of different cache
architectures on WCET analysis [61].

An overview of WCET related research is presented in [107] and [152].

6.6.2 WCET Analysis for Java

WCET analysis at the bytecode level became a research topic, at the time Java was consid-
ered for future real-time systems. WCET analysis at the bytecode level was first considered
in [23]. It is argued that the well formed intermediate representation of a program in Java
bytecode, which can also be generated from compilers for other languages (e.g. Ada), is
well suited for a portable WCET analysis tool. In that paper, annotations for Java and Ada
are presented to guide WCET analysis at bytecode level. The work is extended to address
the machine-dependent low-level timing analysis [21]. Worst-case execution frequencies
of Java bytecodes are introduced for a machine independent timing information. Pipeline
effects (on the target machine) across bytecode boundaries are modeled by a gain time for
bytecode pairs.

6.6 FURTHER READING 131

In [106] a portable WCET analysis is proposed. The abstract WCET analysis is per-
formed on the development site and generates abstract WCET information. The concrete
WCET analysis is performed on the target machine by replacing abstract values within the
WCET formulae by the machine dependent concrete values.

In [22], an extension of [23] and [21], an approach how the portable WCET information
can be embedded in the Java class file is given. It is suggested that the final WCET calcula-
tion is performed by the target JVM. The calculation is performed for each method and the
static call tree is traversed by a recursive call of the WCET analyzer.

6.6.3 WCET Analysis for JOP

A strong indication that JOP is a WCET friendly design, are that other real-time analysis
projects use JOP as the primary target platform. The first IPET based WCET analysis
tool that includes the timing model of JOP is presented in [134]. A simplified version of
the method cache, the two block cache, is analyzed for invocations in inner loops. Trevor
Harmon developed a tree-based WCET analyzer for interactive back-annotation of WCET
estimates into the program source [57, 56]. The tool is extended to integrate JOP’s two
block method cache [58]. Model checking is used to analyze the timing and scheduling
properties of a complete application within a single model [24]. However, even with a
simple example, consisting of two periodic and two sporadic tasks, this approach leads to a
very long analysis time. In contrast to that approach our opinion is that a combined WCET
analysis and schedulability analysis is infeasible for non-trivial applications. Therefore,
we stay in the WCET analysis domain, and consider the well established schedulability
analysis as an extra step.

Compared to those three tools, which also target JOP, our presented WCET tool is en-
hanced with: (a) analysis of bytecodes that are implemented in Java; (b) integration of
data-flow analysis for loop bounds and receiver methods; (c) a tighter IPET based method
cache analysis; and (d) an evaluation of model checking for exact modeling of the method
cache.

7 Real-Time Garbage Collection

Automatic memory management or garbage collection greatly simplifies development of
large systems. However, garbage collection is usually not used in real-time systems due to
the unpredictable temporal behavior of current implementations of a garbage collector. In
this chapter we describe a concurrent collector that is scheduled periodically in the same
way as ordinary application threads. We provide an upper bound for the collector period
so that the application threads will never run out of memory. This chapter is based on
following papers: [124, 138, 135].

7.1 Introduction

Garbage Collection (GC) is an essential part of the Java runtime system. GC enables au-
tomatic dynamic memory management which is essential to build large applications. Au-
tomatic memory management frees the programmer from complex and error prone explicit
memory management (malloc and free).

However, garbage collection is considered unsuitable for real-time systems due to the un-
predictable blocking times introduced by the GC work. One solution, used in the Real-Time
Specification for Java (RTSJ) [25], introduces new thread types with program-managed,
scoped memory for dynamic memory requirements. This scoped memory (and static mem-
ory called immortal memory) is not managed by the GC, and strict assignment rules be-
tween different memory areas have to be checked at runtime. This programming model
differs largely from standard Java and is difficult to use [87, 101].

We believe that for the acceptance of Java for real-time systems, the restrictions imposed
by the RTSJ are too strong. To simplify creation of possible large real-time applications,
most of the code should be able to use the GC managed heap. For a collector to be used in
real-time systems two points are essential:

• The GC has to be incremental with a short maximum blocking time that has to be
known

• The GC has to keep up with the garbage generated by the application threads to avoid
out-of-memory stalls

134 7 REAL-TIME GARBAGE COLLECTION

The first point is necessary to limit interference between the GC thread and high-priority
threads. It is also essential to minimize the overhead introduced by read- and write-barriers,
which are necessary for synchronization between the GC thread and the application threads.
The design of a GC within these constraints is the topic of this chapter.

The second issue that has to be considered is scheduling the GC so that the GC collects
enough garbage. The memory demands (static and dynamic) by the application threads
have to be analyzed. These requirements, together with the properties of the GC, result
in scheduling parameters for the GC thread. We will provide a solution to calculate the
maximum period of the GC thread that will collect enough memory in each collector cycle
so we will never run out of memory. The collector cycle depends on the heap size and the
allocation rate of the application threads.

To distinguish between other garbage collectors and a collector for (hard) real-time sys-
tems we define a real-time collector as follows:

A real-time garbage collector provides time predictable automatic memory
management for tasks with a bounded memory allocation rate with minimal
temporal interference to tasks that use only static memory.

The collector presented in this chapter is based on the work by Steele [142], Dijkstra [38]
and Baker [19]. However, the copying collector is changed to perform the copy of an object
concurrently by the collector and not as part of the mutator work. Therefore we name it
concurrent-copy collector.

We will use the terms first introduced by Dijkstra with his On-the-Fly concurrent col-
lector [38]. The application is called the mutator to reinforce that the application changes
(mutates) the object graph while the GC does the collection work. The GC process is simply
called collector. In the following discussion we will use the color scheme of white, gray,
and black objects:

Black indicates that the object and all immediate descendants have been visited by the
collector.

Grey objects have been visited, but the descendants may not have been visited by the col-
lector, or the mutator has changed the object.

White objects are unvisited. At the beginning of a GC cycle all objects are white. At the
end of the tracing, all white objects are garbage.

At the end of a collection cycle all black objects are live (or floating garbage) and all
white objects are garbage.

7.1 INTRODUCTION 135

7.1.1 Incremental Collection

An incremental collector can be realized in two ways: either by doing part of the work on
each allocation of a new object or by running the collector as an independent process. For
a single-threaded application, the first method is simpler as less synchronization between
the application and the collector is necessary. For a multi-threaded environment there is
no advantage by interleaving collector work with object allocation. In this case we need
synchronization between the collector work done by one thread and the manipulation of the
object graph performed by the other mutator thread. Therefore we will consider a concur-
rent solution where the collector runs in its own thread or processor. It is even possible to
realize the collector as dedicated hardware [49].

7.1.2 Conservatism

Incremental collector algorithms are conservative, meaning that objects becoming unreach-
able during collection are not collected by the collector — they are floating garbage. Many
approaches exist to reduce this conservatism in the general case. However, algorithms that
completely avoid floating garbage are impractical. For different conservative collectors the
worst-case bounds are all the same (i.e., all objects that become unreachable during col-
lection remain floating garbage). Therefore the level of conservatism is not an issue for
real-time collectors.

7.1.3 Safety Critical Java

In [137] a profile for safety critical Java (SCJ) is defined. SCJ has two interesting properties
that may simplify the implementation of a real-time collector. Firstly, the split between
initialization and mission phase, and secondly the simplified threading model (which also
mandates that self-blocking operations are illegal in the mission phase). During initializa-
tion of the application a SCJ virtual machine does not have to meet any real-time constraints
(other than possibly a worst case bound on the entire initialization phase). It is perfectly
acceptable to use a non-real-time GC implementation during this phase – even a stop-the-
world GC. As the change from initialization to mission phase is explicit, it is clear when the
virtual machine must initiate real-time collection and which code runs during the mission
phase.

Simplifying the threading model has the following advantage, if the collector thread runs
at a lower priority than all other threads in the system, it is the case that when it runs all
other threads have returned from their calls to run(). This is trivially true due to the priority

136 7 REAL-TIME GARBAGE COLLECTION

preemptive scheduling discipline.1 Any thread that has not returned from its run() method
will preempt the GC until it returns. This has the side effect that the GC will never see a
root in the call stack of another thread. Therefore, the usually atomic operation of scanning
call stacks can be omitted in the mission phase. We will elaborate on this property in
Section 7.3.

7.2 Scheduling of the Collector Thread

The collector work can be scheduled either work based or time based. On a work based
scheduling, as performed in [140], an incremental part of the collector work is performed at
object allocation. This approach sounds quite natural as threads that allocate more objects
have to pay for the collector work. Furthermore, no additional collector thread is necessary.
The main issue with this approach is to determine how much work has to be done on each
allocation – a non trivial question as collection work consists of different phases. A more
subtle question is: Why should a high frequency (and high priority) thread increase its
WCET by performing collector work that does not have to be done at that period? Leaving
the collector work to a thread with a longer period allows higher utilization of the system.

On a time based scheduling of the collector work, the collector runs in its own thread.
Scheduling this thread as a normal real-time thread is quite natural for a hard real-time
system. The question is: which priority to assign to the collector thread? The Metronome
collector [18] uses the highest priority for the collector. Robertz and Henriksson [113] and
Schoeberl [124] argue for the lowest priority. When building hard real-time systems the
answer must take scheduling theory into consideration: the priority is assigned according to
the period, either rate monotonic [83] or more general deadline monotonic [13]. Assuming
that the period of the collector is the longest in the system and the deadline equals the period
the collector gets the lowest priority.

In this section we provide an upper bound for the collector period so that the applica-
tion threads will never run out of memory. The collector period, besides the WCET of
the collector, is the single parameter of the collector that can be incorporated in standard
schedulability analysis.

The following symbols are used in this section: heap size for a mark-compact collector
(HMC) and for a concurrent-copying collector (HCC) containing both semi-spaces, period of
the GC thread (TGC), period of a single mutator thread (TM), period of mutator thread i (Ti)
from a set of threads, and memory amount allocated by a single mutator (a) or by mutator i
(ai) from a set of threads.

1If we would allow blocking in the application threads, we would also need to block the GC thread.

7.2 SCHEDULING OF THE COLLECTOR THREAD 137

l7f6f5f4

after compaction

l7f6f5f4

before compaction

g3g2g1

l5f4

in the middle (marking)

g1 g2 g3

g1 g2 g3 l4

at the begin of the GC cycle

Figure 7.1: Heap usage during a mark-compact collection cycle

We assume that the mutator allocates all memory at the start of the period and the memory
becomes garbage at the end. In other words the memory is live for one period. This is the
worst-case,2 but very common as we can see in the following code fragment.

for (;;) {
Node n = new Node();
work(n);
waitForNextPeriod();

}

The object Node is allocated at the start of the period and n will reference it until the next
period when a new Node is created and assigned to n. In this example we assume that no
reference to Node is stored (inside work) to an object with a longer lifetime.

7.2.1 An Example

We start our discussion with a simple example3 where the collector period is 3 times the
mutator period (TGC = 3TM) and a heap size of 8 objects (8a). We show the heap during
one GC cycle for a mark-compact and a concurrent-copy collector. The following letters

2See Section 7.2.3 for an example where the worst-case lifetime is two periods.
3The relation between the heap size and the mutator/collector proportion is an arbitrary value in this example.

We will provide the exact values in the next sections.

138 7 REAL-TIME GARBAGE COLLECTION

l5f4

f5f6l7f4

g1g2g3f4

in the middle of the cycle

g1g2g3f4

at the end (before flip)

f4 l7 f6 f5

after the flip

to-space

at the begin of the GC cycle

from-space

l4 g3 g2 g1

Figure 7.2: Heap usage during a concurrent-copy collection cycle

are used to show the status of a memory cell (that contains one object from the mutator in
this example) in the heap: gi is garbage from mutator cycle i, l is the live memory, and f is
floating garbage. We assume that all objects that become unreachable during the collection
remain floating garbage.

Figure 7.1 shows the changes in the heap during one collection cycle. At the start there
are three objects (g1, g2, and g3) left over from the last cycle (floating garbage) which are
collected by the current cycle and one live object l4. During the collection the live objects
become unreachable and are now floating garbage (e.g. f4 in the second sub-figure). At the
end of the cycle, just before compacting, we have three garbage cells (g1-g3), three floating
garbage cells (f4- f6) and one live cell l7. Compaction moves the floating garbage and the
live cell to the start of the heap and we end up with four free cells. The floating garbage
will become garbage in the next collection cycle and we start over with the first sub-figure
with three garbage cells and one live cell.

Figure 7.2 shows one collection cycle of the concurrent-copy collector. We have two
memory spaces: the from-space and the to-space. Again we start the collection cycle with
one live cell and three garbage cells left over from the last cycle. Note that the order of the
cells is different from the previous example. New cells are allocated in the to-space from
the top of the heap, whereas moved cells are allocated from the bottom of the heap. The
second sub-figure shows a snapshot of the heap during the collection: formerly live object
l4 is already floating garbage f4 and copied into to-space. A new cell l5 is allocated in the

7.2 SCHEDULING OF THE COLLECTOR THREAD 139

to-space. Before the flip of the two semi-spaces the from-space contains the three garbage
cells (g1-g3) and the to-space the three floating garbage cells (f4- f6) and one live cell l7.
The last sub-figure shows the heap after the flip: The from-space contains the three floating
cells which will be garbage cells in the next cycle and the one live cell. The to-space is now
empty.

From this example we see that the necessary heap size for a mark-compact collector is
similar to the heap size for a copying collector. We also see that the compacting collector
has to move more cells (all floating garbage cells and the live cell) than the copying collector
(just the one cell that is live at the beginning of the collection).

7.2.2 Minimum Heap Size

In this section we show the memory bounds for a mark-compact collector with a single heap
memory and a concurrent-copying collector with the two spaces from-space and to-space.

Mark-Compact

For the mark-compact collector, the heap HMC can be divided into allocated memory M and
free memory F

HMC = M +F = G+G+L+F (7.1)

where G is garbage at the start of the collector cycle that will be reclaimed by the collector.
Objects that become unreachable during the collection cycle and will not be reclaimed are
floating garbage G. These objects will be detected in the next collection cycle. We assume
the worst case that all objects that die during the collection cycle will not be detected and
therefore are floating garbage. L denotes all live,i.e. reachable, objects. F is the remaining
free space.

We have to show that we will never run out of memory during a collection cycle (F ≥ 0).
The amount of allocated memory M has to be less than or equal to the heap size HMC

HMC ≥M = G+G+L (7.2)

In the following proof the superscript n denotes the collection cycle. The subscript letters
S and E denote the value at the start and the end of the cycle, respectively.

Lemma 1. For a collection cycle the amount of allocated memory M is bounded by the
maximum live data Lmax at the start of the collection cycle and two times Amax, the maximum
data allocated by the mutator during the collection cycle.

140 7 REAL-TIME GARBAGE COLLECTION

M ≤ Lmax +2Amax (7.3)

Proof. During a collection cycle G remains constant. All live data that becomes unreach-
able will be floating garbage. Floating garbage GE at the end of cycle n will be detected (as
garbage G) in cycle n+1.

Gn+1 = Gn
E (7.4)

The mutator allocates A memory and transforms part of this memory and part of the live
data at the start LS to floating garbage GE at the end of the cycle. LE is the data that is still
reachable at the end of the cycle.

LS +A = LE +GE (7.5)

with A≤ Amax and LS ≤ Lmax. A new collection-cycle start immediately follows the end of
the former cycle. Therefore the live data remains unchanged.

Ln+1
S = Ln

E (7.6)

We will show that (7.3) is true for cycle 1. At the start of the first cycle we have no
garbage (G = 0) and no live data (LS = 0). The heap contains only free memory.

M1
S = 0 (7.7)

During the collection cycle the mutator allocates A1 memory. Part of this memory will be
live at the end and the remaining will be floating garbage.

A1 = L1
E +G1

E (7.8)

Therefore at the end of the first cycle

M1
E = L1

E +G1
E

M1 = A1 (7.9)

As A1 ≤ Amax (7.3) is fulfilled for cycle 1.
Under the assumption that (7.3) is true for cycle n, we have to show that (7.3) holds for

cycle n+1.

Mn+1 ≤ Lmax +2Amax (7.10)

7.2 SCHEDULING OF THE COLLECTOR THREAD 141

Mn = Gn +Gn
E +Ln

E (7.11)

Mn+1 = Gn+1 +Gn+1
E +Ln+1

E (7.12)

= Gn
E +Ln+1

S +An+1 apply (7.4) and (7.5)

= Gn
E +Ln

E +An+1 apply (7.6)

= Ln
S +An +An+1 apply (7.5) (7.13)

As LS ≤ Lmax, An ≤ Amax and An+1 ≤ Amax

Mn+1 ≤ Lmax +2Amax (7.14)

Concurrent-Copy

In the following section we will show the memory bounds for a concurrent-copying col-
lector with the two spaces from-space and to-space. We will use the same symbols as in
Section 7.2.2 and denote the maximum allocated memory in the from-space as MFrom and
the maximum allocated memory in the to-space as MTo.

For a copying-collector the heap HCC is divided in two equal sized spaces HFrom and HTo.
The amount of allocated memory M in each semi-space has to be less than or equal to HCC

2

HCC = HFrom +HTo ≥ 2M (7.15)

Lemma 2. For a collection cycle, the amount of allocated memory M in each semi-space
is bounded by the maximum live data Lmax at the start of the collection cycle and Amax, the
maximum data allocated by the mutator during the collection cycle.

M ≤ Lmax +Amax (7.16)

Proof. Floating garbage at the end of cycle n will be detectable garbage in cycle n+1

Gn+1 = Gn
E (7.17)

Live data at the end of cycle n will be the live data at the start of cycle n+1

Ln+1
S = Ln

E (7.18)

142 7 REAL-TIME GARBAGE COLLECTION

The allocated memory MFrom in the from-space contains garbage G and the live data at
the start Ls.

MFrom = G+LS (7.19)

All new objects are allocated in the to-space. Therefore the memory requirement for the
from-space does not change during the collection cycle. All garbage G remains in the from-
space and the to-space only contains floating garbage and live data.

MTo = G+L (7.20)

At the start of the collection cycle, the to-space is completely empty.

MTo S = 0 (7.21)

During the collection cycle all live data is copied into the to-space and new objects are
allocated in the to-space.

MTo E = LS +A (7.22)

At the end of the collector cycle, the live data from the start LS and new allocated data A
stays either live at the end LE or becomes floating garbage GE .

LS +A = LE +GE (7.23)

For the first collection cycle there is no garbage (G = 0) and no live data at the start
(LS = 0), i.e. the from-space is empty (M1

From = 0). The to-space will only contain all
allocated data A1, with A1 ≤ Amax, and therefore (7.16) is true for cycle 1.

Under the assumption that (7.16) is true for cycle n, we have to show that (7.16) holds
for cycle n+1.

Mn+1
From ≤ Lmax +Amax

Mn+1
To ≤ Lmax +Amax (7.24)

At the start of a collection cycle, the spaces are flipped and the new to-space is cleared.

Hn+1
From⇐ Hn

To

Hn+1
To ⇐ /0 (7.25)

7.2 SCHEDULING OF THE COLLECTOR THREAD 143

The from-space:

Mn
From = Gn +Ln

S (7.26)

Mn+1
From = Gn+1 +Ln+1

S (7.27)

= Gn
E +Ln

E

= Ln
S +An (7.28)

As LS ≤ Lmax and An ≤ Amax

Mn+1
From ≤ Lmax +Amax (7.29)

The to-space:

Mn
To = Gn

E +Ln
E (7.30)

Mn+1
To = Gn+1

E +Ln+1
E (7.31)

= Ln+1
S +An+1

= Ln
E +An+1 (7.32)

As LE ≤ Lmax and An+1 ≤ Amax

Mn+1
To ≤ Lmax +Amax (7.33)

From this result we can see that the dynamic memory consumption for a mark-compact
collector is similar to a concurrent-copy collector. This is contrary to the common belief
that a copy collector needs the double amount of memory.

We have seen that the double-memory argument against a copying collector does not
hold for an incremental real-time collector. We need double the memory of the allocated
data during a collection cycle in either case. The advantage of the copying collector over a
compacting one is that newly allocated data are placed in the to-space and does not need to
be copied. The compacting collector moves all newly created data (that is mostly floating
garbage) at the compaction phase.

7.2.3 Garbage Collection Period

GC work is inherently periodic. After finishing one round of collection the GC starts over.
The important question is which is the maximum period the GC can be run so that the

144 7 REAL-TIME GARBAGE COLLECTION

application will never run out of memory. Scheduling the GC at a shorter period does not
hurt but decreases utilization.

In the following, we derive the maximum collector period that guarantees that we will
not run out of memory. The maximum period TGC of the collector depends on Lmax and
Amax for which safe estimates are needed.

We assume that the mutator allocates all memory at the start of the period and the memory
becomes garbage at the end. In other words the memory is live for one period. This is the
worst case, but very common.

In this section the upper bound of the period for the collector thread is given for n inde-
pendent mutator threads.

Theorem 1. For “n” mutator threads with period Ti where each thread allocates ai memory
each period, the maximum collector period TGC that guarantees that we will not run out of
memory is

TGC ≤
HMC−3∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.34)

TGC ≤
HCC−4∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.35)

Proof. For n mutator threads with periods Ti and allocations ai during each period the values
for Lmax and Amax are

Lmax =
n

∑
i=1

ai (7.36)

Amax =
n

∑
i=1

⌈
TGC

Ti

⌉
ai (7.37)

The ceiling function for Amax covers the individual worst cases for the thread schedule and
cannot be solved analytically. Therefore we use a conservative estimation A

′
max instead of

Amax.

A
′
max =

n

∑
i=1

(
TGC

Ti
+1
)

ai ≥
n

∑
i=1

⌈
TGC

Ti

⌉
ai (7.38)

From (7.2) and (7.3) we get the minimum heap size for a mark-compact collector

HMC ≥ Lmax +2Amax

≥
n

∑
i=1

ai +2
n

∑
i=1

⌈
TGC

Ti

⌉
ai (7.39)

7.2 SCHEDULING OF THE COLLECTOR THREAD 145

For a given heap size HMC we get the conservative upper bound of the maximum collector
period TGC

4

2A
′
max ≤ HMC−Lmax

2
n

∑
i=1

(
TGC

Ti
+1
)

ai ≤ HMC−Lmax (7.40)

TGC ≤
HMC−Lmax−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.41)

⇒ TGC ≤
HMC−3∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.42)

Equations (7.15) and (7.16) result in the minimum heap size HCC, containing both semi-
spaces, for the concurrent-copy collector

HCC ≥ 2Lmax +2Amax

≥ 2
n

∑
i=1

ai +2
n

∑
i=1

⌈
TGC

Ti

⌉
ai (7.43)

For a given heap size HCC we get the conservative upper bound of the maximum collector
period TGC

2A
′
max ≤ HCC−2Lmax

2
n

∑
i=1

(
TGC

Ti
+1
)

ai ≤ HCC−2Lmax (7.44)

TGC ≤
HCC−2Lmax−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.45)

⇒ TGC ≤
HCC−4∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.46)

4It has to be noted that this is a conservative value for the maximum collector period TGC. The maximum
value TGCmax that fulfills (7.39) is in the interval(

HMC−3∑
n
i=1 ai

2∑
n
i=1

ai
Ti

,
HMC−∑

n
i=1 ai

2∑
n
i=1

ai
Ti

)
and can be found by an iterative search.

146 7 REAL-TIME GARBAGE COLLECTION

Producer/Consumer Threads

So far we have only considered threads that do not share objects for communication. This
execution model is even more restrictive than the RTSJ scoped memories that can be shared
between threads. In this section we discuss how our GC scheduling can be extended to
account for threads that share objects.

Object sharing is usually done by a producer and a consumer thread. I.e., one thread
allocates the objects and stores references to those objects in a way that they can be accessed
by the other thread. This other thread, the consumer, is in charge to free those objects after
use.

An example of this sharing is a device driver thread that periodically collects data and
puts them into a list for further processing. The consumer thread, with a longer period, takes
all available data from the list at the start of the period, processes the data, and removes them
from the list. During the data processing, new data can be added by the producer. Note that
in this case the list will probably never be completely empty. This typical case cannot be
implemented by an RTSJ shared scoped memory. There would be no point in the execution
where the shared memory will be empty and can get recycled.

The question now is how much data will be alive in the worst case. We denote Tp as the
period of the producer thread τp and Tc as the period of the consumer thread τc. τp allocates
ap memory each period. During one period of the consumer τc the producer τp allocates⌈

Tc

Tp

⌉
ap

memory. The worst case is that τc takes over all objects at the start of the period and frees
them at the end. Therefore the maximum amount of live data for this producer/consumer
combination is ⌈

2Tc

Tp

⌉
ap

To incorporate this extended lifetime of objects we introduce a lifetime factor li which is

li =

{
1 : for normal threads⌈

2Tc
Ti

⌉
: for producer τi and associated consumer τc

(7.47)

and extend Lmax from (7.36) to

Lmax =
n

∑
i=1

aili (7.48)

7.2 SCHEDULING OF THE COLLECTOR THREAD 147

The maximum amount of memory Amax that is allocated during one collection cycle is not
changed due to the freeing in a different thread and therefore remains unchanged.

The resulting equations for the maximum collector period are

TGC ≤
HMC−∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.49)

and

TGC ≤
HCC−2∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(7.50)

Static Objects

The discussion about the collector cycle time assumes that all live data is produced by
the periodic application threads and the maximum lifetime is one period. However, in the
general case we have also live data that is allocated in the initialization phase of the real-
time application and stays alive until the application ends. We incorporate this value by
including this static live memory Ls in Lmax

Lmax = Ls +
n

∑
i=1

aili (7.51)

A mark-compact collector moves all static data to the bottom of the heap in the first
and second5 collection cycle after the allocation. It does not have to compact these data
during the following collection cycles in the mission phase. The concurrent-copy collector
moves these static data in each collection cycle. Furthermore, the memory demand for the
concurrent copy is increased by the double amount of the static data (compared to the single
amount in the mark-compact collector)6.

The SCJ application model with an initialization and a mission phase can reduce the
amount of live data that needs to be copied (see Section 7.3).

Object Lifetime

Listing 7.1 shows an example of a periodic thread that allocates an object in the main loop
and the resulting bytecodes.

5A second cycle is necessary as this static data can get intermixed by floating garbage from the first collector
cycle.

6Or the collector period gets shortened.

148 7 REAL-TIME GARBAGE COLLECTION

public void run() {

for (;;) {
Node n = new Node();
work(n);
waitForNextPeriod();

}
}

public void run ();
Code:
0: new #20; //class Node
3: dup
4: invokespecial #22; // ”< init >”:()V
7: astore 1
8: aload 1
9: invokestatic #26; // work:(Node)V
12: aload 0
13: invokevirtual #30; // wFNP:()Z
16: pop
17: goto 0

Listing 7.1: Example periodic thread and the corresponding Java bytecodes

There is a time between allocation of Node and the assignment to n where a reference to
the former Node (from the former cycle) and the new Node (on the operand stack) is live.
To handle this issue we can either change the values of Lmax and Amax to accommodate
this additional object or change the top-level code of the periodic work to explicitly assign
a null-pointer to the local variable n as it can be seen in Listing 7.4 from the evaluation
section. Programming against the SCJ profile avoids this issues (see Section 7.3).

However, this null pointer assignment is only necessary at the top-level method that in-
vokes waitForNextPeriod and is therefore not as complex as explicit freeing of objects. Ob-
jects that are created inside work in our example do not need to be freed in this way as the
reference to the object gets lost on return from the method.

7.3 SCJ SIMPLIFICATIONS 149

7.3 SCJ Simplifications

The restrictions of the computational model for safety critical Java allow for optimizations
of the GC. We can avoid atomic stack scanning for roots and do not have to deal with exact
pointer finding. Static objects, which would belong into immortal memory in the RTSJ, can
be detected by a special GC cycle at transition to the mission phase. We can treat those
objects specially and do not need to collect them during the mission phase. This static
memory area is automatically sized.

It has to be noted that our proposal is extending JSR 302. Clearly, adding RTGC to SCJ
reduces the importance of scopes and would likely relegate them to the small subset of
applications where fast deallocation is crucial. Discussing the interaction between scoped
memory and RTGC is beyond the scope of this chapter.

7.3.1 Simple Root Scanning

Thread stack scanning is usually performed atomically. Scanning of the thread stacks with
a snapshot-at-beginning write barrier [156] allows optimization of the write barriers to con-
sider only field access (putfield and putstatic) and array access. Reference manipulation in
locals and on the operand stack can be ignored for a write barrier. However, this opti-
mization comes at the cost of a possible large blocking time due to the atomicity of stack
scanning.

A subtle difference between the RTSJ and the SCJ definition is the possibility to use local
variables within run() (see example in Figure 5.6). Although handy for the programmer
to preserve state information in locals,7 GC implementation can greatly benefit from not
having reference values on the thread stack when the thread suspenses execution.

If the GC thread has the lowest priority and there is no blocking library function that can
suspend a real-time thread, then the GC thread will only run when all real-time threads are
waiting for their next period – and this waiting is performed after the return from the run()
method. In that case the other thread stacks are completely empty. We do not need to scan
them for roots as the only roots are the references in static (class) variables.

For a real-time GC root scanning has to be exact. With conservative stack scanning,
where a primitive value is treated as a pointer, possible large data structures can be kept
alive artificially. To implement exact stack scanning we need the information of the stack
layout for each possible GC preemption point. For a high-priority GC this point can be
at each bytecode (or at each machine instruction for compiling Java). The auxiliary data

7Using multiple wFNP() invocations for local mode changes can also come handy. The author has used this
fact heavily in the implementation of a modem/PPP protocol stack.

150 7 REAL-TIME GARBAGE COLLECTION

structure to capture the stack layout (and information which machine register will hold a
reference for compiled Java) can get quite large [92] or require additional effort to compute.

With a low-priority GC and the RTSJ model of periodic thread coding with wFNP() the
number of GC preemption points is decreased dramatically. When the GC runs all threads
will be in wFNP(). Only the stack information for those places in the code have to be
available. It is also assumed that wFNP() is not invoked very deep in the call hierarchy.
Therefore, the stack high will be low and the resulting blocking time short.

As mentioned before, the SCJ style periodic thread model results in an empty stack at
GC runtime. As a consequence we do not have to deal with exact stack scanning and need
no additional information about the stack layout.

7.3.2 Static Memory

A SCJ copying collector will perform best when all live data is produced by periodic threads
and the maximum lifetime of a newly allocated object is one period. However, some data
structures allocated in the initialization phase stay alive for the whole application lifetime.
In an RTSJ application this data would be allocated in immortal memory. With a real-time
GC there is no notion of immortal memory, instead we will use the term static memory.
Without special treatment, a copying collector will move this data at each GC cycle. Fur-
thermore, the memory demand for the collector increases by the amount of the static data.

As those static objects (mostly) live forever, we propose a solution similar to the im-
mortal memory of the RTSJ. All data allocated during the initialization phase (where no
application threads are scheduled) is considered potentially static. As part of the transition
to the mission phase a special collection cycle in a stop-the-world fashion is performed.
Objects that are still alive after this cycle are assumed to live forever and make up the static
memory area. The remaining memory is used for the garbage collected heap.

This static memory will still be scanned by the collector to find references into the heap
but it is not collected. The main differences between our static memory and the immortal
memory of the RTSJ are:

This static live data will still be scanned by the collector to find references into the heap
but it is not collected. The main differences between our immortal memory and the memory
areas of the RTSJ are:

• The choice of allocation context is implicit. There is no need to specify where an
object must be allocated. We do not have to state explicitly which data belongs to the
application life-time data. This information is implicitly gathered by the start-mission
transition.

7.4 IMPLEMENTATION 151

• References from the static memory to the garbage collected heap are allowed contrary
to the fact in the RTSJ that references to scoped memories, that have to be used
for dynamic memory management without a GC, are not allowed from immortal
memory.

The second fact greatly simplifies communication between threads. For a typical produc-
er/consumer configuration the container for the shared data is allocated in immortal memory
and the actual data in the garbage collected heap. With this immortal memory solution the
actual Lmax only contains allocated memory from the periodic threads.

7.4 Implementation

The collector for JOP is an incremental collector [124, 138] based on the copy collector
by Cheney [32] and the incremental version by Baker [19]. To avoid the expensive read
barrier in Baker’s collector all object copies are performed concurrently by the collector.
The collector is concurrent and resembles the collectors presented by Steele [142] and Di-
jkstra et al. [38]. Therefore we call it the concurrent-copy collector.

The collector and the mutator are synchronized by two barriers. A Brooks-style [29]
forwarding directs the access to the object either into tospace or fromspace. The forward-
ing pointer is kept in a separate handle area as proposed in [89]. The separate handle area
reduces the space overheads as only one pointer is needed for both object copies. Further-
more, the indirection pointer does not need to be copied. The handle also contains other
object related data, such as type information, and the mark list. The objects in the heap only
contain the fields and no object header.

The second synchronization barrier is a snapshot-at-beginning write-barrier [156]. A
snapshot-at-beginning write-barrier synchronizes the mutator with the collector on a refer-
ence store into a static field, an object field, or an array.

The whole collector, the new operation, and the write barriers are implemented in Java
(with the help of native functions for direct memory access). The object copy operation
is implemented in hardware and can be interrupted by mutator threads after each word
copied [135]. The copy unit redirects the access to the object under copy, depending on the
accessed field, either to the original or the new version of the object.

Although we show the implementation on a Java processor, the GC is not JOP specific
and can also be implemented on a conventional processor.

152 7 REAL-TIME GARBAGE COLLECTION

length

wh/gr

Array

handle

handle

mtab/len

white

0

mtab

black

handle

0

mtab/len

white

Object

reference

use list free list

handle

From Space To Space

Handle Area

reference

Figure 7.3: Heap layout with the handle area

7.4.1 Heap Layout

Figure 7.3 shows a symbolic representation of the heap layout with the handle area and
two semi-spaces, fromspace and tospace. Not shown in this figure is the memory region
for runtime constants, such as class information or string constants. This memory region,
although logically part of the heap, is neither scanned, nor copied by the GC. This constant
area contains its own handles and all references into this area are ignored by the GC.

To simplify object move by the collector, all objects are accessed with one indirection,
called the handle. The handle also contains auxiliary object data structures, such as a pointer
to the method table or the array length. Instead of Baker’s read barrier we have an additional
mark stack which is a threaded list within the handle structure. An additional field (as shown
in Figure 7.3) in the handle structure is used for a free list and a use list of handles.

The indirection through a handle, although a very light-weight read barrier, is usually
still considered as a high overhead. Metronome [18] uses a forwarding pointer as part of
the object and performs forwarding eagerly. Once the pointer is forwarded, subsequent uses
of the reference can be performed on the direct pointer until a GC preemption point. This
optimization is performed by the compiler.

7.4 IMPLEMENTATION 153

JOP uses a hardware based optimization for this indirection [125]. The indirection is
unconditionally performed in the memory access unit. Furthermore, null pointer checks
and array bounds checks are done in parallel to this indirection.

There are two additional benefits from an explicit handle area instead of a forwarding
pointer: (a) access to the method table or array size needs no indirection, and (b) the for-
warding pointer and the auxiliary data structures do not need to be copied by the GC.

The fixed handle area is not subject to fragmentation as all handles have the same size
and are recycled at a sweep phase with a simple free list. However, the reserved space has
to be sized (or the GC period adapted) for the maximum number of objects that are live or
are floating garbage.

7.4.2 The Collector

The collector can operate in two modes: (1) as stop-the-world collector triggered on al-
location when the heap is full, or (2) as concurrent real-time collector running in its own
thread.

The real-time collector is scheduled periodically at the lowest priority and within each
period it performs the following steps:

Flip An atomic flip exchanges the roles of tospace and fromspace.

Mark roots All static references are pushed onto the mark stack. Only a single push oper-
ation needs to be atomic. As the thread stacks are empty we do not need an atomic
scan of thread stacks.

Mark and copy An object is popped from the mark stack, all referenced objects, which
are still white, are pushed on the mark stack, the object is copied to tospace and the
handle pointer is updated.

Sweep handles All handles in the use list are checked if they still point into tospace (black
objects) or can be added to the handle free list.

Clear fromspace At the end of the collector work the fromspace that contains only white
objects is initialized with zero. Objects allocated in that space (after the next flip) are
already initialized and allocation can be performed in constant time.

To reduce blocking time, a hardware unit performs copies of objects and arrays in an inter-
ruptible fashion, and records the copy position on an interrupt. On an object or array access
the hardware knows whether the access should go to the already copied part in the tospace

154 7 REAL-TIME GARBAGE COLLECTION

or in the not yet copied part in the fromspace. It has to be noted that splitting larger arrays
into smaller chunks, as done in Metronome [18] and in the GC for the JamaicaVM [140],
is a software option to reduce the blocking time.

The collector has two modes of operation: one for the initialization phase and one for the
mission phase. At the initialization phase it operates in a stop-the-world fashion and gets
invoked when a memory request cannot be satisfied. In this mode the collector scans the
stack of the single thread conservatively. It has to be noted that each reference points into
the handle area and not to an arbitrary position in the heap. This information is considered
by the GC to distinguish pointers from primitives. Therefore the chance to keep an object
artificially alive is low.

As part of the mission start one stop-the-world cycle is performed to clean up the heap
from garbage generated at initialization. From that point on the GC runs in concurrent mode
in its own thread and omits scanning of the thread stacks.

Implementation Code Snippets

This sections shows the important code fragments of the implementation. As can be seen,
the implementation is quite short.

Flip involves manipulation of a few pointers and changes the meaning of black (toSpace)
and white.

synchronized (mutex) {
useA = !useA;
if (useA) {

copyPtr = heapStartA;
fromSpace = heapStartB;
toSpace = heapStartA;

} else {
copyPtr = heapStartB;
fromSpace = heapStartA;
toSpace = heapStartB;

}
allocPtr = copyPtr+semi size;

}

Root Marking When the GC runs in concurrent mode only the static reference fields form
the root set and are scanned. The stop-the-world mode of the GC also scans all stacks from
all threads.

7.4 IMPLEMENTATION 155

int addr = Native.rdMem(addrStaticRefs);
int cnt = Native.rdMem(addrStaticRefs+1);
for (i=0; i<cnt; ++i) {

push(Native.rdMem(addr+i));
}

Push All gray objects are pushed on a gray stack. The gray stack is a list threaded within
the handle structure.

if (Native.rdMem(ref+OFF GREY)!=0) {
return ;

}
if (Native.rdMem(ref+OFF GREY)==0) {

// pointer to former gray list head
Native.wrMem(grayList, ref+OFF GREY);
grayList = ref ;

}

Mark and Copy The following code snippet shows the central GC loop.

for (;;) {

// pop one object from the gray list
synchronized (mutex) {

ref = grayList ;
if (ref==GREY END) {

break;
}
grayList = Native.rdMem(ref+OFF GREY);
// mark as not in list
Native.wrMem(0, ref+OFF GREY);

}

// push all childs
// get pointer to object
int addr = Native.rdMem(ref);
int flags = Native.rdMem(ref+OFF TYPE);
if (flags==IS REFARR) {

// is an array of references
int size = Native.rdMem(ref+OFF MTAB ALEN);
for (i=0; i<size; ++i) {

156 7 REAL-TIME GARBAGE COLLECTION

push(Native.rdMem(addr+i));
}

} else if (flags==IS OBJ){
// its a plain object
// get pointer to method table
flags = Native.rdMem(ref+OFF MTAB ALEN);
// get real flags
flags = Native.rdMem(flags+MTAB2GC INFO);
for (i=0; flags !=0; ++i) {

if ((flags&1)!=0) {
push(Native.rdMem(addr+i));

}
flags >>>= 1;

}
}

// now copy it − color it BLACK
int size = Native.rdMem(ref+OFF SIZE);
synchronized (mutex) {

// update object pointer to the new location
Native.wrMem(copyPtr, ref+OFF PTR);
// set it BLACK
Native.wrMem(toSpace, ref+OFF SPACE);
// copy it
for (i=0; i<size; ++i) {

Native.wrMem(Native.rdMem(addr+i), copyPtr+i);
}
copyPtr += size;

}
}

Sweep Handles At the end of the mark and copy phase the handle area is swept to find
all unused handles (the one that still point into fromSpace) and add them to the free list.

synchronized (mutex) {
ref = useList; // get start of the list
useList = 0; // new uselist starts empty

}

while (ref !=0) {

7.4 IMPLEMENTATION 157

int next = Native.rdMem(ref+OFF NEXT);
// a BLACK one
if (Native.rdMem(ref+OFF SPACE)==toSpace) {

// add to used list
synchronized (mutex) {

Native.wrMem(useList, ref+OFF NEXT);
useList = ref ;

}
// a WHITE one
} else {

// add to free list
synchronized (mutex) {

Native.wrMem(freeList, ref+OFF NEXT);
freeList = ref ;
Native.wrMem(0, ref+OFF PTR);

}
}
ref = next;

}

Clear Fromspace The last step of the GC clears the fromspace to provide a constant time
allocation after the next flip.

for (int i=fromSpace; i<fromSpace+semi size; ++i) {
Native.wrMem(0, i);

}

7.4.3 The Mutator

The coordination between the mutator and the collector is performed within the new and
newarray bytecodes and within write barriers for JVM bytecodes putfield and putstatic for ref-
erence fields, and bytecode aastore. The field access bytecodes are substituted at application
link time (run of JOPizer). Only write accesses to reference fields are substituted by special
versions of the bytecodes (putfield ref and putstatic ref). Therefore, the write barrier code is
only executed on reference write access.

Allocation

Objects are allocated black (in tospace). In non real-time collectors it is more common to
allocate objects white. It is argued [38] that objects die young and the chances are high

158 7 REAL-TIME GARBAGE COLLECTION

synchronized (GC.mutex) {
// we allocate from the upper part
allocPtr −= size;
ref = getHandle(size);
// mark as object
Native.wrMem(IS OBJ, ref+OFF TYPE);
// pointer to method table in the handle
Native.wrMem(cons+CLASS HEADR, ref+OFF MTAB ALEN);

}
Listing 7.2: Implementation of bytecode new in JOPs JVM

that the GC never needs to touch them. However, in the worst case no object that is created
and becomes garbage during the GC cycle can be reclaimed. Those floating garbage will
be reclaimed in the next GC cycle. Therefore, we do not benefit from the white allocation
optimization in a real-time GC. Allocating a new object black has the benefit that those
objects do not need to be copied. The same argument applies to the chosen write barrier.
The code in Listing 7.2 shows the simple implementation of bytecode new:

As the old fromspace is cleared by the GC, the new object is already initialized and new
executes in constant time. The methods Native.rdMem() and Native.wrMem() provide direct
access to the main memory. Only those two native methods are necessary for an implemen-
tation of a GC in pure Java.

Write Barriers

For a concurrent (incremental) GC some coordination between the collector and the mutator
are necessary. The usual solution is a write barrier in the mutator to not foil the collector.
According to [153] GC concurrent algorithms can be categorized into:

Snapshot-at-beginning Keep the object graph as it was at the the GC start

• Save the to-be-overwritten reference
• More conservative – not an issue for RTs as worst case counts
• Allocate black
• New objects (e.g. new stack frames) do not need a write barrier
• Optimization: with atomic root scan of the thread stacks no write barrier is

necessary for locals and the JVM stack

7.4 IMPLEMENTATION 159

Incremental update Help the GC by doing some collection work in the mutator

• Preserve strong tri-color invariant (no pointer from black to white objects)
• On black to white shade the white object (shade the black is unusual)
• Allocate black (in contrast to [38])
• Needs write barriers for locals and manipulation on the stack
• Less conservative than snapshot-at-beginning

The usual choice is snapshot-at-beginning with atomic root scan of all thread stacks to
avoid write barriers on locals. Assume the following assignment of a reference:

o.r = ref ;

There are three references involved that can be manipulated:

• The old value of o.r

• The new value ref

• The object o

The three possible write barriers are:

1. Snapshot-at-beginning/weak tri-color invariant:

if (white(o.r)) markGrey(o.r);
o.r = ref ;

2. Incremental/strong tri-color invariant with push forward

if (black(o) && white(ref)) markGrey(ref);
o.r = ref ;

This barrier can be optimized to only check if ref is white.

3. Incremental/strong tri-color invariant with push back

if (black(o) && white(ref)) markGrey(o);
o.r = ref ;

160 7 REAL-TIME GARBAGE COLLECTION

private static void f putfield ref (int ref , int value, int index) {

synchronized (GC.mutex) {

// snapshot−at−beginning barrier
int oldVal = Native.getField(ref , index);
// Is it white?
if (oldVal != 0

&& Native.rdMem(oldVal+GC.OFF SPACE) != GC.toSpace) {
// Mark grey
GC.push(oldVal)

}
Native.putField(ref , index, value);

}
}

Listing 7.3: Snapshot-at-beginning write-barrier in JOPs JVM

We have no stack roots when the collector runs. Therefore we could use the incremental
write barrier for object fields only. However, for the worst case all floating garbage will
not be found by the GC in the current cycle. Therefore, we use the snapshot-at-begin write
barrier in our implementation.

A snapshot-at-beginning write-barrier synchronizes the mutator with the collector on a
reference store into a static field, an object field, or an array. The to be overwritten field
is shaded gray as shown in Listing 7.3. An object is shaded gray by pushing the reference
of the object onto the mark stack.8 Further scanning and copying into tospace – coloring it
black – is left to the GC thread. One field in the handle area is used to implement the mark
stack as a simple linked list. Listing 7.3 shows the implementation of putfield for reference
fields.

Note that field and array access is implemented in hardware on JOP. Only write accesses
to reference fields need to be protected by the write-barrier, which is implemented in soft-
ware. During class linking all write operations to reference fields (putfield and putstatic when
accessing reference fields) are replaced by a JVM internal bytecodes (e.g., putfield ref) to
execute the write-barrier code as shown before. The shown code is part of a special class

8Although the GC is a copying collector a mark stack is needed to perform the object copy in the GC thread
and not by the mutator.

7.5 EVALUATION 161

(com.jopdesign.sys.JVM) where Java bytecodes that are not directly implemented by JOP can
be implemented in Java [123].

The methods of class Native are JVM internal methods needed to implement part of the
JVM in Java. The methods are replaced by regular or JVM internal bytecodes during class
linking. Methods getField(ref, index) and putField(ref, value, index) map to the JVM bytecodes
getfield and putfield. The method rdMem() is an example of an internal JVM bytecode and
performs a memory read. The null pointer check for putfield ref is implicitly performed by
the hardware implementation of getfield that is executed by Native.getField(). The hardware
implementation of getfield triggers an exception interrupt when the reference is null. The
implementation of the write-barrier shows how a bytecode is substituted by a special version
(pufield ref), but uses in the software implementation the hardware implementation of that
bytecode (Naitve.putfield()).

In principle this write-barrier could also be implemented in microcode to avoid the ex-
pensive invoke of a Java method. However, the interaction with the GC, which is written in
Java, is simplified by the Java implementation. As a future optimization we intend to inline
the write-barrier code.

The collector runs in its own thread and the priority is assigned according to the deadline,
which equals the period of the GC cycle. As the GC period is usually longer than the mu-
tator task deadlines, the GC runs at the lowest priority. When a high priority task becomes
ready, the GC thread will be preempted. Atomic operations of the GC are protected simply
by turning the timer interrupt off.9 Those atomic sections lead to release jitter of the real-
time tasks and shall be minimized. It has to be noted that the GC protection with interrupt
disabling is not an option for multiprocessor systems.

7.5 Evaluation

To evaluate the proposed real-time GC we execute a simple test application on JOP and
measure heap usage and the release time jitter of high priority threads. The test setup
consists of JOP implemented in an Altera Cyclone FPGA clocked at 100 MHz. The main
memory is a 1 MB SRAM with an access time of two clock cycles. JOP is configured with
a 4 KB method cache (a special form of instruction cache) and a 128 entry stack cache. No
additional data cache is used.

9If interrupt handlers are allowed to change the object graph those interrupts also need to be disabled.

162 7 REAL-TIME GARBAGE COLLECTION

7.5.1 Scheduling Experiments

In this section we test an implementation of the concurrent-copy garbage collector on JOP.
The tests are intended to get some confidence that the formulas for the collector periods are
correct. Furthermore we visualize the actual heap usage of a running system.

The examples are synthetic benchmarks that emulate worst-case execution time (WCET)
by executing a busy loop after allocation of the data. The WCET of the collector was
measured to be 10.4 ms when executing it with scheduling disabled during one collection
cycle for example 1 and 11.2 ms for example 2. We use 11 ms and 12 ms respectively as
the WCET of the collector for the following examples10.

Listing 7.4 shows our worker thread with the busy loop. The data is allocated at the start
of the period and freed after the simulated execution. waitForNextPeriod blocks until the next
release time for the periodic thread.

For the busy loop to simulate real execution time, and not elapsed time, the constant
MIN US has to be less than the time for two context switches, but larger than the execution
time of one iteration of the busy loop. In this case only cycles executed by the busy loop are
counted for the execution time and interruption due to a higher priority thread is not part of
the execution time measurement.

In our example we use a concurrent-copy collector with a heap size (for both semi-spaces)
of 100 KB. At startup the JVM allocates about 3.5 KB data. We incorporate11 these 3.5 KB
as static live data Ls.

Independent Threads

The first example consists of two threads with the properties listed in Table 7.1. Ti is the
period, Ci the WCET, and ai the maximum amount of memory allocated each period. Note
that the period for the collector thread is also listed in the table although it is a result of the
worker thread properties and the heap size.

With the periods Ti and the memory consumption ai for the two worker threads we cal-

10It has to be noted that measuring execution time is not a safe method to estimate WCET values.
11The suggested handling of static data to be moved to immortal memory at mission start is not yet imple-

mented.

7.5 EVALUATION 163

public void run() {

for (;;) {
int [] n = new int[cnt];
// simulate work load
busy(wcet);
n = null ;
waitForNextPeriod();

}
}

final static int MIN US = 10;

static void busy(int us) {

int t1 , t2 , t3 ;
int cnt;

cnt = 0;
// get the current time in us
t1 = Native.rd(Const.IO US CNT);

for (;;) {
t2 = Native.rd(Const.IO US CNT);
t3 = t2−t1;
t1 = t2 ;
if (t3<MIN US) {

cnt += t3;
}
if (cnt>=us) {

return ;
}

}
}

Listing 7.4: Example periodic thread with a busy loop

164 7 REAL-TIME GARBAGE COLLECTION

Ti Ci ai

τ1 5 ms 1 ms 1 KB
τ2 10 ms 3 ms 3 KB
τGC 77 ms 11 ms

Table 7.1: Thread properties for experiment 1

culate the maximum period TGC for the collector thread τGC by using Theorem 1

TGC ≤
HCC−2(Ls +∑

n
i=1 ai)−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

≤ 100−2(3.5+4)−2 ·4
2
(1

5 + 3
10

) ms

≤ 77ms

The priorities are assigned rate-monotonic [83] and we perform a quick schedulability
check with the periods Ti and the WCETs Ci by calculation of the processor utilization U
for all three threads

U =
3

∑
i=1

(
Ci

Ti

)
=

1
5

+
3
10

+
11
77

= 0.643

which is less than the maximum utilization for three tasks

Umax = m∗ (2
1
m −1)

= 3∗ (2
1
3 −1)

≈ 0.78

In Figure 7.4 the memory trace for this system is shown. The graph shows the free
memory in one semi-space (the to-space, which is 50 KB) during the execution of the ap-
plication. The individual points are recorded with time-stamps at the end of each allocation
request.

7.5 EVALUATION 165

30000

40000

50000

60000

or
y

(B
yt

e)

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

Fr
ee

 M
em

or
y

(B
yt

e)

Time (ms)

Figure 7.4: Free memory in experiment 1

In the first milliseconds we see allocation requests that are part of the JVM startup (most
of it is static data). The change to the mission phase is delayed 100 ms and the first alloca-
tion from a periodic thread is at 105 ms. The collector thread also starts at the same time
and the first semi-space flip can be seen at 110 ms (after one allocation from each worker
thread). We see the 77 ms period of the collector in the jumps in the free memory graph
after the flip. The different memory requests of two times 1 KB from thread τ1 and one
time 3 KB from thread τ2 can be seen every 10 ms.

In this example the heap is used until it is almost full, but the application never runs out
of memory and no thread misses a deadline. From the regular allocation pattern we also see
that this collector runs concurrently. With a stop-the-world collector we would notice gaps
of 10 ms (the measured execution time of the collector) in the graph.

Producer/Consumer Threads

For the second experiment we split our thread τ1 to a producer thread τ1 and a consumer
thread τ3 with a period of 30 ms. We assume after the split that the producer’s WCET is
halved to 500 us. The consumer thread is assumed to be more efficient when working on
lager blocks of data than in the former example (C3=2 ms instead of 6*500 µs). The rest of
the setting remains the same (the worker thread τ2). Table 7.2 shows the thread properties

166 7 REAL-TIME GARBAGE COLLECTION

Ti Ci ai

τ1 5 ms 0.5 ms 1 KB
τ2 10 ms 3 ms 3 KB
τ3 30 ms 2 ms
τGC 55 ms 12 ms

Table 7.2: Thread properties for experiment 2

for the second experiment.
As explained in Section 7.2.3 we calculate the lifetime factor l1 for memory allocated by

the producer τ1 with the corresponding consumer τ3 with period T3.

l1 =
⌈

2T3

T1

⌉
=
⌈

2×30
5

⌉
= 12

The maximum collector period TGC is

TGC ≤
HCC−2(Ls +∑

n
i=1 aili)−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

≤ 100−2(3.5+1 ·12+3+0)−2 ·4
2
(1

5 + 3
10 + 0

30

) ms

≤ 55ms

We check the maximum processor utilization:

U =
4

∑
i=1

(
Ci

Ti

)
=

0.5
5

+
3
10

+
2
30

+
12
55

= 0.685≤ 4∗ (2
1
4 −1)≈ 0.76

In Figure 7.5 the memory trace for the system with one producer, one consumer, and
one independent thread is shown. Again, we see the 100 ms delayed mission start after
the startup and initialization phase, in this example at about 106 ms. Similar to the former
example the first collector cycle performs the flip a few milliseconds after the mission start.

7.5 EVALUATION 167

30000

40000

50000

60000

or
y

(B
yt

e)

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

Fr
ee

 M
em

or
y

(B
yt

e)

Time (ms)

Figure 7.5: Free memory in experiment 2

We see the shorter collection period of 55 ms. The allocation pattern (two times 1 KB and
one time 3 KB per 10 ms) is the same as in the former example as the threads that allocate
the memory are still the same.

We have also run this experiment for a longer time than shown in Figure 7.5 to see if we
find a point in the execution trace where the remaining free memory is less than the value
at 217 ms. The pattern repeats and the observed value at 217 ms is the minimum.

7.5.2 Measuring Release Jitter

Our main concern on garbage collection in real-time systems is the blocking time introduced
by the GC due to atomic code sections. This blocking time will be seen as release time jitter
on the real-time threads. Therefore we want to measure this jitter.

Listing 7.5 shows how we measure the jitter. Method run() is the main method of the
real-time thread and executed on each periodic release. Within the real-time thread we have
no notion about the start time of the thread. As a solution we measure the actual time on
the first iteration and use this time as first release time. In each iteration the expected time,
stored in the variable expected, is incremented by the period. In each iteration (except the
first one) the actual time is compared with the expected time and the maximum value of the
difference is recorded.

168 7 REAL-TIME GARBAGE COLLECTION

public boolean run() {

int t = Native.rdMem(Const.IO US CNT);
if (! notFirst) {

expected = t+period;
notFirst = true;

} else {
int diff = t−expected;
if (diff >max) max = diff;
if (diff <min) min = diff ;
expected += period;

}
work();

return true;
}

Listing 7.5: Measuring release time jitter

As noted before, we have no notion about the correct release times. We measure only
relative to the first release. When the first release is delayed (due to some startup code or
interference with a higher priority thread) we have a positive offset in expected. On an exact
release in a later iteration the time difference will be negative (in diff). Therefore, we also
record the minimum value for the difference between the actual time and the expected time.
The maximum measured release jitter is the difference between max and min.

To provide a baseline we measure the release time jitter of a single real-time thread
(plus an endless loop in the main method as an idle non-real-time background thread). No
GC thread is scheduled. The code is similar to the code in Listing 7.5. A stop condition
is inserted that prints out the minimum and maximum time differences measured after 1
million iterations.

Table 7.3 shows the measured jitter for different thread periods. We observed no jitter for
periods of 100 µs and longer. At a period of 50 µs the scheduler introduces a considerable
amount of jitter. From this measurement we conclude that 100 µs is the practical shortest
period we can handle with our system. We will use this period for the high-priority real-time
thread in the following measurement with an enabled GC.

7.5 EVALUATION 169

Period Jitter

200 µs 0 µs
100 µs 0 µs
50 µs 17 µs

Table 7.3: Release jitter for a single thread

Thread Period Deadline Priority

τh f 100 µs 100 µs 5
τp 1 ms 1 ms 4
τc 10 ms 10 ms 3
τlog 1000 ms 100 ms 2
τgc 200 ms 200 ms 1

Table 7.4: Thread properties of the test program

7.5.3 Measurements

The test application consisting of three real-time threads (τh f , τp, and τc), one logging
thread τlog, and the GC thread τgc. All three real-time threads measure the difference be-
tween the expected release time and the actual release time (as shown in Figure 7.5). The
minimum and maximum values are recorded and regularly printed to the console by the
logging thread τlog. Table 7.4 shows the release parameters for the five threads. Priority is
assigned deadline monotonic. Note that the GC thread has a shorter period than the logger
thread, but a longer deadline. For our approach to work correctly the GC thread must have
the lowest priority. Therefore all other threads with a longer period than the GC thread must
be assigned a shorter deadline.

Thread τh f represents a high-frequency thread without dynamic memory allocation. This
thread should observe minimal disturbance by the GC thread.

The threads τp and τc represent a producer/consumer pair that uses dynamically allocated
memory for communication. The producer appends the data at a frequency of 1 kHz to a
simple list. The consumer thread runs at 100 Hz and processes all currently available data
in the list and removes them from the list. The consumer will process between 9 and 11
elements (depending on the execution time of the consumer and the thread phasing).

It has to be noted that this simple and common communication pattern cannot be imple-

170 7 REAL-TIME GARBAGE COLLECTION

Threads Jitter

τh f 0 µs
τh f , τlog 7 µs
τh f , τlog,τp,τc 14 µs
τh f , τlog,τp,τc,τgc 54 µs

Table 7.5: Jitter measured on a 100 MHz processor for the high priority thread in different
configurations

mented with the scoped memory model of the RTSJ. First, to use a scope for communica-
tion, we have to keep the scope alive with a wedge thread [101] when data is added by the
producer. We would need to notify this wedge thread by the consumer when all data is con-
sumed. However, there is no single instant available where we can guarantee that the list is
empty. A possible solution for this problem is described in [101] as handoff pattern. The
pattern is similar to double buffering, but with an explicit copy of the data. The elegance of
a simple list as buffer queue between the producer and the consumer is lost.

Thread τlog is not part of the real-time systems simulated application code. Its purpose is
to print the minimum and maximum differences between the measured and expected release
times (see former section) of threads τh f and τp to the console periodically.

Thread τgc is a standard periodic real-time thread executing the GC logic. The GC thread
period was chosen quite short in that example. A period in the range of seconds would be
enough for the memory allocation by τp. However, to stress the interference between the
GC thread and the application threads we artificially shortened the period.

As a first experiment we run only τh f and the logging thread τlog to measure jitter intro-
duced by the scheduler. The maximum jitter observed for τh f is 7 µs – the blocking time of
the scheduler.

In the second experiment we run all threads except the GC thread. For the first 4 seconds
we measure a maximum jitter of 14 µs for thread τh f . After those 4 seconds the heap is full
and GC is necessary. In that case the GC behaves in a stop-the-world fashion. When a new
object request cannot be fulfilled the GC logic is executed in the context of the allocating
thread. As the bytecode new is itself in an atomic region the application is blocked until
the GC finishes. Furthermore, the GC performs a conservative scan of all thread stacks.
We measure a release delay of 63 ms for all threads due to the blocking during the full
collection cycle. From that measurement we can conclude for the sample application and
the available main memory: (a) the measured maximum period of the GC thread is in the

7.5 EVALUATION 171

range of 4 seconds; (b) the estimated execution time for one GC cycle is 63 ms. It has to
be noted that measurement is not a substitution for static timing analysis. Providing WCET
estimates for a GC cycle is a challenge for future work.

In our final experiment we enabled all threads. The GC is scheduled periodically at
200 ms as the lowest priority thread – the scenario we argue for. The GC logic is set into
the concurrent mode on mission start. In this mode the thread stacks are not scanned for
roots. Furthermore when an allocation request cannot be fulfilled the application is stopped.
This radical stop is intended for testing. In a more tolerant implementation either an out-
of-memory exception can be thrown or the requesting thread has to be blocked, its thread
stack scanned and released when the GC has finished its cycle.

We ran the experiment for several hours and recorded the maximum release jitter of the
real-time threads. For this test we used slightly different periods (prime numbers) to avoid
the regular phasing of the threads. The harmonic relation of the original periods can lead
to too optimistic measurements. The applications never ran out of memory. The maximum
jitter observed for the high priority task τh f was 54 µs. The maximum jitter for task τp was
108 µs. This higher value on τp is expected as the execution interferes with the execution
of the higher priority task τh f .

7.5.4 Discussion

With our measurements we have shown that quite short blocking times are achievable.
Scheduling introduces a blocking time of about 7–14 µs and the GC adds another 40 µs
resulting in a maximum jitter of the highest priority thread of 54 µs. In our first implemen-
tation we performed the object copy in pure Java, resulting in blocking times around 200 µs.
To speedup the copy we moved this function to microcode. However, the microcoded mem-
cpy still needs 18 cycles per 32-bit word copy. Direct support in hardware can lead to a
copy time of 4–5 clock cycles per word.

The maximum blocking time of 54 µs on a 100 MHz processor is less than blocking times
reported for other solutions.

Blocking time for Metronome (called pause times in the papers) is reported to be 6 ms
[17] on a 500 MHz PowerPC at 50% CPU utilization. Those large blocking times are due
to the scheduling of the GC at the highest priority with a polling based yield within the GC
thread. A fairer comparison is against the jitter of the pause time. In [16] the variation of
the pause time is given between 500 µs and 2.4 ms on a 1 Ghz machine. It should be noted
that Metronome is a GC intended for mixed real-time systems whereas we aim only for
hard real-time systems.

Robertz performed a similar measurement as we did for his thesis [114] with a time-

172 7 REAL-TIME GARBAGE COLLECTION

triggered GC on a 350 MHz PowerPC. He measured a maximum jitter of 20 µs (±10 µs)
for a high priority task with a period of 500 µs.

It has to be noted that our experiment is a small one and we need more advanced real-
time applications for the evaluation of real-time GC. The problem is that it is hard to find
even static based real-time application benchmarks (at least applications written for safety
critical Java). Running standard benchmarks that measure average case performance (e.g.,
SPEC jvm98) is not an option to evaluate a real-time collector.

7.6 Analysis

To integrate GC into the WCET and scheduling analysis we need to know the worst-case
memory consumption including the maximum lifetime of objects and the WCET of the
collector itself.

7.6.1 Worst Case Memory Consumption

Similar to the necessary WCET analysis of the tasks that make up the real-time system, a
worst case memory allocation analysis of the tasks is necessary. For objects that are not
shared between tasks this analysis can be performed by the same methods known from the
WCET analysis. We have to find the worst-case program path that allocates the maximum
amount of memory.

The analysis of memory consumption by objects that are shared between tasks for com-
munication is more complex as an inter-task analysis is necessary.

7.6.2 WCET of the Collector

For the schedulability analysis the WCET of the collector has to be known. The collector
performs following steps12:

1. Traverse the live object graph

2. Copy the live data

3. Initialize the free memory

12These steps can be distinct steps as in the mark-compact collector or interleaved as in the concurrent-copy
collector.

7.7 SUMMARY 173

The execution time of the first step depends on the maximum amount of live data and
the number of references in each object. The second step depends on the size of the live
objects. The last step depends on the size of the memory that gets freed during the collec-
tion cycle. For a concurrent-copy collector this time is constant as a complete semi-space
gets initialized to zero. It has to be noted that this initialization could also be done at the
allocation of the objects (as the LTMemory from the RTSJ implies). However, initialization
in the collector is more efficient and the necessary time is easier to predict.

The maximum allocated memory and the type of the allocated objects determine the con-
trol flow (the flow facts) of the collector. Therefore, this information has to be to incorporate
into WCET analysis of the collector thread.

7.7 Summary

In this chapter we have presented a real-time garbage collector in order to benefit from a
more dynamic programming model for real-time applications. The collector is incremental
and scheduled as a normal real-time thread and, according to its deadline, assigned the
lowest priority in the system. The restrictions from the SCJ programming model and the
low priority result in two advantages: (a) avoidance of stack root scanning and (b) short
blocking time of high priority threads. At 100 MHz we measured 40 µs maximum blocking
time introduced by the GC thread.

To guarantee that the applications will not run out of memory, the period of the collector
thread has to be short enough. We provided the maximum collector periods for a mark-
compact collector type and a concurrent-copy collector. We have also shown how a longer
lifetime due to object sharing between threads can be incorporated into the collector period
analysis.

A critical operation for a concurrent, compacting GC is the atomic copy of large arrays.
JOP has been extended by a copy unit that can be interrupted. This unit is integrated with
the memory access unit and redirects the access to either fromspace or tospace depending
on the array/field index and the value of the copy pointer.

7.8 Further Reading

Garbage collection was first introduced for list processing systems (LISP) in the 1960s.
The first collectors were stop-the-world collectors that are called when a request for a new
element can not be fulfilled. The collector, starting from pointers known as the root set,
scans the whole graph of reachable objects and marks these objects live. In a second phase

174 7 REAL-TIME GARBAGE COLLECTION

the collector sweeps the heap and adds unmarked objects to the free list. On the marked
objects, which are live, the mark is reset in preparation for the next cycle.

However, this simple sweep results in a fragmented heap which is an issue for objects
of different sizes. An extension, called mark-compact, moves the objects to compact the
heap instead of the sweep. During this compaction all references to the moved objects are
updated to point to the new location.

Both collectors need a stack during the marking phase that can grow in the worst-case up
to the number of live objects. Cheney [32] presents an elegant way how this mark stack can
be avoided. His GC is called copying-collector and divides the heap into two spaces: the
to-space and the from-space. Objects are moved from one space to the other as part of the
scan of the object graph.

However, all the described collectors are still stop-the-world collectors. The pause time
of up to seconds in large interactive LISP applications triggered the research on incremental
collectors that distribute collection work more evenly [142, 38, 19]. These collectors were
sometimes called real-time although they do not fulfill hard real-time properties that we
need today. A good overview of GC techniques can be found in [72] and in the GC survey
by Wilson [153].

Baker [19] extends Cheneys [32] copying collector for incremental GC. However, it uses
an expensive read barrier that moves the object to the to-space as part of the mutator work.
Baker proposes the Treadmill [20] to avoid copying. However, this collector works only
with objects of equal size and still needs an expensive read barrier.

In [116] a garbage-collected memory module is suggested to provide a real-time collec-
tor. A worst-case delay time of 1µs is claimed without giving the processor speed.

Metronome is a collector intended for soft real-time systems [18]. Non real-time appli-
cations are used (SPECjvm98) in the experiments. They propose a collector with constant
utilization to meet real-time requirements. However, utilization is not a real-time measure
per se; it should be schedulability or response time instead. In contrast to our proposal the
GC thread is scheduled at the highest priority in short periods. To ensure that, despite the
high priority of the GC thread, mutator threads will be scheduled, the GC thread runs only
for a fraction of time within a time window. This fraction and the size of the time window
can be adjusted for different work loads.

Although not mandated, all commercial and academic implementations of the RTSJ [140,
26, 14, 10] and related real-time Java systems [6] also contain a real-time garbage collector.

In [95] two collectors based on [38] and [20] are implemented on a multithreaded micro-
controller. Higuera suggests in [65] the use of hardware features from picoJava to speed up
RTSJ memory region protection and garbage collection.

The work closest to our scheduling analysis is presented in [113]. The authors provide

7.8 FURTHER READING 175

an upper bound of the GC cycle as13

TGC ≤
H−Lmax

2 −∑
n
i=1 ai

∑
n
i=1

ai
Ti

Although stated that this bound “is thus not dependent of any particular GC algorithm”, the
result applies only for single heap GC algorithms (e.g. mark-compact) and not for a copying
collector. A value for Lmax is not given in the paper. If we use our value of Lmax = ∑

n
i=1 ai

the result is
TGC ≤

H−3∑
n
i=1 ai

2∑
n
i=1

ai
Ti

This result is the same as in our finding (see Theorem 1) for the mark-compact collector.
No analysis is given how objects with longer lifetime and static objects can be incorporated.

13We use our symbols in the equation for easier comparison to our finding.

8 Low-level I/O

The following section describes the low-level mechanism for I/O access and interrupts on
JOP. As JOP is a Java processor no native functions (usually written in C) are available to
access I/O directly or use C written interrupt handler. We need access to those low-level
functionality from Java for an embedded system. In the following a hardware abstraction
layer (HAL) in Java is proposed, where I/O devices are mapped to Java objects and interrupt
handlers can be implemented in Java as Runnable. This section is based on [133] and [74].

8.1 Hardware Objects

Hardware objects map object fields to device registers. Therefore, field access with byte-
codes putfield and getfield accesses device registers. With a correct class that represents a
device, access to it is safe – it is not possible to read or write to an arbitrary memory ad-
dress. A memory area (e.g., a video frame buffer) represented by an array is protected by
Java’s array bounds check. Representing I/O devices as first class objects has following
benefits:

Object-oriented: An object representing a hardware device is the most natural integration
into an OO language

Safe: The safety of Java is not compromised. We can access only those device registers
that are represented by the class definition

Efficient Device register access is performed by single bytecodes getfield and putfield. We
avoid expensive native calls.

8.1.1 An Example

Let us consider a simple I/O device, e.g. a parallel input/output (PIO) device – a common
device in embedded systems for control applications. The PIO provides an interface be-
tween I/O registers and I/O pins. The host captures data on the input pins with a register
read and drives data to the output pins with a register write. The example PIO contains two

178 8 LOW-LEVEL I/O

typedef struct {
int data;
int control ;

} parallel port ;

#define PORT ADDRESS 0x10000;

int inval , outval ;
parallel port ∗mypp;
mypp = (parallel port ∗) PORT ADDRESS;
...
inval = mypp−>data;
mypp−>data = outval;

Listing 8.1: Definition and usage of a parallel port in C

registers: the data register and the control register. Writing to the data register stores the
value into a register that drives the output pins. Reading from the data register returns the
value that is present at the input pins.

The control register configures the direction for each PIO pin. When bit n in the control
register is set to 1, pin n drives out the value of bit n of the data register. A 0 at bit n in the
control register configures pin n as input pin. At reset the port is usually configured as input
port – a safe default configuration.1

When the I/O address space is memory mapped, such a parallel port is represented in
C as a structure and a constant for the address. This definition is part of the board level
configuration. Listing 8.1 shows the parallel port example. The parallel port is directly
accessed via a pointer in C. For a system with a distinct I/O address space (e.g. x86) access
to the device registers is performed via distinct machine instructions. Those instructions are
represented by C functions that take the address as argument which is not type-safe.

This simple representation of memory mapped I/O devices in C is both efficient and
dangerous. It is efficient as the access via pointers compiles to simple load and store in-
structions. It is dangerous as wrong pointer manipulation can result in erroneous I/O or
memory access. This issue is inherent to C and C programmers are (hopefully) aware of it.
A major aspect that makes Java a safer2 language than C is the avoidance of pointers. A

1Direction output can result in a short circuit between the I/O pin and the external device when the logic levels
are different.

2In this context we consider the safety aspect as safe from programming errors.

8.1 HARDWARE OBJECTS 179

public final class ParallelPort {
public volatile int data;
public volatile int control ;

}

int inval , outval ;
myport = JVMMagic.getParallelPort();
...
inval = myport.data;
myport.data = outval;

Listing 8.2: The parallel port device as a simple Java class

pointer is in effect an address to data manipulated as data – an abstraction that resembles
more assembler programming than programming in a high-level language.

On a standard JVM, native functions, written in C or C++, allow the low-level access to
devices from Java. This approach is not object-oriented (OO) and incurs a lot of overheads;
parameters and return values have to be converted between Java and C. In an OO language
the most natural way to represent an I/O device is as an object. Listing 8.2 shows a class
definition for our simple parallel port.

The class ParallelPort is equivalent to the structure definition for C in Listing 8.1. Ref-
erence myport points to the hardware object. The device register access is similar to the C
version. The main difference to the C structure is that the access requires no pointers. To
provide this convenient representation of I/O devices as objects we just need some magic in
the JVM and a mechanism to create the device object and receive a reference to it.

8.1.2 Definition

All hardware classes have to extend the abstract class HardwareObject (see Lising 8.3). This
empty class serves as type marker. Some implementations use it to distinguish between
plain objects and hardware objects for the field access. The package visible only constructor
disallows creation of hardware objects by the application code that resides in a different
package.

Listing 8.4 shows a class representing a serial port with a status register and a data register.
The status register contains flags for receive register full and transmit register empty; the
data register is the receive and transmit buffer. Additionally, we define device specific
constants (bit masks for the status register) in the class for the serial port. All fields represent

180 8 LOW-LEVEL I/O

public abstract class HardwareObject {
HardwareObject() {};

}
Listing 8.3: The marker class for hardware objects

public final class SerialPort extends HardwareObject {

public static final int MASK TDRE = 1;
public static final int MASK RDRF = 2;

public volatile int status;
public volatile int data;

public void init (int baudRate) {...}
public boolean rxFull () {...}
public boolean txEmpty() {...}

}
Listing 8.4: A serial port class with device methods

device registers that can change due to activity of the hardware device. Therefore, they must
be declared volatile.

In this example we have included some convenience methods to access the hardware ob-
ject. However, for a clear separation of concerns, the hardware object represents only the
device state (the registers). We do not add instance fields to represent additional state, i.e.,
mixing device registers with heap elements. We cannot implement a complete device driver
within a hardware object; instead a complete device driver owns a number of private hard-
ware objects along with data structures for buffering, and it defines interrupt handlers and
methods for accessing its state from application processes. For device specific operations,
such as initialization of the device, methods in hardware objects are useful.

8.1.3 Access Control

Usually each device is represented by exactly one hardware object (see Section 8.1.7). How-
ever, there might be use cases where this restriction should be relaxed. Consider a device

8.1 HARDWARE OBJECTS 181

public final class SysCounter extends HardwareObject {

public volatile int counter;
public volatile int timer;
public volatile int wd;

}

public final class AppCounter extends HardwareObject {

public volatile int counter;
private volatile int timer;
public volatile int wd;

}
Listing 8.5: System and application classes with visibility protection for a single hardware

device

where some registers should be accessed by system code only and some other by applica-
tion code. In JOP there is such a device: a system device that contains a 1 MHz counter,
a corresponding timer interrupt, and a watchdog port. The timer interrupt is programmed
relative to the counter and used by the real-time scheduler – a JVM internal service. How-
ever, access to the counter can be useful for the application code. Access to the watchdog
register is required from the application level. The watchdog is used for a sign-of-life from
the application. If not triggered every second the complete system is restarted. For this
example it is useful to represent one hardware device by two different classes – one for
system code and one for application code. We can protect system registers by private fields
in the hardware object for the application. Listing 8.5 shows the two class definitions that
represent the same hardware device for system and application code respectively. Note how
we changed the access to the timer interrupt register to private for the application hardware
object.

Another option, shown in Listing 8.6, is to declare all fields private for the application
object and use setter and getter methods. They add an abstraction on top of hardware objects
and use the hardware object to implement their functionality. Thus we still do not need to
invoke native functions.

182 8 LOW-LEVEL I/O

public final class AppGetterSetter extends HardwareObject {

private volatile int counter;
private volatile int timer;
private volatile int wd;

public int getCounter() {
return counter;

}

public void setWd(boolean val) {
wd = val ? 1 : 0;

}
}

Listing 8.6: System and application classes with setter and getter methods

8.1.4 Using Hardware Objects

Use of hardware objects is straightforward. After obtaining a reference to the object all that
has to be done (or can be done) is to read from and write to the object fields. Listing 8.7
shows an example of client code. The example is a Hello World program using low-level
access to a serial port via a hardware object.

8.1.5 Hardware Arrays

For devices that use DMA (e.g., video frame buffer, disk, and network I/O buffers) we
map that memory area to Java arrays. Arrays in Java provide access to raw memory in an
elegant way: the access is simple and safe due to the array bounds checking done by the
JVM. Hardware arrays can be used by the JVM to implement higher-level abstractions from
the RTSJ such as RawMemory or scoped memory [150].

8.1.6 Garbage Collection

Interaction between the garbage collector (GC) and hardware objects needs to be crafted
into the JVM. We do not want to collect hardware objects. The hardware object should not

8.1 HARDWARE OBJECTS 183

import com.jopdesign.io.∗;

public class Example {

public static void main(String[] args) {

BaseBoard fact = BaseBoard.getBaseFactory();
SerialPort sp = fact .getSerialPort ();

String hello = ”Hello World!”;

for (int i=0; i<hello.length (); ++i) {
// busy wait on transmit buffer empty
while ((sp.status & SerialPort .MASK TDRE) == 0)

;
// write a character
sp.data = hello .charAt(i);

}
}

}
Listing 8.7: A ‘Hello World’ example with low-level device access via a hardware object

be scanned for references.3 This is permissible when only primitive types are used in the
class definition for hardware objects – the GC scans only reference fields. To avoid collect-
ing hardware objects, we mark the object to be skipped by the GC. The type inheritance
from HardwareObject can be used as the marker.

For JOP we only define hardware objects with primitive data fields. Therefore, the hard-
ware objects can be ignored by the GC. The GC scans only objects where the handles are
in the handle area. When the GC is about to mark and scan an object it first checks if the
reference points into the handle area. If not, the reference is skipped by the GC. All handles
that lie outside of this area are ignored by the GC. The handles for the hardware objects are
allocated in a special memory area (see Section 8.1.9) that is ignored by the GC. The same
mechanism is already used by the JVM for some runtime data structures (notable string
constants) that reside in their own memory area.

3If a hardware coprocessor, represented by a hardware object, itself manipulates an object on the heap and
holds the only reference to that object it has to be scanned by the GC.

184 8 LOW-LEVEL I/O

Handles which are not touched by the GC do not need the additional GC info fields. We
need only two fields: (1) the indirection field and (2) the class reference or array length
field.

8.1.7 Hardware Object Creation

The idea to represent each device by a single object or array is straightforward, the remain-
ing question is: How are those objects created? An object that represents a device is a
typical Singleton [46]. Only a single object should map to one instance of a device. There-
fore, hardware objects cannot be instantiated by a simple new: (1) they have to be mapped
by some JVM mechanism to the device registers and (2) each device instance is represented
by a single object.

Each device object is created by its own factory method. The collection of these methods
is the board configuration, which itself is also a Singleton (the application runs on a single
board). The Singleton property of the configuration is enforced by a class that contains
only static methods. Listing 8.8 shows an example for such a class. The class IOSystem
represents a system with three devices: a parallel port, as discussed before to interact with
the environment, and two serial ports: one for program download and one which is an
interface to a GPS receiver.

This approach is simple, but not very flexible. Consider a vendor who provides boards in
slightly different configurations (e.g., with different number of serial ports). With the above
approach each board requires a different (or additional) IOSystem class that lists all devices.
A more elegant solution is proposed in the next section.

8.1.8 Board Configurations

Replacing the static factory methods by instance methods avoids code duplication; inheri-
tance then gives configurations. With a factory object we represent the common subset of
I/O devices by a base class and the variants as subclasses.

However, the factory object itself must still be a Singleton. Therefore the board specific
factory object is created at class initialization and is retrieved by a static method. Listing 8.9
shows an example of a base factory and a derived factory. Note how getBaseFactory() is used
to get a single instance of the factory. We have applied the idea of a factory two times: the
first factory generates an object that represents the board configuration. That object is itself
a factory that generates the objects that interface to the hardware device.

The shown example base factory represents the minimum configuration with a single
serial port for communication (mapped to System.in and System.out) represented by a Seri-

8.1 HARDWARE OBJECTS 185

package com.board−vendor.io;

public class IOSystem {

// some JVM mechanism to create the hardware objects
private static ParallelPort pp = jvmPPCreate();
private static SerialPort sp = jvmSPCreate(0);
private static SerialPort gps = jvmSPCreate(1);

public static ParallelPort getParallelPort () {
return pp;

}

public static SerialPort getSerialPort () {..}
public static SerialPort getGpsPort() {..}

}
Listing 8.8: A factory with static methods for Singleton hardware objects

alPort. The derived configuration ExtendedBoard (listing 8.10) contains an additional serial
port for a GPS receiver and a parallel port for external control.

Furthermore, we show in those examples a different way to incorporate the JVM mecha-
nism in the factory: we define well known constants (the memory addresses of the devices)
in the factory and let the native function jvmHWOCreate() return the correct device type.

8.1.9 Implementation

In this subsection the internals of the hardware object creation are described. Just to use
hardware objects this section can be skipped. To create new types of hardware objects and
the companion factory this section contains the needed details.

In JOP, objects and arrays are referenced through an indirection called handle. This
indirection is a lightweight read barrier for the compacting real-time GC (see Chapter 7).
All handles for objects in the heap are located in a distinct memory region, the handle
area. Besides the indirection to the real object the handle contains auxiliary data, such as a
reference to the class information, the array length, and GC related data. Figure 8.1 shows
an example with a small object that contains two fields and an integer array of length 4.
The object and the array on the heap just contain the data and no additional hidden fields.

186 8 LOW-LEVEL I/O

public class BaseBoard {

private final static int SERIAL ADDRESS = ...;
private SerialPort serial ;
BaseBoard() {

serial = (SerialPort) jvmHWOCreate(SERIAL ADDRESS);
};
static BaseBoard single = new BaseBoard();
public static BaseBoard getBaseFactory() {

return single ;
}
public SerialPort getSerialPort () { return serial ; }

// here comes the JVM internal mechanism
Object jvmHWOCreate(int address) {...}

}
Listing 8.9: A base class of a hardware object factory

This object layout greatly simplifies our object to device mapping. We just need a handle
where the indirection points to the memory mapped device registers instead of into the heap.
This configuration is shown in the upper part of Figure 8.1. Note that we do not need the
GC information for the hardware object handles. The factory, which creates the hardware
objects, implements this indirection.

As described in Section 8.1.7 we do not allow applications to create hardware objects; the
constructor is private (or package visible).4 Listing 8.11 shows part of the base hardware
object factory that creates the hardware object SerialPort and SysDevice. Two static fields
(SP PTR and SP MTAB) are used to store the handle to the serial port object. The first field
is initialized with the base address of the I/O device; the second field contains a pointer to
the class information.5 The address of the static field SP PTR is returned as the reference to
the serial port object.

4For creation of hardware objects with new we would need to change the implementation of bytecode new to
distinguish between normal heap allocated objects and hardware objects. In the implementation on JOP the
hardware object constructor is package visible to allow the factory to create a plane object of that type.

5In JOP’s JVM the class reference is a pointer to the method table to speed-up the invoke instruction. There-
fore, the name is XX MTAB.

8.1 HARDWARE OBJECTS 187

public class ExtendedBoard extends BaseBoard {

private final static int GPS ADDRESS = ...;
private final static int PARALLEL ADDRESS = ...;
private SerialPort gps;
private ParallelPort parallel ;
ExtendedBoard() {

gps = (SerialPort) jvmHWOCreate(GPS ADDRESS);
parallel = (ParallelPort) jvmHWOCreate(PARALLEL ADDRESS);

};
static ExtendedBoard single = new ExtendedBoard();
public static ExtendedBoard getExtendedFactory() {

return single ;
}
public SerialPort getGpsPort() { return gps; }
public ParallelPort getParallelPort () { return parallel ; }

}
Listing 8.10: An extended class of a hardware object factory for a board variation

public class IOFactory {
private SerialPort sp;
private SysDevice sys;

// Handles should be the first static fields !
private static int SP PTR;
private static int SP MTAB;
private static int SYS PTR;
private static int SYS MTAB;

IOFactory() {
sp = (SerialPort) makeHWObject(new SerialPort(), Const.IO UART1 BASE, 0);
sys = (SysDevice) makeHWObject(new SysDevice(), Const.IO SYS DEVICE, 1);

};
// that has to be overridden by each sub class to get the correct cp
private static Object makeHWObject(Object o, int address, int idx) {

int cp = Native.rdIntMem(Const.RAM CP);
return JVMHelp.makeHWObject(o, address, idx, cp);

}

188 8 LOW-LEVEL I/O

I/O device
HW object

handleStack

Handle area Heap
Runtime

structures

GC info

...

handle

[0]

[2]

[1]

[3]
GC info

Arr. size

...

a

handle

reference

reference

M0

Class
info

M1

M2

Constant
Pool

class reference

reference

class ref.

handle reg0

reg1

reg2

Figure 8.1: Memory layout of the JOP JVM

private static IOFactory single = new IOFactory();
public static IOFactory getFactory() {

return single ;
}

public SerialPort getSerialPort () { return sp; }
public SysDevice getSysDevice() { return sys; }

}

Listing 8.11: Simplified version of the JOP base factory

The class reference for the hardware object is obtained by creating a normal instance
of SerialPort with new on the heap and copying the pointer to the class information. To
avoid using native methods in the factory class we delegate JVM internal work to a helper
class in the JVM system package as shown in Listing 8.12. That helper method returns the
address of the static field SP PTR as reference to the hardware object. All methods in class

8.1 HARDWARE OBJECTS 189

public static Object makeHWObject(Object o, int address, int idx, int
cp) {

int ref = Native. toInt (o);
int pcl = Native.rdMem(ref+1);
int p = Native.rdMem(cp−1);
p = Native.rdMem(p+1);
p += idx∗2;
Native.wrMem(address, p);
Native.wrMem(pcl, p+1);
return Native.toObject(p);

}
Listing 8.12: The helper method in the system class JVMHelp for the hardware object cre-

ation

Native, a JOP system class, are native6 methods for low-level functions – the code we want
to avoid in application code. Method toInt(Object o) defeats Java’s type safety and returns
a reference as an int. Method toObject(int addr) is the inverse function to map an address to
a Java reference. Low-level memory access methods are used to manipulate the JVM data
structures.

To disallow the creation with new in normal application code, the visibility is set to pack-
age. The package visibility of the hardware object constructor is a minor issue. To access
private static fields of an arbitrary class from the system class we had to change the runtime
class information: we added a pointer to the first static primitive field of that class. As
addresses of static fields get resolved at class linking, no such reference was needed so far.

8.1.10 Legacy Code

Before the implementation of hardware objects, the access to I/O devices was per-
formed with memory read and write methods. Those methods are Native.rdMem() and
Native.wrMem(). Due to historical reasons7 the same Methods also exist as Native.rd() and
Native.wr().

Those native methods are mapped to a system bytecode and perform direct memory
access – not a save abstraction at all. However, there exists still some Java code that uses

6There are no real native functions in JOP – bytecode is the native instruction set. The very few native methods
in class Native are replaced by special, unused bytecodes during class linking.

7In an older version of JOP I/O and memory had different busses.

190 8 LOW-LEVEL I/O

those public visible methods. Those methods are depreciated and new device drivers shall
use hardware objects.

8.2 Interrupt Handlers

Interrupts are notifications from hardware components to the processor. As a response to the
interrupt signal some method needs to be invoked and executed. To allow implementation
of first-level interrupt handler (IH) in Java we map interrupt requests to invocations of the
run() method of a Runnable. Listing 8.13 shows an example of such an interrupt handler and
how it is registered.

public class InterruptHandler implements Runnable {

public static void main(String[] args) {

// get factory
InterruptHandler ih = new InterruptHandler();
fact . registerInterruptHandler (1, ih);

// enable interrupt 1
fact .enableInterrupt (1);

// start normal work
}

public void run() {
// do the first level interrupt handler work

}

}
Listing 8.13: A simple first-level interrupt handler in Java

8.2.1 Synchronization

When an interrupt handler is invoked, it starts with global interrupt disabled. The global
interrupt mask is enabled again when the interrupt handler returns. On the uniprocessor
version of JOP the monitor is also implemented by simply masking all interrupts. There-
fore, those critical sections cannot be interrupted and synchronization between the interrupt

8.2 INTERRUPT HANDLERS 191

handler and a normal thread is fulfilled. For a CMP version of JOP synchronization is per-
formed via a global hardware lock. As the CMP system offers true concurrency, the IH has
to protect the access to shared data when the handler and the thread are located on different
cores.

A better approach for data sharing between a first-level IH and a device driver task (or
second-level IH) is the usage of non-blocking queues. Listing 8.14 shows an example of
such a bonded, non-blocking buffer for single reader and single writer communication. The
class Buffer is part of the package rtlib.

public class Buffer {

private volatile int [] data;
private volatile int rdPtr ;
private volatile int wrPtr;

public Buffer(int size) {
data = new int[size+1];
rdPtr = wrPtr = 0;

}
public boolean empty() {

return rdPtr==wrPtr;
}
public boolean full () {

int i = wrPtr+1;
if (i>=data.length) i=0;
return i==rdPtr;

}
public int read() {

int i =rdPtr;
int val = data[i ++];
if (i>=data.length) i=0;
rdPtr = i ;
return val ;

}
public void write (int val) {

int i = wrPtr;
data[i++] = val ;
if (i>=data.length) i=0;
wrPtr = i ;

}

192 8 LOW-LEVEL I/O

public int cnt () {
int i = wrPtr−rdPtr;
if (i<0) i+=data.length;
return i ;

}
public int free () {

return data.length−1−cnt();
}
public int checkedRead() {

if (empty()) return −1;
return read();

}
public boolean checkedWrite(int val) {

if (full ()) return false ;
write (val);
return true;

}
}

Listing 8.14: A non-blocking integer buffer for a single reader and a single writer. Classical
usage is in an interrupt handler.

The buffer data is manipulated by the reader and writer. The size of the buffer is deter-
mined by the constructor. The read pointer rdPtr is only manipulated by the reader, the write
pointer wrPtr only by the writer. The buffer is empty when rdPtr equals wrPtr and full when
wrPtr+1 equals the rdPtr. In method full() two points are notable: (1) the usage of the local
variable to get an atomic snapshot of the wrPtr; and (2) the usage of >= instead of = for
easier data-flow analysis [104].

The methods read() and write() perform an unchecked read and write from the buffer – the
unchecked version is for performance reason. Therefore, before invoking those methods the
buffer fill state has to be checked with emtpy() and full(). If read is performed on an empty
buffer, the buffer is corrupted – old, alread read data appears as new data. Write to a full
buffer drops all former data. The fill stat of the buffer can be queried with cnt() and free().
Method checkedRead() reads one entry from the buffer or returns -1 if the buffer is empty.
Method checkedWrite() write one entry into the buffer when not full and returns true if the
write operation was successfully.

An object oriented version of this single reader/writer queue is available in class SR-
SWQueue. Those queues are also handy for communication between threads as blocking
can be avoided. The redesigned TCP/IP stack ejip uses those non-blocking queues for com-
munication of network packets between different protocol layers.

8.2 INTERRUPT HANDLERS 193

8.2.2 Interrupt Handler Registration

Interrupt handlers can be registered for a interrupt number n. On the CMP system the inter-
rupt is registered on the core where the method is invoked. Following methods are available
in the factory class for interrupt handler registration/deregistration and enable/disable of a
specific interrupt.

public void registerInterruptHandler (int nr, Runnable logic) { }
public void deregisterInterruptHandler(int nr) { }
public void enableInterrupt(int nr) { }
public void disableInterrupt (int nr) { }

Interrupt 0 has a special meaning as it is the reprogrammable timer interrupt for the
scheduler. On the transition to the mission phase (startMission()) a scheduler, which is a
simple Runable, is registered for each core for the timer interrupt.

8.2.3 Implementation

The original JOP [123, 130] was a very puristic hard real-time processor. There existed
only one interrupt – the programmable timer interrupt as time is the primary source for hard
real-time events. All I/O requests were handled by periodic threads that poll for pending
input data or free output buffers. However, to allow a more flexible programming model
additional hardware interrupts are now available.

On a pending interrupt (or exception generated by the hardware) a special bytecode is
inserted into the instruction stream (see Section 4.3.5. This approach keeps the interrupt
completely transparent to the core pipeline. The special bytecode that is unused by the
JVM specification [82] is used to invoke the special method interrupt() from the JVM helper
class JVMHelp.

The implemented interrupt controller (IC) is priority based. The number of interrupt
sources can be configured. Each interrupt can be triggered in software by a IC register
write as well. There is one global interrupt enable and each interrupt line can be enabled
or disabled locally. The interrupt is forwarded to the bytecode/microcode translation stage
with the interrupt number. When accepted by this stage, the interrupt is acknowledged and
the global enable flag cleared. This feature avoids immediate handling of an arriving higher
priority interrupt during the first part of the handler. The interrupts have to be enabled again
by the handler at a convenient time. All interrupts are mapped to the same special bytecode.
Therefore, we perform the dispatch of the correct handler in Java. On an interrupt the static
method interrupt() from a system internal class gets invoked. The method reads the interrupt

194 8 LOW-LEVEL I/O

number and performs the dispatch to the registered Runnable as illustrated below. Note, how
a hardware object of type SysDevice is used to read the interrupt number.

static Runnable ih[] = new Runnable[Const.NUM INTERRUPTS];
static SysDevice sys = IOFactory.getFactory().getSysDevice();

static void interrupt () {
ih [sys.intNr]. run ();

}

The timer interrupt, used for the real-time scheduler, is located at index 0. The scheduler
is just a plain interrupt handler that gets registered at mission start at index 0. At system
startup, the table of Runnables is initialized with dummy handlers. The application code
provides the handler via a class that implements Runnable and registers that class for an
interrupt number.

For interrupts that should be handled by an event handler under the control of the sched-
uler, the following steps need to be performed on JOP:

1. Create a SwEvent with the correct priority that performs the second level interrupt
handler work

2. Create a short first level interrupt handler as Runnable that invokes fire() of the corre-
sponding software event handler

3. Register the first level interrupt handler and start the real-time scheduler

8.2.4 An Example

The system device (sc sys.vhd) contains input lines for external interrupts (in port io int).
The number of interrupt lines is configurable with num io int. Each hardware interrupt can
also be triggered by a write into the system device. Listing 8.15 shows registering and using
a first level interrupt handler. The interrupt is triggered in software by the main thread.

public class InterruptHandler implements Runnable {

public static void main(String[] args) {

IOFactory fact = IOFactory.getFactory();
SysDevice sys = fact.getSysDevice();

InterruptHandler ih = new InterruptHandler();

8.3 STANDARD DEVICES 195

fact . registerInterruptHandler (1, ih);

// enable software interrupt 1
fact .enableInterrupt (1);

for (int i=0; i<20; ++i) {
Timer.wd();
int t = Timer.getTimeoutMs(200);
while (! Timer.timeout(t)) ;
// trigger a SW interrupt via the system HW object
System.out.println(”Trigger”);
sys.intNr = 1;
if (i==10) {

fact . disableInterrupt (1);
}

}
}

public void run() {
System.out.println(” Interrupt fired ! ”);

}
}

Listing 8.15: Interrupt register/deregister methods in the factory class

8.3 Standard Devices

A minimum version of JOP consists of two standard devices: the system device and a UART
device for program download and as a representation of System.ou.

8.3.1 The System Device

The system device contains all the logic for interrupts, CMP interaction, timers, and the
watchdog control. The registers definition is shown in Table 8.1.

8.3.2 The UART

The UART contains a contral/status register and a data read/write register is shown in Ta-
ble 8.2.

196 8 LOW-LEVEL I/O

Address Read Write

0 Clock counter Interrupt enable
1 Counter in µs Timer interrupt in µs
2 Interrupt number SW interrupt
3 — Watchdog
4 Exception reason Generate exception
5 Lock request status Lock request
6 CPU ID —
7 Polled in JVM startup Start CMP
8 — Interrupt mask
9 — Clear pending interrupts
11 Nr. CPUs —

Table 8.1: Registers in the system device.

Address Read Write

0 status control
1 receive data transmit buffer

Table 8.2: Registers in the UART device.

9 The SimpCon Interconnect

SimpCon [127] is the main interconnection interface used for JOP. The I/O modules and
the main memory are connected via this standard. In the following chapter an introduction
to SimpCon is presented.

The VHDL files in vhdl/scio are SimpCon I/O components (e.g. sc uart.vhd is a simple
UART) and SimpCon I/O configurations. The I/O configurations define the I/O devices and
the address mapping for a JOP system. All those configurations start with scio . The I/O
components start with sc . Configuration scio min contains the minimal I/O components for
a JOP system: the system module sc sys.vhd and a UART sc uart.vhd for program download
and basic communication (System.in and System.out).

The system module sc sys.vhd contains the clock counter, the µs counter, timer inter-
rupt, the SW interrupt, exception interrupts, the watchdog port, and the connection to the
multiprocessor synchronization unit (cmpsync.vhd).

In directory vhdl/memory the memory controller mem sc.vhd is a SimpCon master that can
be connected to various SRAM memory controllers sc sram*.vhd. Other memory controller
(e.g. the free Altera SDRAM interface) can be connected via SimpCon bridges to Avalon,
Wishbone, and AHB slaves (available in vhdl/simpcon).

9.1 Introduction

The intention of the following SoC interconnect standard is to be simple and efficient with
respect to implementation resources and transaction latency.

SimpCon is a fully synchronous standard for on-chip interconnections. It is a point-to-
point connection between a master and a slave. The master starts either a read or write
transaction. Master commands are single cycle to free the master to continue on internal
operations during an outstanding transaction. The slave has to register the address when
needed for more than one cycle. The slave also registers the data on a read and provides
it to the master for more than a single cycle. This property allows the master to delay the
actual read if it is busy with internal operations.

The slave signals the end of the transaction through a novel ready counter to provide

198 9 THE SIMPCON INTERCONNECT

an early notification. This early notification simplifies the integration of peripherals into
pipelined masters. Slaves can also provide several levels of pipelining. This feature is
announced by two static output ports (one for read and one write pipeline levels).

Off-chip connections (e.g. main memory) are device specific and need a slave to perform
the translation. Peripheral interrupts are not covered by this specification.

9.1.1 Features

SimpCon provides following main features:

• Master/slave point-to-point connection

• Synchronous operation

• Read and write transactions

• Early pipeline release for the master

• Pipelined transactions

• Open-source specification

• Low implementation overheads

9.1.2 Basic Read Transaction

Figure 9.1 shows a basic read transaction for a slave with one cycle latency. In the first
cycle, the address phase, the rd signals the slave to start the read transaction. The address is
registered by the slave. During the following cycle, the read phase,1 the slave performs the
read and registers the data. Due to the register in the slave, the data is available in the third
cycle, the result phase. To simplify the master, rd data stays valid until the next read request
response. It is therefore possible for a master to issue a pre-fetch command early. When the
pre-fetched data arrives too early it is still valid when the master actually wants to read it.
Keeping the read data stable in the slave is mandatory.

1It has to be noted that the read phase can be longer for devices with a high latency. For simple on-chip I/O
devices the read phase can be omitted completely (0 cycles). In that case rdy cnt will be zero in the cycle
following the address phase.

9.2 SIMPCON SIGNALS 199

Address phase Read phase Result phase

Adress

Data

clk

address

rd

rd_data

rdy_cnt 1 0

Figure 9.1: Basic read transaction

9.1.3 Basic Write Transaction

A write transaction consists of a single cycle address/command phase started by assertion of
wr where the address and the write data are valid. address and wr data are usually registered
by the slave. The end of the write cycle is signalled to the master by the slave with rdy cnt.
See Section 9.3 and an example in Figure 9.3.

9.2 SimpCon Signals

This sections defines the signals used by the SimpCon connection. Some of the signals are
optional and may not be present on a peripheral device.

All signals are a single direction point-to-point connection between a master and a slave.
The signal details are described by the device that drives the signal. Table 9.1 lists the
signals that define the SimpCon interface. The column Direction indicates whether the
signal is driven by the master or the slave.

9.2.1 Master Signal Details

This section describes the signals that are driven by the master to initiate a transaction.

address

Master addresses represent word addresses as offsets in the slave’s address range. address
is valid a single cycle either with rd for a read transaction or with wr and wr data for a write

200 9 THE SIMPCON INTERCONNECT

Signal Width Direction Required Description

address 1–32 Master No Address lines from the master
to the slave port

wr data 32 Master No Data lines from the master
to the slave port

rd 1 Master No Start of a read transaction
wr 1 Master No Start of a write transaction
rd data 32 Slave No Data lines from the slave

to the master port
rdy cnt 2 Slave Yes Transaction end signalling
rd pipeline level 2 Slave No Maximum pipeline level

for read transactions
wr pipeline level 2 Slave No Maximum pipeline level

for write transactions
sel byte 2 Master No Reserved for future use
uncached 1 Master No Non cached access
cache flash 1 Master No Flush/invalidate a cache

Table 9.1: SimpCon port signals

9.2 SIMPCON SIGNALS 201

transaction. The number of bits for address depends on the slave’s address range. For a
single port slave, address can be omitted.

wr data

The wr data signals carry the data for a write transaction. It is valid for a single cycle
together with address and wr. The signal is typically 32 bits wide. Slaves can ignore upper
bits when the slave port is less than 32 bits.

rd

The rd signal is asserted for a single clock cycle to start a read transaction. address has to
be valid in the same cycle.

wr

The wr signal is asserted for a single clock cycle to start a write transaction. address and
wr data have to be valid in the same cycle.

sel byte

The sel byte signal is reserved for future versions of the SimpCon specification to add indi-
vidual byte enables.

uncached

The uncached signal is asserted for a single clock cycle during a read or write transaction
to signal that a cache, connected in the SimpCon pipeline, shall not cache the read or write
access.

cache flash

The cache flash signal is asserted for a single clock cycle invalidates a cache connected in
the SimpCon pipeline.

9.2.2 Slave Signal Details

This section describes the signals that are driven by the slave as a response to transactions
initiated by the master.

202 9 THE SIMPCON INTERCONNECT

rd data

The rd data signals carry the result of a read transaction. The data is valid when rdy cnt
reaches 0 and stays valid until a new read result is available. The signal is typically 32 bits
wide. Slaves that provide less than 32 bits should pad the upper bits with 0.

rdy cnt

The rdy cnt signal provides the number of cycles until the pending transaction will finish. A
0 means that either read data is available or a write transaction has been finished. Values of
1 and 2 mean the transaction will finish in at least 1 or 2 cycles. The maximum value is 3
and means the transaction will finish in 3 or more cycles. Note that not all values have to be
used in a transaction. Each monotonic sequence of rdy cnt values is legal.

rd pipeline level

The static rd pipeline level provides the master with the read pipeline level of the slave. The
signal has to be constant to enable the synthesizer to optimize the pipeline level dependent
state machine in the master.

wr pipeline level

The static wr pipeline level provides the master with the write pipeline level of the slave. The
signal has to be constant to enable the synthesizer to optimize the pipeline level dependent
state machine in the master.

9.3 Slave Acknowledge

Flow control between the slave and the master is usually done by a single signal in the form
of wait or acknowledge. The ack signal, e.g. in the Wishbone specification, is set when the
data is available or the write operation has finished. However, for a pipelined master it can
be of interest to know it earlier when a transaction will finish.

For many slaves, e.g. an SRAM interface with fixed wait states, this information is avail-
able inside the slave. In the SimpCon interface, this information is communicated to the
master through the two bit ready counter (rdy cnt). rdy cnt signals the number of cycles until
the read data will be available or the write transaction will be finished. A value of 0 is equiv-
alent to an ack signal and 1, 2, and 3 are equivalent to a wait request with the distinction
that the master knows how long the wait request will last.

9.3 SLAVE ACKNOWLEDGE 203

A

Data

clk

address

rd

rd_data

rdy_cnt 3 2 1 0

1 2 3 4 5

Figure 9.2: Read transaction with wait states

To avoid too many signals at the interconnect, rdy cnt has a width of two bits. Therefore,
the maximum value of 3 has the special meaning that the transaction will finish in 3 or more
cycles. As a result the master can only use the values 0, 1, and 2 to release actions in its
pipeline. If necessary, an extension for a longer pipeline is straightforward with a larger
rdy cnt.2

Idle slaves will keep the former value of 0 for rdy cnt. Slaves that do not know in advance
how many wait states are needed for the transaction can produce sequences that omit any of
the numbers 3, 2, and 1. A simple slave can hold rdy cnt on 3 until the data is available and
set it then directly to 0. The master has to handle those situations. Practically, this reduces
the possibilities of pipelining and therefore the performance of the interconnect. The master
will read the data later, which is not an issue as the data stays valid.

Figure 9.2 shows an example of a slave that needs three cycles for the read to be pro-
cessed. In cycle 1, the read command and the address are set by the master. The slave
registers the address and sets rdy cnt to 3 in cycle 2. The read takes three cycles (2–4) dur-
ing which rdy cnt gets decremented. In cycle 4 the data is available inside the slave and gets
registered. It is available in cycle 5 for the master and rdy cnt is finally 0. Both, the rd data
and rdy cnt will keep their value until a new transaction is requested.

Figure 9.3 shows an example of a slave that needs three cycles for the write to be pro-
cessed. The address, the data to be written, and the write command are valid during cycle 1.
The slave registers the address and the write data during cycle 1 and performs the write op-
eration during cycles 2–4. The rdy cnt is decremented and a non-pipelined slave can accept
a new command after cycle 4.

2The maximum value of the ready counter is relevant for the early restart of a waiting master. A longer latency
from the slave e.g., for DDR SDRAM, will map to the maximum value of the counter for the first cycles.

204 9 THE SIMPCON INTERCONNECT

Adress

clk

address

wr_data

wr

rdy_cnt 2 1 0

1 2 3 4

Data

Figure 9.3: Write transaction with wait states

9.4 Pipelining

Figure 9.4 shows a read transaction for a slave with four clock cycles latency. Without any
pipelining, the next read transaction will start in cycle 7 after the data from the former read
transaction is read by the master. The three bottom lines show when new read transactions
(only the rd signal is shown, address lines are omitted from the figure) can be started for
different pipeline levels. With pipeline level 1, a new transaction can start in the same cycle
when the former read data is available (in this example in cycle 6). At pipeline level 2, a
new transaction (either read or write) can start when rdy cnt is 1, for pipeline level 3 the next
transaction can start at a rdy cnt of 2.

The implementation of level 1 in the slave is trivial (just two more transitions in the state
machine). It is recommended to provide at least level 1 for read transactions. Level 2 is a
little bit more complex but usually no additional address or data registers are necessary.

To implement level 3 pipelining in the slave, at least one additional address register is
needed. However, to use level 3 the master has to issue the request in the same cycle as
rdy cnt goes to 2. That means that this transition is combinatorial. We see in Figure 9.4 that
rdy cnt value of 3 means three or more cycles until the data is available and can therefore
not be used to trigger a new transaction. Extension to an even deeper pipeline needs a wider
rdy cnt.

9.5 Interconnect

Although the definition of SimpCon is from a single master/slave point-to-point viewpoint,
all variations of multiple slave and multiple master devices are possible.

9.5 INTERCONNECT 205

A1

clk

address

rd_data

1 2 3 4 5 6 7

rd

rdy_cnt

level 1 rd

level 2 rd

level 3 rd

0 2 1 03

D1

A2

Figure 9.4: Different pipeline levels for a read transaction

Slave Multiplexing

To add several slaves to a single master, rd data and rdy cnt have to be multiplexed. Due to
the fact that all rd data signals are already registered by the slaves, a single pipeline stage
will be enough for a large multiplexer. The selection of the multiplexer is also known at the
transaction start but at least needed one cycle later. Therefore it can be registered to further
speed up the multiplexer.

Master Multiplexing

SimpCon defines no signals for the communication between a master and an arbiter. How-
ever, it is possible to build a multi-master system with SimpCon. The SimpCon interface
can be used as an interconnect between the masters and the arbiter and the arbiter and the
slaves. In this case the arbiter acts as a slave for the master and as a master for the peripheral
devices. An example of an arbiter for SimpCon, where JOP and a VGA controller are two
masters for a shared main memory, can be found in [98]. The same arbiter is also used to
build a chip-multiprocessor version of JOP [100].

The missing arbitration protocol in SimpCon results in the need to queue n−1 requests
in an arbiter for n masters. However, this additional hardware results in a zero cycle bus
grant. The master, which gets the bus granted, starts the slave transaction in the same cycle

206 9 THE SIMPCON INTERCONNECT

ou
tre
g

in
re
g

wr_data

wr

rd

rd_data

rdy_cnt

out

in

0

Figure 9.5: A simple input/output port with a SimpCon interface

as the original read/write request.

To add several slaves to a single master the rd data and rdy cnt have to be multiplexed.
Due to the fact that all rd data signals are registered by the slaves a single pipeline stage
will be enough for a large multiplexer. The selection of the multiplexer is also known at
the transaction start but needed at most in the next cycle. Therefore it can be registered to
further speed up the multiplexer.

9.6 Examples

This section provides some examples for the application of the SimpCon definition.

9.6.1 I/O Port

Figure 9.5 shows a simple I/O port with a minimal SimpCon interface. As address decoding
is omitted for this simple device signal address is not needed. Furthermore we can tie rdy cnt
to 0. We only need the rd or wr signal to enable the port. Listing 9.1 shows the VHDL code
for this I/O port.

9.6 EXAMPLES 207

entity sc test slave is generic (addr bits : integer);

port (
clk : in std logic ;
reset : in std logic ;

−− SimpCon interface
wr data : in std logic vector (31 downto 0);
rd, wr : in std logic ;
rd data : out std logic vector (31 downto 0);
rdy cnt : out unsigned(1 downto 0);

−− input/output ports
in data : in std logic vector (31 downto 0)
out data : out std logic vector (31 downto 0)

); end sc test slave ;

architecture rtl of sc test slave is

begin

rdy cnt <= ”00”; −− no wait states

process(clk, reset) begin

if (reset=’1’) then
rd data <= (others => ’0’);
out data <= (others => ’0’);

elsif rising edge(clk) then
if rd=’1’ then

rd data <= in data;
end if ;
if wr=’1’ then

out data <= wr data;
end if ;

end if ;

end process;

end rtl ;

Listing 9.1: VHDL source for the simple input/output port

208 9 THE SIMPCON INTERCONNECT

A1

clk

address

rd

rd_data

rdy_cnt 2 1

1 2 3 4 5 6 7

wr_data

wr

address

data

ncs

noe

nwr

A1

D1

00

A2

D2

1 0

A2

D2

D1

m
as
te
r

sl
av
e

S
R
A
M

Figure 9.6: Static RAM interface without pipelining

9.6.2 SRAM interface

The following example assumes a master (processor) clocked at 100 MHz and an static
RAM (SRAM) with 15 ns access time. Therefore the minimum access time for the SRAM
is two cycles. The slack time of 5 ns forces us to use output registers for the SRAM address
and write data and input registers for the read data in the I/O cells of the FPGA. These
registers fit nicely with the intention of SimpCon to use registers inside the slave.

Figure 9.6 shows the memory interface for a non-pipelined read access followed by a
write access. Four signals are driven by the master and two signals by the slave. The lower
half of the figure shows the signals at the FPGA pins where the SRAM is connected.

In cycle 1 the read transaction is started by the master and the slave registers the address.
The slave also sets the registered control signals ncs and noe during cycle 1. Due to the
placement of the registers in the I/O cells, the address and control signals are valid at the
FPGA pins very early in cycle 2. At the end of cycle 3 (15 ns after address, ncs and noe

9.6 EXAMPLES 209

A1

clk

address

rd_data

1 2 3 4 5 6 7

rd

rdy_cnt

address

data

ncs

noe

nwr

A1

D1

A3

A3

S
im
pC
on

S
R
A
M

0 2 1 2 1 2 1

D1 D2

A2

A2

D2 D3

Figure 9.7: Pipelined read from a static RAM

are stable) the data from the SRAM is available and can be sampled with the rising edge
for cycle 4. The setup time for the read register is short, as the register can be placed in
the I/O cell. The master reads the data in cycle 4 and starts a write transaction in cycle 5.
Address and data are again registered by the slave and are available for the SRAM at the
beginning of cycle 6. To perform a write in two cycles the nwr signal is registered by a
negative triggered flip-flop.

In Figure 9.7 we see a pipelined read from the SRAM with pipeline level 2. With this
pipeline level and the two cycles read access time of the SRAM we achieve the maximum
possible bandwidth.

We can see the start of the second read transaction in cycle 3 during the read of the first
data from the SRAM. The new address is registered in the same cycle and available for
the SRAM in the following cycle 4. Although we have a pipeline level of 2 we need no
additional address or data register. The read data is available for two cycles (rdy cnt 2 or 1
for the next read) and the master has the freedom to select one of the two cycles to read the
data.

It has to be noted that pipelining with one read per cycle is possible with SimpCon. We

210 9 THE SIMPCON INTERCONNECT

just showed a 2 cycle slave in this example. For a SDRAM memory interface the ready
counter will stay either at 2 or 1 during the single cycle reads (depending on the slave
pipeline level). It will go down to 0 only for the last data word to read.

9.7 Available VHDL Files

Besides the SimpCon documentation, some example VHDL files for slave devices and
bridges are available from http://opencores.org/?do=project&who=simpcon. All
components are also part of the standard JOP distribution.

9.7.1 Components

• sc pack.vhd defines VHDL records and some constants.

• sc test slave.vhd is a very simple SimpCon device. A counter to be read out and a
register that can be written and read. There is no connection to the outer world. This
example can be used as basis for a new SimpCon device.

• sc sram16.vhd is a memory controller for 16-bit SRAM.

• sc sram32.vhd is a memory controller for 32-bit SRAM.

• sc sram32 flash.vhd is a memory controller for 32-bit SRAM, a NOR Flash, and a
NAND Flash as used in the Cycore FPGA board for JOP.

• sc uart.vhd is a simple UART with configurable baud rate and FIFO width.

• sc usb.vhd is an interface to the parallel port of the FTDI 2232 USB chip. The register
definition is identical to the UART and the USB connection can be used as a drop in
replacement for a UART.

• sc isa.vhd interfaces the old ISA bus. It can be used for the popular CS8900 Ethernet
chip.

• sc sigdel.vhd is a configurable sigma-delta ADC for an FPGA that needs just two
external components: a capacitor and a resistor.

• sc fpu.vhd provides an interface to the 32-bit FPU available at www.opencores.org.

• sc arbiter *.vhd different zero cycle SimpCon arbiters for CMP systems written by
Christof Pitter [99].

http://opencores.org/?do=project&who=simpcon
www.opencores.org

9.8 WHY A NEW INTERCONNECTION STANDARD? 211

9.7.2 Bridges

• sc2wb.vhd is a SimpCon/Wishbone [94] bridge.

• sc2avalon.vhd is a SimpCon/Avalon [4] bridge to integrate a SimpCon based design
with Altera’s SOPC Builder [5].

• sc2ahbsl.vhd provides an interface to AHB slaves as defined in Gaisler’s GRLIB [45].
Many of the available GPL AHB modules from the GRLIB can be used in a SimpCon
based design.

9.8 Why a New Interconnection Standard?

There are many interconnection standards available for SoC designs. The natural question
is: Why propose a new one? The answer is given in the following section. In summary, the
available standards are still in the tradition of backplane busses and do not fit very well for
pipelined on-chip interconnections.

9.8.1 Common SoC Interconnections

Several point-to-point and bus standards have been proposed. The following section gives
a brief overview of common SoC interconnection standards.

The Advanced Microcontroller Bus Architecture (AMBA) [7] is the interconnection
definition from ARM. The specification defines three different busses: Advanced High-
performance Bus (AHB), Advanced System Bus (ASB), and Advanced Peripheral Bus
(APB). The AHB is used to connect on-chip memory, cache, and external memory to the
processor. Peripheral devices are connected to the APB. A bridge connects the AHB to
the lower bandwidth APB. An AHB bus transfer can be one cycle at burst operation. With
the APB a bus transfer requires two cycles and no burst mode is available. Peripheral bus
cycles with wait states are added in the version 3 of the APB specification. ASB is the
predecessor of AHB and is not recommended for new designs (ASB uses both clock phases
for the bus signals – very uncommon for today’s synchronous designs). The AMBA 3 AXI
(Advanced eXtensible Interface) [8] is the latest extension to AMBA. AXI introduces out-
of-order transaction completion with the help of a 4 bit transaction ID tag. A ready signal
acknowledges the transaction start. The master has to hold the transaction information (e.g.
address) until the interconnect signals ready. This enhancement ruins the elegant single
cycle address phase from the original AHB specification.

212 9 THE SIMPCON INTERCONNECT

Wishbone [94] is a public domain standard used by several open-source IP cores. The
Wishbone interface specification is still in the tradition of microcomputer or backplane
busses. However, for a SoC interconnect, which is usually point-to-point,3 this is not the
best approach. The master is requested to hold the address and data valid through the whole
read or write cycle. This complicates the connection to a master that has the data valid only
for one cycle. In this case the address and data have to be registered before the Wishbone
connect or an expensive (time and resources) multiplexer has to be used. A register results
in one additional cycle latency. A better approach would be to register the address and
data in the slave. In that case the address decoding in the slave can be performed in the
same cycle as the address is registered. A similar issue, with respect to the master, exists
for the output data from the slave: As it is only valid for a single cycle, the data has to be
registered by the master when the master is not reading it immediately. Therefore, the slave
should keep the last valid data at its output even when the Wishbone strobe signal (wb.stb)
is not assigned anymore. Holding the data in the slave is usually for free from the hardware
complexity – it is just a specification issue. In the Wishbone specification there is no way to
perform pipelined read or write. However, for blocked memory transfers (e.g. cache load)
this is the usual way to achieve good performance.

The Avalon [4] interface specification is provided by Altera for a system-on-a-
programmable-chip (SOPC) interconnection. Avalon defines a great range of inter-
connection devices ranging from a simple asynchronous interface intended for direct static
RAM connection up to sophisticated pipeline transfers with variable latencies. This great
flexibility provides an easy path to connect a peripheral device to Avalon. How is this
flexibility possible? The Avalon Switch Fabric translates between all those different inter-
connection types. The switch fabric is generated by Altera’s SOPC Builder tool. However,
it seems that this switch fabric is Altera proprietary, thus tying this specification to Altera
FPGAs.

The On-Chip Peripheral Bus (OPB) [68] is an open standard provided by IBM and used
by Xilinx. The OPB specifies a bus for multiple masters and slaves. The implementation
of the bus is not directly defined in the specification. A distributed ring, a centralized
multiplexer, or a centralized AND/OR network are suggested. Xilinx uses the AND/OR
approach and all masters and slaves must drive the data busses to zero when inactive.

Sonics Inc. defined the Open Core Protocol (OCP) [91] as an open, freely available
standard. The standard is now handled by the OCP International Partnership4.

3Multiplexers are used instead of busses to connect several slaves and masters.
4www.ocpip.org

www.ocpip.org

9.8 WHY A NEW INTERCONNECTION STANDARD? 213

Adress

Data

clk

address

rd

rd_data

ack

1 2 3 4

Figure 9.8: Classic basic read transaction

9.8.2 What’s Wrong with the Classic Standards?

All SoC interconnection standards, which are widely in use, are still in the tradition of a
backplane bus. They force the master to hold the address and control signals until the slave
provides the data or acknowledges the write request. However, this is not necessary in a
clocked, synchronous system. Why should we force the master to hold the signals? Let
the master move on after submitting the request in a single cycle. Forcing the address and
control valid for the complete request disables any form of pipelined requests.

Figure 9.8 shows a read transaction with wait states as defined in Wishbone [94], Avalon
[4], OPB [68], and OCP [91].5 The master issues the read request and the address in cycle
1. The slave has to reset the ack in the same cycle. When the slave data is available, the
acknowledge signal is set (ack in cycle 3). The master has to read the data and register them
within the same clock cycle. The master has to hold the address, write data, and control
signal active until the acknowledgement from the slave arrives. For pipelined reads, the ack
signal can be split into two signals (available in Avalon and OCP): one to accept the request
and a second one to signal the available data.

The master is blind about the status of the outstanding transaction until it is finished. It
could be possible that the slave informs the master in how many cycles the result will be
available. This information can help in building deeply pipelined masters.

Only the AMBA AHB [7] defines a different protocol. A single cycle address phase
followed by a variable length data phase. The slave acknowledgement (HREADY) is only
necessary in the data phase avoiding the combinatorial path from address/command to the
acknowledgement. Overlapping address and data phase is allowed and recommended for

5The signal names are different, but the principle is the same for all mentioned busses.

214 9 THE SIMPCON INTERCONNECT

high performance. Compared to SimpCon, AMBA AHB allows for single stage pipelining,
whereas SimpCon makes multi-stage pipelining possible using the ready counter (rdy cnt).
The rdy cnt signal defines the delay between the address and the data on a read, signalled by
the slave. Therefore, the pipeline depth of the bus and the slaves is only limited by the bit
width of rdy cnt.

Another issue with all interconnection standards is the single cycle availability of the
read data at the slaves. Why not keep the read data valid as long as there is no new read
data available? This feature would allow the master to be more flexible when to read the
data. It would allow issuing a read command and then continuing with other instructions –
a feature known as data pre-fetching to hide long latencies.

The last argument sounds contradictory to the first argument: provide the transaction data
at the master just for a single cycle, but request the slave to hold the data for several cycles.
However, it is motivated by the need to free up the master, keep it moving, and move the data
hold (register) burden into the slave. As data processing bottlenecks are usually found in
the master devices, it sounds natural to move as much work as possible to the slave devices
to free up the master.

Avalon, Wishbone, and OPB provide a single cycle latency access to slaves due to the
possibility of acknowledging a request in the same cycle. However, this feature is a scaling
issue for larger systems. There is a combinatorial path from master address/command to
address decoding, slave decision on ack, slave ack multiplexing back to the master and the
master decision to hold address/command or read the data and continue. Also, the slave
output data multiplexer is on a combinatorial path from the master address.

AMBA, AHB, and SimpCon avoid this scaling issue by requesting the acknowledge in
the cycle following the command. In SimpCon and AMBA, the select for the read data
multiplexer can be registered as the read address is known at least one cycle before the
data is available. The later acknowledgement results in a minor drawback on SimpCon
and AMBA (nothing is for free): It is not possible to perform a single cycle read or write
without pipelining. A single, non pipelined transaction takes two cycles without a wait
state. However, a single cycle read transaction is only possible for very simple slaves. Most
non-trivial slaves (e.g. memory interfaces) will not allow a single cycle access anyway.

9.8.3 Evaluation

We compare the SimpCon interface with the AMBA and the Avalon interface as two ex-
amples of common interconnection standards. As an evaluation example, we interface an
external asynchronous SRAM with a tight timing. The system is clocked at 100 MHz and
the access time for the SRAM is 15 ns. Therefore, there are 5 ns available for on-chip reg-

9.8 WHY A NEW INTERCONNECTION STANDARD? 215

Performance Memory Interconnect

16,633 32 bit SRAM SimpCon
14,259 32 bit SRAM AMBA
14,015 32 bit SRAM Avalon/PTF
13,920 32 bit SRAM Avalon/VHDL
15,762 32 bit on-chip Avalon
14,760 16 bit SRAM SimpCon
11,322 16 bit SRAM Avalon

7,288 16 bit SDRAM Avalon

Table 9.2: JOP performance with different interconnection types

ister to SRAM input and SRAM output to on-chip register delays. As an SoC, we use an
actual low-cost FPGA (Cyclone EP1C6 [3] and a Cyclone II).

The master is a Java processor (JOP [123, 130]). The processor is configured with a
4 KB instruction cache and a 512 byte on-chip stack cache. We run a complete application
benchmark on the different systems. The embedded benchmark (Kfl as described in [122])
is an industrial control application already in production.

Table 9.2 shows the performance numbers of this JOP/SRAM interface on the embedded
benchmark. It measures iterations per second and therefore higher numbers are better. One
iteration is the execution of the main control loop of the Kfl application. For a 32 bit SRAM
interface, we compare SimpCon against AMBA and Avalon. SimpCon outperforms AMBA
by 17% and Avalon by 19%6 on a 32 bit SRAM.

The AMBA experiment uses the SRAM controller provided as part of GRLIB [45] by
Gaisler Research. We avoided writing our own AMBA slave to verify that the AMBA
implementation on JOP is correct. To provide a fair comparison between the single master
solutions with SimpCon and Avalon, the AMBA bus was configured without an arbiter. JOP
is connected directly to the AMBA memory slave. The difference between the SimpCon and
the AMBA performance can be explained by two facts: (1) as with the Avalon interconnect,
the master has the information when the slave request is ready at the same cycle when the
data is available (compared to the rdy cnt feature); (2) the SRAM controller is conservative
as it asserts HREADY one cycle later than the data is available in the read register (HRDATA).
The second issue can be overcome by a better implementation of the SRAM AMBA slave.

6The performance is the measurement of the execution time of the whole application, not only the difference
between the bus transactions.

216 9 THE SIMPCON INTERCONNECT

The Avalon experiment considers two versions: an SOPC Builder generated interface
(PTF) to the memory and a memory interface written in VHDL. The SOPC Builder interface
performs slightly better than the VHDL version that generates the Avalon waitrequest signal.
It is assumed that the SOPC Builder version uses fixed wait states within the switch fabric.

We also implemented an Avalon interface to a single-cycle on-chip memory. SimpCon
is even faster with the 32 bit off-chip SRAM than with the on-chip memory connected
via Avalon. Furthermore, we also performed experiments with a 16 bit memory interface
to the same SRAM. With this smaller data width the pressure on the interconnection and
memory interface is higher. As a result the difference between SimpCon and Avalon gets
larger (30%) on the 16 bit SRAM interface. To complete the picture we also measured the
performance with an SDRAM memory connected to the Avalon bus. We see that the large
latency of an SDRAM is a big performance issue for the Java processor.

9.9 Summary

This chapter describes a simple (with respect to the definition and implementation) and
efficient SoC interconnect [127]. The novel signal rdy cnt allows an early signalling to the
master when read data will be valid. This feature allows the master to restart a stalled
pipeline earlier to react for arriving data. Furthermore, this feature also enables pipelined
bus transactions with a minimal effort on the master and the slave side.

We have compared SimpCon quantitative with AMBA and Avalon, two common in-
terconnection definitions. The application benchmark shows a performance advantage of
SimpCon by 17% over AMBA and 19% over Avalon interfaces to an SRAM.

SimpCon is used as the main interconnect for the Java processor JOP in a single mas-
ter, multiple salves configuration. SimpCon is also used to implement a shared memory
chip-multiprocessor version of JOP. Furthermore, in a research project on time-triggered
network-on-chip [128] SimpCon is used as the socket to this NoC.

The author thanks Kevin Jennings and Tommy Thorn for the interesting discussions
about SimpCon, Avalon, and on-chip interconnection in general at the Usenet newsgroup
comp.arch.fpga.

10 Chip Multiprocessing

In order to generate a small and predictable processor, several advanced and resource-
consuming features (such as instruction folding or branch prediction) were omitted from
the design. The resulting low resource usage of JOP makes it possible to integrate more
than one processor in an FPGA. Since embedded applications are naturally multi-threaded
systems, the performance can easily be enhanced using a multi-processor solution.

This chapter describes the configuration of a chip multiprocessor (CMP) version of JOP.
The various SimpCon based arbiters have been developed by Christof Pitter and are de-
scribed in [98, 99, 100]. A multi-processor JVM with shared memory offers research pos-
sibilities such as: scheduling of Java threads and synchronization between the processors
or WCET analysis for the shared memory access.

The project file to start with is cyccmp, a configuration for three processors with a TDMA
based arbiter in the Cycore board with the EP1C12.

10.1 Memory Arbitration

A central arbiter regulates the synchronization on memory read and write operations.

10.1.1 Main Memory

Three different arbiter are available for the access policy to the main memory: priority
based, fairness based, and a time division multiple access (TDMA) arbiter. The main mem-
ory is shared between all cores.

The TDMA based memory arbiter provides a static schedule for the memory access.
Therefore, access time to the memory is independent of tasks running on other cores. The
worst-case execution time (WCET) of a memory loads or stores can be calculated by consid-
ering the worst-case phasing of the memory access pattern relative to the TDMA schedule
[96].

In the default configuration each processor cores has an equally sized slot for the memory
access. The TDMA schedule can also be optimized for different utilizations of processing

218 10 CHIP MULTIPROCESSING

cores. The TDMA schedule can be optimized to distribute slack time of tasks to other tasks
with a tighter deadline [136].

10.1.2 I/O Devices

Each core contains a set of local I/O devices, needed for the runtime system (e.g., timer
interrupt, lock support). The serial interface for program download and a stdio device is
connected to the first core.

For additional I/O devices two options exist: either they are connected to one core, or
shared by all/some cores. The first option is useful when the bandwidth requirement of the
I/O device is high. As I/O devices are memory mapped they can be connected to the main
memory arbiter in the same way as the memory controller. In that case the I/O devices are
shared between the cores and standard synchronization for the access is needed. For high
bandwidth demands a dedicated arbiter for I/O devices or even for a single device can be
used.

An interrupt line of an I/O device can be connected to a single core or to several cores.
As interrupts can be individually disabled in software, a connection of all interrupt lines to
all cores provides the most flexible solution.

10.2 Booting a CMP System

One interesting aspect of a CMP system is how the startup or boot-up is performed. On
power-up, the FPGA starts the configuration state machine to read the FPGA configuration
data either from a Flash memory or via a download cable from the PC during the develop-
ment process. When the configuration has finished, an internal reset is generated. After this
reset, microcode instructions are executed, starting from address 0. At this stage, we have
not yet loaded any application program (Java bytecode). The first sequence in microcode
performs this task. The Java application can be loaded from an external Flash memory, via
a PC serial line, or an USB-port.

10.3 CMP SCHEDULING 219

In the next step, a minimal stack frame is generated and the special method Startup.boot()
is invoked, even though some parts of the JVM are not yet setup. From now on JOP runs in
Java mode. The method boot() performs the following steps:

• Send a greeting message to stdout

• Detect the size of the main memory

• Initialize the data structures for the garbage collector

• Initialize java.lang.System

• Print out JOP’s version number, detected clock speed, and memory size

• Invoke the static class initializers in a predefined order

• Invoke the main method of the application class

The boot-up process is the same for all processors until the generation of the internal
reset and the execution of the first microcode instruction. From that point on, we have to
take care that only one processor performs the initialization steps.

All processors in the CMP are functionally identical. Only one processor is designated
to boot-up and initialize the whole system. Therefore, it is necessary to distinguish between
the different CPUs. We assign a unique CPU identity number (CPU ID) to each processor.
Only processor CPU0 is designated to do all the boot-up and initialization work. The other
CPUs have to wait until CPU0 completes the boot-up and initialization sequence. At the
beginning of the booting sequence, CPU0 loads the Java application. Meanwhile, all other
processors are waiting for an initialization finished signal of CPU0. This busy wait is per-
formed in microcode. When the other CPUs are enabled, they will run the same sequence
as CPU0. Therefore, the initialization steps are guarded by a condition on the CPU ID.

10.3 CMP Scheduling

There are two possibilities to run multiple threads on the CMP system:

1. A single thread per processor

2. Several threads on each processor

220 10 CHIP MULTIPROCESSING

For the configuration of one thread per processor the scheduler does not need to be
started. Running several threads on each core is managed via the JOP real-time threads
RtThread.

The scheduler on each core is a preemptive, priority based real-time scheduler. As each
thread gets a unique priority, no FIFO queues within priorities are needed. The best ana-
lyzable real-time CMP scheduler does not allow threads to migrate between cores. Each
thread is pinned to a single core at creation. Therefore, standard scheduling analysis can be
performed on a per core base. Threads cannot migrate from one core to another one.

Similar to the uniprocessor version of JOP, the application is divided into an initialization
phase and a mission phase. During the initialization phase, a predetermined core executes
only one thread that has to create all data structures and the threads for the mission phase.
During transition to the mission phase all created threads are started.

The uniprocessor real-time scheduler for JOP has been enhanced to facilitate the schedul-
ing of threads in the CMP configuration. Each core executes its own instance of the sched-
uler. The scheduler is implemented as Runnable, which is registered as an interrupt handler
for the core local timer interrupt. The scheduling is not tick-based. Instead, the timer in-
terrupt is reprogrammed after each scheduling decision. During the mission start, the other
cores and timer interrupts are enabled.

Another interesting option to use a CMP system is to execute exactly one thread per
core. In this configuration scheduling overheads can be avoided and each core can reach
an utilization of 100% without missing a deadline. To explore the CMP system without
a scheduler, a mechanism is provided to register objects, which implement the Runnable
interface, for each core. When the other cores are enabled, they execute the run method of
the Runnable as their main method.

10.3.1 One Thread per Core

The first processor executes, as usual, main(). To execute code on the other cores a Runnable
has to be registered for each core. After registering those Runnables the other cores need
to be started. The code in Listing 10.1 shows an example that can be found in test/cmp/Hel-
loCMP.java.

10.3.2 Scheduling on the CMP System

Running several threads on each core is possible with RtThread and setting the core for each
thread with RtThread.setProcessor(nr). The example in Listing 10.2 (test/cmp/RtHelloCMP.java)
shows registering of 50 threads on all available cores. On missionStart() the threads are

10.3 CMP SCHEDULING 221

distributed to the cores, a scheduler for each core registered as timer interrupt handler, and
the other cores started.

222 10 CHIP MULTIPROCESSING

public class HelloCMP implements Runnable {

int id ;
static Vector msg;

public HelloCMP(int i) {
id = i ;

}

public static void main(String[] args) {

msg = new Vector();
System.out.println(”Hello World from CPU 0”);

SysDevice sys = IOFactory.getFactory().getSysDevice();
for (int i=0; i<sys.nrCpu−1; ++i) {

Runnable r = new HelloCMP(i+1);
Startup.setRunnable(r, i);

}

// start the other CPUs
sys.signal = 1;
// print their messages
for (;;) {

int size = msg.size();
if (size!=0) {

StringBuffer sb = (StringBuffer) msg.remove(0);
System.out.println(sb);

}
}

}

public void run() {
StringBuffer sb = new StringBuffer ();
sb.append(”Hello World from CPU ”);
sb.append(id);
msg.addElement(sb);

}
}

Listing 10.1: A CMP version of Hello World

10.3 CMP SCHEDULING 223

public class RtHelloCMP extends RtThread {

public RtHelloCMP(int prio, int us) { super(prio, us); }

int id ;
public static Vector msg;
final static int NR THREADS = 50;

public static void main(String[] args) {
msg = new Vector();
System.out.println(”Hello World from CPU 0”);
SysDevice sys = IOFactory.getFactory().getSysDevice();
for (int i=0; i<NR THREADS; ++i) {

RtHelloCMP th = new RtHelloCMP(1, 1000∗1000);
th . id = i ;
th .setProcessor(i%sys.nrCpu);

}
RtThread.startMission(); // start mission and other CPUs
for (;;) { // print their messages

RtThread.sleepMs(5);
int size = msg.size();
if (size!=0) {

StringBuffer sb = (StringBuffer) msg.remove(0);
for (int i=0; i<sb.length(); ++i) {

System.out.print(sb.charAt(i));
}}}}

public void run() {
StringBuffer sb = new StringBuffer ();
StringBuffer ping = new StringBuffer ();
sb.append(”Thread ”); sb.append((char) (’A’+id)); sb.append(” start on CPU ”);
sb.append(IOFactory.getFactory().getSysDevice().cpuId); sb.append(”\r\n”);
msg.addElement(sb);
waitForNextPeriod();
for (;;) {

ping.setLength(0);
ping.append((char) (’A’+id));
msg.addElement(ping);
waitForNextPeriod();

}}
}

Listing 10.2: A CMP version of Hello World with the scheduler

11 Evaluation

In this chapter, we present the evaluation results for JOP. In the following section, the hard-
ware platform that is used for benchmarking is described. This is followed by a comparison
of JOP’s resource usage with other soft-core processors. In Section 11.3 the performance of
a number of different solutions for embedded Java is compared with embedded application
benchmarks. Comparison at bytecode level can be found in [122]. This chapter concludes
with a description of real-world applications based on JOP.

11.1 Hardware Platforms

During the development of JOP and its predecessors, several different FPGA boards were
developed. The first experiments involved using Altera FPGAs EPF8282,
EPF8452, EPF10K10 and ACEX 1K30 on boards that were connected to the printer
port of a PC for configuration, download and communication. The next step was the
development of a stand-alone board with FLASH memory and static RAM. This board was
developed in two variants, one with an ACEX 1K50 and the other with a Cyclone EP1C6
or EP1C12. Both boards are pin-compatible and are used in commercial applications of
JOP. The Cyclone board is the hardware that is used for the following evaluations.

This board is an ideal development platform for JOP. Static RAM and FLASH are con-
nected via independent buses to the FPGA. All unused FPGA pins and the serial line are
available via four connectors. The FLASH can be used to store configuration data for the
FPGA and application program/data. The FPGA can be configured with a ByteBlasterMV
download cable or loaded from the FLASH (with a small CPLD on board). As the FLASH
is also connected to the FPGA, it can be programmed from the FPGA. This allows for up-
grades of the Java program and even the processor core itself in the field. The board is
slightly different from other FPGA prototyping boards, in that its connectors are on the
bottom side. Therefore, it can be used as a module (60 mm x 48 mm), i.e. as part of a larger
board that contains the periphery. The Cyclone board contains:

• Altera Cyclone EP1C6Q240 or EP1C12Q240

• Step Down voltage regulator (1V5)

226 11 EVALUATION

• Crystal clock (20 MHz) at the PLL input (up to 640 MHz internal)

• 512 KB FLASH (for FPGA configuration and program code)

• 1 MB fast asynchronous RAM (15 ns)

• Up to 128 MB NAND FLASH

• ByteBlasterMV port

• Watchdog with a LED

• EPM7064 PLD to configure the FPGA from the FLASH on watchdog reset

• Serial interface driver (MAX3232)

• 56 general-purpose I/O pins

The RAM consists of two independent 16-bit banks (with their own address and control
lines). Both RAM chips are on the bottom side of the PCB, directly under the FPGA
pins. As the traces are very short (under 10 mm), it is possible to use the RAMs at full
speed without reflection problems. The two banks can be combined to form 32-bit RAM or
support two independent CPU cores. Pictures and the schematic of the board can be found
in Appendix E.1.

The expansion board Baseio hosts the CPU module and provides a complete Java proces-
sor system with Internet connection. A step down switching regulator with a large AC/DC
input range supplies the core board. All input and output pins are EMC/ESD-protected
and routed to large connectors (5.08 mm Phoenix). Analog comparators can be used to
build sigma-delta ADCs. For FPGA projects with a network connection, a CS8900 Ether-
net controller with an RJ45 connector is included on the expansion board. Pictures and the
schematic of the board can be found in Appendix E.2.

11.2 Chip Area and Clock Frequency

Cost is an important issue for embedded systems. The cost of a chip is directly related
to the die size (the cost per die is roughly proportional to the square of the die area [62]).
Processors for embedded systems are therefore optimized for minimum chip size. In this
section, we will compare JOP with different processors in terms of size. One major design
objective in the development of JOP was to create a small system that can be implemented
in a low-cost FPGA.

11.2 CHIP AREA AND CLOCK FREQUENCY 227

Soft-core Logic Cells Memory Frequency

JOP 3,300 7.6 KB 100 MHz
YARI 6,668 18.9 KB 75 MHz
LEON3 7,978 10.9 KB 35 MHz
picoJava 27,560 47.6 KB 40 MHz

Table 11.1: Resource consumption and maximum operating frequency of JOP, YARI,
LEON3, and picoJava.

Table 11.1 compares the resource consumption and maximum clock frequency of a time-
predictable processor (JOP), a standard MIPS architecture (YARI), the LEON SPARC pro-
cessor, and a complex Java processor (picoJava), when implemented in the same FPGA
(Altera EP1C6/12 FPGA [3]). For the resource comparison we compare the consumption
of the two basic structures of an FPGA; Logic cells (LC) and embedded memory blocks.
The maximum frequency for all soft-core processors is in the same technology.

JOP is configured with a 1 KB stack cache, 2 KB microcode ROM, and 4 KB method
cache with 16 blocks. YARI is a MIPS compatible soft-core [27], optimized for FPGA
technology. YARI is configured with a 4-way set-associative instruction cache and a 4-
way set-associative write-through data cache. Both caches are 8 KB. LEON3 [44], the
open-source implementation of the SPARC V8 architecture, has been ported to the exact
same hardware that was used for the JOP numbers. LEON3 is representative for a RISC
processor that is used in embedded real-time systems (e.g., by ESA for space missions).
The size a frequency numbers of picoJava-II [90] are taken from an implementation in a
Altera Cyclone-II FPGA [103].

The streamlined architecture of JOP results in a small design: JOP is half the size of
the MIPS core YARI or the SPARC core LEON. Compared with picoJava, JOP consumes
about 12% of the resources. JOP’s size allows implementing a CMP version of JOP even
in a low-cost FPGA. The simple pipeline of JOP achieves the highest clock frequency of
the three designs. From the frequency comparison we can estimate that the maximum clock
frequency of JOP in an ASIC will also be higher than a standard RISC pipeline in an ASIC.

To prove that the VHDL code for JOP is as portable as possible, JOP was also imple-
mented in a Xilinx Spartan-3 FPGA [154]. Only the instantiation and initialization code for
the on-chip memories is vendor-specific, whilst the rest of the VHDL code can be shared
for the different targets. JOP consumes about the same LC count in the Spartan device, but
has a slower clock frequency (83 MHz).

228 11 EVALUATION

Processor Core Memory Sum.
(gate) (gate) (gate)

JOP 20K 93K 113K
picoJava 128K 314K 442K
aJile 25K 912K 937K
Pentium MMX 1125K

Table 11.2: Gate count estimates for various processors

Table 11.2 provides gate count estimates for JOP, picoJava, the aJile processor, and, as a
reference, an old Intel Pentium MMX processor. Equivalent gate count for an LC1 varies
between 5.5 and 7.4 – we chose a factor of 6 gates per LC and 1.5 gates per memory bit for
the estimated gate count for JOP in the table. JOP is listed in the typical configuration that
consumes 3300 LCs. The Pentium MMX contains 4.5M transistors [40] that are equivalent
to 1125K gates.

We can see from the table that the on-chip memory dominates the overall gate count of
JOP, and to an even greater extent, of the aJile processor. The aJile processor is roughly the
same size as the Pentium MMX, and both are about 10 times larger than JOP.

11.3 Performance

One important question remains: is a time-predictable processor slow? We evaluate the
average case performance of JOP by comparing it with other embedded Java systems: Java
processors from industry and academia and two just-in-time (JIT) compiler based systems.
For the comparison we use JavaBenchEmbedded,2 a set of open-source Java benchmarks for
embedded systems. Kfl and Lift are two real-world applications, described in Section 11.4,
adapted with a simulation of the environment to run as stand-alone benchmarks. UdpIp is a
simple client/server test program that uses a TCP/IP stack written in Java.

Table 11.3 shows the raw data of the performance measurements of different embedded
Java systems for the three benchmarks. The numbers are iterations per second whereby
a higher value represents better performance. Figure 11.1 shows the results scaled to the
performance of JOP.

1The factors are derived from the data provided for various processors in Chapter 12 and from the resource
estimates in [121].

2Available at http://www.jopwiki.com/JavaBenchEmbedded.

http://www.jopwiki.com/JavaBenchEmbedded

11.3 PERFORMANCE 229

Kfl UdpIp Lift

Cjip 176 91
jamuth 3400 1500
EJC 9893 2882
SHAP 11570 5764 12226
aJ100 14148 6415
JOP 19907 8837 18930
picoJava 23813 11950 25444
CACAO/YARI 39742 17702 38437

Table 11.3: Application benchmark performance on different Java systems. The table
shows the benchmark results in iterations per second – a higher value means
higher performance.

The numbers for JOP are taken from an implementation in the Altera Cyclone FPGA [3],
running at 100 MHz. JOP is configured with a 4 KB method cache and a 1 KB stack cache.

Cjip [70] and aJ100 [2] are commercial Java processors, which are implemented in an
ASIC and clocked at 80 and 100 Mhz, respectively. Both cores do not cache instructions.
The aj100 contains a 32 KB on-chip stack memory. jamuth [149] and SHAP [157] are
Java processors that are implemented in an FPGA. jamuth is the commercial version of the
Java processor Komodo [76], a research project for real-time chip multithreading. jamuth
is configured with a 4 KB direct-mapped instruction cache for the measurements. The
architecture of SHAP is based on JOP and enhanced with a hardware object manager. SHAP
also implements the method cache [102]. The benchmark results for SHAP are taken from
the SHAP website.3 SHAP is configured with a 2 KB method cache and 2 KB stack cache.

picoJava [90] is a Java processor developed by Sun. picoJava is no longer produced
and the second version (picoJava-II) was available as open-source Verilog code. Puffitsch
implemented picoJava-II in an FPGA (Altera Cyclone-II) and the performance numbers
are obtained from that implementation [103]. picoJava is configured with a direct-mapped
instruction cache and a 2-way set-associative data cache. Both caches are 16 KB.

EJC [41] is an example of a JIT system on a RISC processor (32-bit ARM720T at
74 MHz). The ARM720T contains an 8 KB unified cache. To compare JOP with a JIT
based system in exactly the same hardware we use the research JVM CACAO [75] on
top of the MIPS compatible soft-core YARI [28]. YARI is configured with a 4-way set-

3http://shap.inf.tu-dresden.de/, accessed December, 2008

http://shap.inf.tu-dresden.de/

230 11 EVALUATION

1.5

2

2.5

3

rf
or
m
an

ce

Kfl

0

0.5

1Pe
r

UdpIp

Lift

Figure 11.1: Performance comparison of different Java systems with embedded application
benchmarks. The results are scaled to the performance of JOP

associative instruction cache and a 4-way set-associative write-through data cache. Both
caches are 8 KB.

The measurements do not provide a clear answer to the question of whether a time-
predictable architecture is slow. JOP is about 40% faster than the commercial Java processor
aJ100, but picoJava is 30% faster than JOP and the JIT/RISC combination (CACAO/YARI)
is about 2.7 times faster than JOP. We conclude that a time-predictable solution will never
be as fast in the average case as a solution optimized for the average case.

11.4 Applications

Since the start of the development of JOP in late 2000 it has been successfully deployed in
several embedded control and automation systems. The following section highlights three
different industrial real-time applications that are based on JOP. This section is based on
[129]; the first application is also described in [117].

Implementation of a processor in an FPGA is a little bit more expensive than using an

11.4 APPLICATIONS 231

ASIC processor. However, additional application logic, such as a communication controller
or an AD converter, can also be integrated into the FPGA. Integration of the processor and
the surrounding logic in the same reprogrammable chip is a flexible solution: one can even
produce the PCB before all logic components are developed as the interconnection is pro-
grammed on-chip and not routed on the PCB. For low-volume projects, as those presented
in this section, this flexibility reduces development cost and therefore outweighs the cost of
the FPGA device. It has to be noted that low-cost FPGAs, that are big enough for JOP, are
available at $11 for a single unit.

Furthermore, most embedded systems are implemented as distributed systems and even
very small and memory constraint devices need to communicate. In control applications this
communication has to be performed under real-time constraints. We show in this section
different communication systems that are all based on simple communication patterns.

11.4.1 The Kippfahrleitung

The first commercial project where JOP had to prove that a Java processor is a valuable
option for embedded real-time systems was a distributed motor control system.

In rail cargo, a large amount of time is spent on loading and unloading of goods wagons.
The contact wire above the wagons is the main obstacle. Balfour Beatty Austria devel-
oped and patented a technical solution, the so-called Kippfahrleitung, to tilt up the contact
wire. Figure 11.2 shows the construction of the mechanical tilt system driven by an asyn-
chronous motor (just below the black tube). The little box mounted on the mast contains
the control system. The black cable is the network interconnection of all control systems.
In Figure 11.3 the same mast is shown with the contact wire tilted up.

The contact wire is tilted up on a distance of up to one kilometer. For a maximum distance
of 1 km the whole system consists of 12 masts. Each mast is tilted by an asynchronous
motor. However, the individual motors have to be synchronized so the tilt is performed
in a smooth way. The maximum difference of the position of the contact wire is 10 cm.
Therefore, a control algorithm has to slow down the faster motors.

Hardware

Each motor is controlled by its own embedded system (as seen in Figure 11.2) by silicon
switches. The system measures the position of the arm with two end sensors and a revolving
sensor. It also supervises the supply voltage and the amount of current through the motor.
Those values are transmitted to the base station.

232 11 EVALUATION

Figure 11.2: A Kippfahrleitung mast in down position

Figure 11.3: The mast in the up position with the tilted contact wire

11.4 APPLICATIONS 233

Figure 11.4: The base station with the operator interface

The base station, shown in Figure 11.4, provides the user interface for the operator via
a simple display and a keyboard. It is usually located at one end of the line. The base
station acts as master and controls the deviation of individual positions during the tilt. In
technical terms, this is a distributed, embedded real-time control system, communicating
over a shared network. The communication bus (up to one kilometer) is attached via an
isolated RS485 data interface.

Although this system is not a mass product, there are nevertheless cost constraints. Even
a small FPGA is more expensive than a general purpose CPU. To compensate for this,
additional chips for the memory and the FPGA configuration were optimized for cost. One
standard 128 KB Flash is used to hold FPGA configuration data, the Java program and a
logbook. External main memory is reduced to 128 KB with an 8-bit data bus. Furthermore,
all peripheral components, such as two UARTS, four sigma delta ADCs, and I/O ports are
integrated in the FPGA.

Five silicon switches in the power line are controlled by the application program. A
wrong setting of the switches due to a software error could result in a short circuit. Simple
logic in the FPGA (coded in VHDL) can enforce the proper conditions for the switches.
The sigma-delta ADCs are used to measure the temperature of the silicon switches and the
current through the motor.

234 11 EVALUATION

private static void forever () {

for (;;) {
Msg.loop();
Triac .loop ();
if (Msg.available) {

handleMsg();
} else {

chkMsgTimeout();
}
handleWatchDog();
Timer.waitForNextInterval ();

}
}

Listing 11.1: The cyclic executive (simplified version)

Software Architecture

The main task of the program is to measure the position using the revolving sensor and to
communicate with the base station under real-time constraints. The conservative style of
a cyclic executive was chosen for the application. At application start all data structures
are allocated and initialized. In the mission phase no allocation takes place and the cyclic
executive loop is entered and never exited. The simple infinite loop, unblocked at constant
time intervals, is shown in Listing 11.1. At the time the application was developed no static
WCET analysis tool for Java was available. The actual execution time was measured and
the maximum values have been recorded regularly. The loop and communication periods
have been chosen to leave slack fur unexpected execution time variations. However, the
application code and the Java processor are fully WCET analyzable, as shown later [134].
The application is used in Chapter 6 as a test case for the WCET analysis tool.

No interrupts or direct memory access (DMA) devices that can influence the execution
time are used in the simple system. All sensors and the communication port are polled in
the cyclic executive.

11.4 APPLICATIONS 235

Communication

Communication is based on a master/slave model. Only the base station (the master) is
allowed to send a request to a single mast station. This station is then required to reply
within bounded time. The master handles timeout and retry. If an irrecoverable error occurs,
the base station switches off the power for all mast stations, including the power supplies to
the motors. This is the safe state of the whole system.

In a master/slave protocol no media access protocol is needed. In the case of a failure in
the slave that delays a message collision can occur. The collision is detected by a violation
of the message CRC. Spurious collisions are tolerated due to the retry of the base station.
If the RS485 link is broken and only a subset of the mast stations reply the base station, the
base station switches of the power supply for the whole system.

On the other hand the mast stations supervise the base station. The base station is required
to send the requests on a regular basis. If this requirement is violated, each mast station
switches off its motor. The local clocks are not synchronized. The mast stations measure
the time elapsed since the last request from the base station and locally switch off based on
a timeout.

The maximum distance of 1 km determines the maximum baud rate of the RS485 com-
munication network. The resulting 12 masts on such a long line determine the number of
packets that have to be sent in one master/slave round. Therefore, the pressure is high on the
packet length. The data is exchanged in small packets of four bytes, including a one-byte
CRC. To simplify the development, commands to reprogram the Flash in the mast stations
and to force a reset are included. Therefore, it is possible to update the program, or even
change the FPGA configuration, over the network.

11.4.2 The SCADA Device TeleAlarm

TeleAlarm (TAL) is a typical remote terminal unit of a supervisory control and data acqui-
sition (SCADA) system. It is used by the Lower Austria’s energy provider EVN (electricity,
gas, and heating) to monitor the distribution plant. TeleAlarm also includes output ports for
remote control of gas valves.

Hardware

The TAL device consists of a CPU FPGA module and an I/O board. The FPGA module
contains an Altera Cyclone device, 1 MB static memory, 512 KB Flash, and 32 MB NAND
Flash. The I/O board contains several EMC protected digital input and output ports, two
20 mA input ports, Ethernet connection, and a serial interface. Furthermore, the device

236 11 EVALUATION

SCADA Central System

Operator

SCADA Network

Modem Pool

Modem

TAL

Valve

Input Value

Input Value

Figure 11.5: EVN SCADA system with the modem pool and TALs as remote terminal units

performs loading of a rechargeable battery to survive power down failures. On power down,
an important event for a energy provider, an alarm is sent. The rechargeable battery is also
monitored and the device switches itself off when the minimal voltage threshold is reached.
This event is sent to the SCADA system before the power is switched off.

The same hardware is also used for a different project: a lift control in an automation
factory in Turkey. The simple lift control software is now used as a test case for WCET tool
development (see Chapter 6).

Communication

The communication between the TAL and the main supervisory control system is performed
with a proprietary protocol. On a value change, the TAL sends the new data to the central
system. Furthermore, the remote units are polled by the central system at a regular base. The
TAL itself also sends the actual state regularly. TAL can communicate via Internet/Ethernet,
a modem, and via SMS to a mobile phone.

EVN uses a mixture of dial-up network and leased lines for the plant communication.
The dial-up modems are hosted by EVN itself. For safety and security reason there is no
connection between the control network and the office network or the Internet.

11.4 APPLICATIONS 237

Figure 11.5 shows the SCADA system setup at EVN. Several TALs are connected via
modems to the central modem pool. The modem pool itself is connected to the central
server. It has to be noted that there are many more TALs in the field than modems in the
pool. The communication is usually very short (several seconds) and performed on demand
and on a long regular interval. Not shown in the figure are additional SCADA stations and
other remote terminal units from other manufacturers.

11.4.3 Support for Single Track Railway Control

Another application of JOP is in a communication device with soft real-time properties –
Austrian Railways’ (ÖBB) new support system for single-track lines. The system helps the
superintendent at the railway station to keep track of all trains on the track. He can submit
commands to the engine drivers of the individual trains. Furthermore, the device checks the
current position of the train and generates an alarm when the train enters a track segment
without a clearance.

At the central station all track segments are administered and controlled. When a train
enters a non-allowed segment all trains nearby are warned automatically. This warning
generates an alarm at the locomotive and the engine driver has to perform an emergency
stop.

Figure 11.6 gives an overview of the system. The display and command terminal at the
railway station is connected to the Intranet of the railway company. On the right side of
the figure a picture of the terminal that is connected to the Internet via GPRS and to a GPS
receiver is shown. Each locomotive that enters the track is equipped with either one or two
of those terminals.

It has to be noted that this system is not a safety-critical system. The communication
over a public mobile phone network is not reliable and the system is not certified for safety.
The intension is just to support the superintendent and the engine drivers.

Hardware

Each locomotive is equipped with a GPS receiver, a GPRS modem, and the communication
device (terminal). The terminal is a custom made device. The FPGA module is the same as
in TAL, only the I/O board is adapted for this application. The I/O board contains several
serial line interfaces for the GPS receiver, the GPRS modem, debug and download, and
display connection. Auxiliary I/O ports connected to relays are reserved for future use. A
possible extension is to stop the train automatically.

238 11 EVALUATION

Traffic Display and Command

Superintendent

Railway Intranet

Mobile Network

GPRS Internet GPS

GPRS Modem

Terminal

Figure 11.6: Support system for single track railway control for the Austrian railway com-
pany

Communication

The current position of the train is measured with GPS and the current track segment is
calculated. The number of this segment is regularly sent to the central station. To increase
the accuracy of the position, differential GPS correction data is transmitted to the terminal.
The differential GPS data is generated by a ground base reference located at the central
station.

The exchange of positions, commands, and alarm messages is performed via a public mo-
bile phone network (via GPRS). The connection is secured via a virtual private network that
is routed by the mobile network provider to the railway company’s Intranet. The application
protocol is command/response and uses UDP/IP as transport layer. Both systems (the cen-
tral server and the terminal) can initiate a command. The system that sends the command
is responsible for retries when no response arrives. The deadline for the communication of
important messages is in the range of several seconds. After several non-successful retries
the operator is informed about the communication error. He is than in charge to perform
the necessary actions.

Besides the application specific protocol a TFTP server is implemented in the terminal.

11.4 APPLICATIONS 239

It is used to update the track data for the position detection and to upload a new version
of the software. The flexibility of the FPGA and an Internet connection to the embedded
system allows to upgrade the software and even the processor in the field.

11.4.4 Communication and Common Design Patterns

Although we described embedded systems from quite different application domains we
have been facing similar challenges. All systems are distributed systems and therefore need
to communicate. Furthermore, they are real-time systems (at least with soft deadlines) and
need to trust the communication and perform regular checks. The issues in the design of
embedded real-time systems are quite similar in the three described projects. We found that
several design patterns are used over and over and describe three of them in this section.

Master/Slave Designs

Developing safe embedded systems is an exercise in reducing complexity. One paradigm
to simplify embedded software development is the master/slave pattern. Usually a single
master is responsible to initiate commands to the slaves. The single master is also responsi-
ble to handle reliable communication. The master/slave pattern also fits very well with the
command/response pattern for the communication.

Dealing with Communication Errors

Communication is not per se reliable. The RS485 link at the Kippfahrleitung operates in
a rough environment and electromagnetic influences can lead to packet loss. The TAL
system can suffer from broken phone lines. The single track control system operates on
a public mobile phone network – a network without any guarantees for the GPRS data
traffic. Therefore, we have to find solutions to operate in a safe and controlled manner the
distributed system despite the chance of communication errors and failures.

Reliable communication is usually provided by the transport layer, TCP/IP in the case
of the Internet. However, the timeouts in TCP/IP are way longer than the communication
deadlines within control systems. The approach in all three presented projects is to use a
datagram oriented protocol and perform the timeout and retransmission at the application
level. To simplify the timeout handling a simple command and response pattern is used.
One partner sends a command and expects the response within a specific time bound. The
command initiator is responsible for retransmission after the timeout. The response partner
just needs to reply to the command and does not need to remember the state of the com-
munication. After several timeouts the communication error is handled by an upper layer.

240 11 EVALUATION

Either the operator is informed (in the SCADA and the railway control system) or the whole
system is brought into a safe state (in the motor control project).

Communication errors are either transient or longer lasting. Transient communication
errors are lost packets due to network overload or external electromagnetic influences. In a
command/response system the lost packets (either the command or the response) is detected
by a timeout on the response. A simple retransmission of the command can correct those
transient errors.

A longer network failure, e.g. caused by a wire break, can be detected by too many trans-
mission retries. In such a case the system has to enter some form of safe state. Either
the power is switched off or a human operator has to be informed. The individual timeout
values and the number of retries depend, similar to thread periods, on the controlled envi-
ronment. In the Kippfahrleitung the maximum timeout is in the millisecond range, whereas
in the SCADA system the timeout is several minutes.

Software Update

Correction of implementation bugs during development can be very costly when physical
access to the embedded system is necessary for a software update. Furthermore, a system is
usually never really finished. When the system is in use the customer often finds new ways
to enhance the system or requests additional features.

Therefore, an important feature of a networked embedded system is a software and pa-
rameter update in the field. In the first project the software update is performed via a
home-made protocol. The other projects use the Internet protocol to some extent and there-
fore TFTP is a natural choice. TFTP is a very simple protocol that can be implemented
within about 100 lines of code. It is applicable even in very small and resource constraint
embedded devices.

11.4.5 Discussion

Writing embedded control software in Java is still not very common due to the lack of small
and efficient implementations of the JVM. Our Java processor JOP is a solution for some
embedded systems.

Using Java as the implementation language was a pleasure during programming and de-
bugging. We did not waste many hours to hunt for pointer related bugs. The stricter (com-
pared to C) type system of Java also catches many more programming errors at compile
time. However, when using Java in a small embedded system one should not expect that a
full blown Java library is available. Almost all of the code had to be written without library

11.5 SUMMARY 241

support. Embedded C programmers are aware of that fact, but Java programmers are new in
the embedded domain and have to learn the difference between a PC and a 1 MB memory
embedded system.

Up to date FPGAs in embedded control systems are only used for auxiliary functions or
to implement high-performance DPS algorithm directly in hardware. Using the FPGA as
the main processor is still not very common. However, combining the main processor with
some peripheral devices in the same chip can simplify the PCB layout and also reduce the
production cost. Furthermore, a field-reprogrammable hardware device offers a great deal
of flexibility: When some part of the software becomes the bottleneck, an implementation of
that function in hardware can be a solution. Leaving some headroom in the logic resources
can extend the lifetime of the product.

For a prototype, JOP has been attached to a time-triggered network-on-chip [128]. It
would be an interesting exercise to implement a JOP based node in a time-triggered dis-
tributed system as proposed by [73]. The combination of a real-time Java processor and a
real-time network can ensure real-time characteristics for the whole system.

11.5 Summary

In this chapter, we presented an evaluation of JOP. We have seen that JOP is the smallest
hardware realization of the JVM available to date. Due to the efficient implementation
of the stack architecture, JOP is also smaller than a comparable RISC processor in an
FPGA. Implemented in an FPGA, JOP has the highest clock frequency of all known Java
processors.

We compared JOP against several embedded Java systems. JOP is about 40% faster than
the commercial Java processor aJ100, but picoJava and a JIT/RISC combination are faster
than JOP. These results show that a time-predictable architecture does not need to be slow,
but will never be as fast as an architecture optimized for average case performance.

Furthermore, we have presented three industrial applications implemented in Java on
an embedded, real-time Java processor. All projects included custom designed hardware
(digital functions) and the central computation unit implemented in a single FPGA. The
applications are written in pure Java without the need for native methods in C. Java proved to
be a productive implementation language for embedded systems. Usage of JOP in four real-
world applications showed that the processor is mature enough to be used in commercial
projects.

12 Related Work

Several projects provide solutions to speedup execution of Java programs in embedded
systems. Two different approaches can be found to improve Java bytecode execution by
hardware. The first type operates as a Java coprocessor in conjunction with a general-
purpose microprocessor. This coprocessor is placed in the instruction fetch path of the
main processor and translates Java bytecodes to sequences of instructions for the host CPU
or directly executes basic Java bytecodes. The complex instructions are emulated by the
main processor. Java chips in the second category replace the general-purpose CPU. All
applications therefore have to be written in Java. While the first type enables systems with
mixed code capabilities, the additional component significantly raises costs. This chapter
gives an overview of the most important Java processors and coprocessors from academia
and industry.

12.1 Java Coprocessors

The simplest enhancement for Java is a translation unit, which substitutes the switch state-
ment of an interpreter JVM (bytecode decoding) through hardware and/or translates simple
bytecodes to a sequence of RISC instructions on the fly.

A standard JVM interpreter contains a loop with a large switch statement that decodes
the bytecode (see Listing 3.1). This switch statement is compiled to an indirect branch. The
destinations of these indirect branches change frequently and do not benefit from branch-
prediction logic. This is the main overhead for simple bytecodes on modern processors.
The following approaches enhance the execution of Java programs on a standard processor
through the substitution of the memory read and switch statement with bytecode fetch and
decode through hardware.

12.1.1 Jazelle

Jazelle [9] is an extension of the ARM 32-bit RISC processor, similar to the Thumb state
(a 16-bit mode for reduced memory consumption). The Jazelle coprocessor is integrated

244 12 RELATED WORK

into the same chip as the ARM processor. The hardware bytecode decoder logic is imple-
mented in less than 12K gates. It accelerates, according to ARM, some 95% of the executed
bytecodes. 140 bytecodes are executed directly in hardware, while the remaining 94 are em-
ulated by sequences of ARM instructions. This solution also uses code modification with
quick instructions to substitute certain object-related instructions after link resolution. All
Java bytecodes, including the emulated sequences, are re-startable to enable a fast interrupt
response time.

A new ARM instruction puts the processor into the Java state. Bytecodes are fetched and
decoded in two stages, compared to a single stage in ARM state. Four registers of the ARM
core are used to cache the top stack elements. Stack spill and fill is handled automatically by
the hardware. Additional registers are reused for the Java stack pointer, the variable pointer,
the constant pool pointer and locale variable 0 (the this pointer in methods). Keeping the
complete state of the Java mode in ARM registers simplifies its integration into existing
operating systems.

12.2 Java Processors

Java Processors are primarily used in an embedded system. In such a system, Java is the
native programming language and all operating system related code, such as device drivers,
are implemented in Java. Java processors are simple or extended stack architectures with
an instruction set that resembles more or less the bytecodes from the JVM.

12.2.1 picoJava

Sun’s picoJava is the Java processor used as a reference for new Java processors and as the
basis for research into improving various aspects of a Java processor. Ironically, this pro-
cessor was never released as a product by Sun. After Sun decided to not produce picoJava
in silicon, Sun licensed picoJava to Fujitsu, IBM, LG Semicon and NEC. However, these
companies also did not produce a chip and Sun finally provided the full Verilog code under
an open-source license.

Sun introduced the first version of picoJava [90] in 1997. The processor was targeted
at the embedded systems market as a pure Java processor with restricted support of C.
picoJava-I contains four pipeline stages. A redesign followed in 1999, known as picoJava-
II. This is the version described below. picoJava-II was freely available with a rich set of
documentation [145, 146]. The probably first implementation of picoJava-II has been done
by Wolfgang Puffitsch [103, 105]. This implementation enabled the comparison of JOP

12.2 JAVA PROCESSORS 245

with picoJava-II in a similar FPGA (see Chapter 11)
The architecture of picoJava is a stack-based CISC processor implementing 341 differ-

ent instructions and is the most complex Java processor available. The processor can be
implemented in about 440K gates [37]. Simple Java bytecodes are directly implemented
in hardware, most of them execute in one to three cycles. Other performance critical in-
structions, for instance invoking a method, are implemented in microcode. picoJava traps
on the remaining complex instructions, such as creation of an object, and emulates this in-
struction. A trap is rather expensive and has a minimum overhead of 16 clock cycles. This
minimum value can only be achieved if the trap table entry is in the data cache and the first
instruction of the trap routine is in the instruction cache. The worst-case trap latency is 926
clock cycles [146]. This great variation in execution times for a trap hampers tight WCET
estimates.

picoJava provides a 64-entry stack cache as a register file. The core manages this register
file as a circular buffer, with a pointer to the top of stack. The stack management unit
automatically performs spill to and fill from the data cache to avoid overflow and underflow
of the stack buffer. To provide this functionality the register file contains five memory
ports. Computation needs two read ports and one write port, the concurrent spill and fill
operations the two additional read and write ports. The processor core consists of following
six pipeline stages:

Fetch: Fetch 8 bytes from the instruction cache or 4 bytes from the bus interface to the
16-byte-deep prefetch buffer.

Decode: Group and precode instructions (up to 7 bytes) from the prefetch buffer. Instruc-
tion folding is performed on up to four bytecodes.

Register: Read up to two operands from the register file (stack cache).

Execute: Execute simple instructions in one cycle or microcode for multi-cycle instruc-
tions.

Cache: Access the data cache.

Writeback: Write the result back into the register file.

The integer unit together with the stack unit provides a mechanism, called instruction fold-
ing, to speed up common code patterns found in stack architectures. When all entries are
contained in the stack cache, the picoJava core can fold these four instructions into one
RISC-style single cycle operation.

246 12 RELATED WORK

12.2.2 aJile JEMCore

aJile’s JEMCore is a direct-execution Java processor that is available as both an IP core
and a stand alone processor [2, 55]. It is based on the 32-bit JEM2 Java chip developed by
Rockwell-Collins. JEM2 is an enhanced version of JEM1, created in 1997 by the Rockwell-
Collins Advanced Architecture Microprocessor group. Rockwell-Collins originally devel-
oped JEM for avionics applications by adapting an existing design for a stack-based embed-
ded processor. Rockwell-Collins decided not to sell the chip on the open market. Instead,
it licensed the design exclusively to aJile Systems Inc., which was founded in 1999 by
engineers from Rockwell-Collins, Centaur Technologies, Sun Microsystems, and IDT.

The core contains 24 32-bit wide registers. Six of them are used to cache the top ele-
ments of the stack. The datapath consists of a 32-bit ALU, a 32-bit barrel shifter and the
support for floating point operations (disassembly/assembly, overflow and NaN detection).
The control store is a 4K by 56 ROM to hold the microcode that implements the Java byte-
code. An additional RAM control store can be used for custom instructions. This feature is
used to implement the basic synchronization and thread scheduling routines in microcode.
It results in low execution overhead with a thread-to-thread yield in less than one µs (at
100 MHz). An optional Multiple JVM Manager (MJM) supports two independent, mem-
ory protected JVMs. The two JVMs execute time-sliced on the processor. According to
aJile, the processor can be implemented in 25K gates (without the microcode ROM). The
MJM needs additional 10K gates.

Two silicon versions of JEM exist today: the aJ-80 and the aJ-100. Both versions com-
prise a JEM2 core, the MJM, 48 KB zero wait state RAM and peripheral components, such
as timer and UART. 16 KB of the RAM is used for the writable control store. The remain-
ing 32 KB is used for storage of the processor stack. The aJ-100 provides a generic 8-bit,
16-bit or 32-bit external bus interface, while the aJ-80 only provides an 8-bit interface. The
aJ-100 can be clocked up to 100 MHz and the aJ-80 up to 66 MHz. The power consumption
is about 1mW per MHz.

aJile was a member of the initial Real-Time for Java Expert Group. However, up to now,
no implementation of the RTSJ on top of the aJile processor emerged. One nice feature of
this processor is its availability. Low-level access to devices via the RTSJ RawMemoryAccess
objects has been shown on the aJile processor [54]. A relatively cheap development system,
the JStamp [147], was used to compare this processor with JOP.

The aJile processor is intended as a solution for real-time systems. However, no informa-
tion is available about bytecode execution times. As this processor is a commercial product
and has been on the market for some time, it is expected that its JVM implementation con-
firms to Java standards, as defined by Sun.

12.2 JAVA PROCESSORS 247

12.2.3 Cjip

The Cjip processor [53, 70] supports multiple instruction sets, allowing Java, C, C++, and
assembler to coexist. Internally, the Cjip uses 72 bit wide microcode instructions, to support
the different instruction sets. At its core, Cjip is a 16-bit CISC architecture with on-chip
36 KB ROM and 18 KB RAM for fixed and loadable microcode. Another 1 KB RAM
is used for eight independent register banks, string buffer and two stack caches. Cjip is
implemented in 0.35-micron technology and can be clocked up to 66 MHz. The logic core
consumes about 20% of the 1.4-million-transistor chip. The Cjip has 40 program controlled
I/O pins, a high-speed 8 bit I/O bus with hardware DMA and an 8/16 bit DRAM interface.

The JVM is implemented largely in microcode (about 88% of the Java bytecodes). Java
thread scheduling and garbage collection are implemented as processes in microcode. Mi-
crocode is also used to implement virtual peripherals such as watchdog timers, display and
keyboard interfaces, sound generators, and multimedia codecs.

Microcode instructions execute in two or three cycles. A JVM bytecode requires several
microcode instructions. The Cjip Java instruction set and the extensions are described in
detail in [69]. For example: a bytecode nop executes in 6 cycles while an iadd takes 12
cycles. Conditional bytecode branches are executed in 33 to 36 cycles. Object oriented
instructions, such getfield, putfield, or invokevirtual are not part of the instruction set.

12.2.4 Lightfoot

The Lightfoot 32-bit core [35] is a hybrid 8/32-bit processor based on the Harvard architec-
ture. Program memory is 8 bits wide and data memory is 32 bits wide. The core contains a
3-stage pipeline with an integer ALU, a barrel shifter, and a 2-bit multiply step unit. There
are two different stacks with the top elements implemented as registers and memory ex-
tension. The data stack is used to hold temporary data – it is not used to implement the
JVM stack frame. As the name implies, the return stack holds return addresses for sub-
routines and it can be used as an auxiliary stack. The processor architecture specifies three
different instruction formats: soft bytecodes, non-returnable instructions, and single-byte
instructions that can be folded with a return instruction. The core is available in VHDL and
can be implemented in less than 30K gates. Lightfood is now part of the VS2000 Typhoon
Family Microcontroller.1

1http://www.velocitysemi.com/processors.htm

http://www.velocitysemi.com/processors.htm

248 12 RELATED WORK

12.2.5 LavaCORE

LavaCORE [36] is another Java processor targeted at Xilinx FPGA architectures.2 It im-
plements a set of instructions in hardware and firmware. Floating-point operations are not
implemented. A 32x32-bit dual-ported RAM implements a register-file. For specialized
embedded applications, a tool is provided to analyze which subset of the JVM instructions
is used. The unused instructions can be omitted from the design. The core can be imple-
mented in 1926 CLBs (= 3800 LCs) in a Virtex-II (2V1000-5) and runs at 20 MHz.

12.2.6 Komodo, jamuth

Komodo [158] is a multithreaded Java processor with a four-stage pipeline. It is intended
as a basis for research on real-time scheduling on a multithreaded microcontroller [76].
Simple bytecodes are directly implemented, while more complex bytecodes, such as iaload,
are implemented as a microcode sequence. The unique feature of Komodo is the instruction
fetch unit with four independent program counters and status flags for four threads. A
priority manager is responsible for hardware real-time scheduling and can select a new
thread after each bytecode instruction. The follow-up project, jamuth [149], is a commercial
version of Komodo.

Komodo’s multithreading is similar to hyper-threading in modern processors that are try-
ing to hide latencies in instruction fetching. However, this feature leads to very pessimistic
WCET values (in effect rendering the performance gain useless). The fact that the pipeline
clock is only a quarter of the system clock also wastes a considerable amount of potential
performance.

12.2.7 FemtoJava

FemtoJava [71] is a research project to build an application specific Java processor. The
bytecode usage of the embedded application is analyzed and a customized version of Fem-
toJava is generated. FemtoJava implements up to 69 bytecode instructions for an 8 or 16
bit datapath. These instructions take 3, 4, 7 or 14 cycles to execute. Analysis of small
applications (50 to 280 byte code) showed that between 22 and 69 distinct bytecodes are
used. The resulting resource usage of the FPGA varies between 1000 and 2000 LCs. With
the reduction of the datapath to 16 bits the processor is not Java conformant.

2http://www.lavacore.com/

http://www.lavacore.com/

12.2 JAVA PROCESSORS 249

12.2.8 jHISC

The jHISC project [148] proposes a high-level instruction set architecture for Java. This
project is closely related to picoJava. The processor consumes 15500 LCs in an FPGA
and the maximum frequency in a Xilinx Virtex FPGA is 30 MHz. According to [148] the
prototype can only run simple programs and the performance is estimated with a simulation.
In [155] the clocks per instruction (CPI) values for jHISC are compared against picoJava
and JOP. However, it is not explained with which application the CPI values are collected.
We assume that the CPI values for picoJava and JOP are derived from the manual and do
not include any effects of pipeline stalls or cache misses.

12.2.9 SHAP

The SHAP Java processor [157], although now with a different pipeline structure and hard-
ware assisted garbage collection, has its roots in the JOP design. SHAP is enhanced with a
hardware object manager. That unit redirects field and array access during a copy operation
of the GC unit. SHAP also implements the method cache [102].

12.2.10 Azul

Azul Systems provides an impressive multiprocessor system for transactions oriented server
workloads [15]. A single Vega chip contains 54 64-bit RISC cores, optimized for the ex-
ecution of Java programs. Up to 16 Vega processors can be combined to a cache coherent
multiprocessor system with 864 processors cores, supporting up to 768 GB of shared mem-
ory.

13 Summary

In this chapter we will undertake a short review of the project and summarize the contri-
butions. Java for real-time systems is a new and active research area. This chapter offers
suggestions for future research, based on the described Java processor.

The research contributions made by this work are related to two areas: real-time Java and
resource-constrained embedded systems.

13.1 A Real-Time Java Processor

The goal of time-predictable execution of Java programs was a first-class guiding principle
throughout the development of JOP:

• The execution time for Java bytecodes can be exactly predicted in terms of the num-
ber of clock cycles. JOP is therefore a straightforward target for low-level WCET
analysis. There is no mutual dependency between consecutive bytecodes that could
result in unbounded timing effects.

• In order to provide time-predictable execution of Java bytecodes, the processor
pipeline is designed without any prefetching or queuing. This fact avoids hard-to-
analyze and possibly unbounded pipeline dependencies. There are no pipeline stalls,
caused by interrupts or the memory subsystem, to complicate the WCET analysis.

• A pipelined processor architecture calls for higher memory bandwidth. A standard
technique to avoid processing bottlenecks due to the higher memory bandwidth is
caching. However, standard cache organizations improve the average execution time
but are difficult to predict for WCET analysis. Two time-predictable caches are im-
plemented in JOP: a stack cache as a substitution for the data cache and a method
cache to cache the instructions.

As the stack is a heavily accessed memory region, the stack – or part of it – is placed
in local memory. This part of the stack is referred to as the stack cache and described

252 13 SUMMARY

in Section 4.4. Fill and spill of the stack cache is subjected to microcode control and
therefore time-predictable.

In Section 4.5, a novel way to organize an instruction cache, as method cache, is
given. The cache stores complete methods, and cache misses only occur on method
invocation and return. Cache block replacement depends on the call tree, instead of
instruction addresses. This method cache is easy to analyze with respect to worst-
case behavior and still provides substantial performance gain when compared to a
solution without an instruction cache.

• The time-predictable processor described above provides the basis for real-time Java.
To enable real-time Java to operate on resource-constrained devices, a simple real-
time profile was defined in Section 5.1 and implemented in Java on JOP. The beauty
of this approach is in implementing functions usually associated with an RTOS in
Java. This means that real-time Java is not based on an RTOS, and therefore not
restricted to the functionality provided by the RTOS. With JOP, a self-contained real-
time system in pure Java becomes possible.

The tight integration of the scheduler and the hardware that generates schedule events
results in low latency and low jitter of the task dispatch.

• The defined real-time profile suggests a new way to handle hardware interrupts to
avoid interference between blocking device drivers and application tasks. Hardware
interrupts other than the timer interrupt are represented as asynchronous events with
an associated thread. These events are normal schedulable objects and subject to
the control of the scheduler. With a minimum interarrival time, these events, and
the associated device drivers, can be incorporated into the priority assignment and
schedulability analysis in the same way as normal application tasks.

The contributions described above result in a time-predictable execution environment for
real-time applications written in Java, without the resource implications and unpredictabil-
ity of a JIT-compiler. The described processor architecture is a straightforward target for
low-level WCET analysis.

Implementing a real-time scheduler in Java opens up new possibilities. The scheduler
is extended to provide a framework for user-defined scheduling in Java. In Section ??, we
analyzed which events are exposed to the scheduler and which functions from the JVM need
to be available in the user space. A simple-to-use framework to evaluate new scheduling
concepts is given.

13.2 A RESOURCE-CONSTRAINED PROCESSOR 253

13.2 A Resource-Constrained Processor

Embedded systems are usually very resource-constrained. Using a low-cost FPGA as the
main target technology forced the design to be small. The following architectural features
address this issue:

• The architecture of JOP is best described as:

The JVM is a CISC stack architecture, whereas JOP is a RISC stack ar-
chitecture.

JOP contains its own instruction set, called microcode in this handbook, with a novel
way of mapping bytecodes to microcode addresses. This mapping has zero overheads
as described in Section 4.2. Basic bytecode instructions have a one-to-one mapping to
microcode instructions and therefore execute in a single cycle. The stack architecture
allows compact encoding of microinstructions in 8 bits to save internal memory.

This approach allows flexible implementation of Java bytecodes in hardware, as a
microcode sequence, or even in Java itself.

• The analysis of the JVM stack usage pattern in Section 4.4 led to the design of a
resource-efficient two-level stack cache. This two-level stack cache fits to the embed-
ded memory technologies of current FPGAs and ASICs and ensures fast execution of
basic instructions.

Part of the stack cache, which is implemented in an on-chip memory, is also used
for microcode variables and constants. This resource sharing not only reduces the
number of memory blocks needed for the processor, but also the number of data
paths to and from the execution unit.

• Interrupts are considered hard to handle in a pipelined processor, resulting in a com-
plex (and therefore resource consuming) implementation. In JOP, the above men-
tioned bytecode-microcode mapping is used in a clever way to avoid interrupt han-
dling in the core pipeline. Interrupts generate special bytecodes that are inserted in
a transparent way in the bytecode stream. Interrupt handlers can be implemented in
the same way as bytecodes are implemented: in microcode or in Java.

The above design decisions where chosen to keep the size of the processor small without
sacrificing performance. JOP is the smallest Java processor available to date that provides
the basis for an implementation of the CLDC specification (see Section ??). JOP is a fast
execution environment for Java, without the resource implications and unpredictability of

254 13 SUMMARY

a JIT-compiler. The average performance of JOP is similar to that of mainstream, non
real-time Java systems.

JOP is a flexible architecture that allows different configurations for different application
domains. Therefore, size can be traded against performance. As an example, resource
intensive instructions, such as floating point operations, can be implemented in Java. The
flexibility of an FPGA implementation also allows adding application-specific hardware
accelerators to JOP.

The small size of the processor allows the use of low-cost FPGAs in embedded systems
that can compete against standard microcontroller. JOP has been implemented in several
different FPGA families and is used in different real-world applications.

Programs for embedded and real-time systems are usually multi-threaded and a small
design provides a path to a multi-processor system in a mid-sized FPGA or in an ASIC.

A tiny architecture also opens new application fields when implemented in an ASIC.
Smart sensors and actuators, for example, are very sensitive to cost, which is proportional
to the die area.

13.3 Future Work

JOP provides a basis for various directions for future research. Some suggestions are given
below:

Real-time garbage collector: In Section 7, a real-time garbage collector was presented.
Hardware support of a real-time GC would be an interesting topic for further research.

Another question that remains with a real-time GC is the analysis of the worst-case
memory consumptions of tasks (similar to the WCET values), and scheduling the GC
so that it can keep up with the allocation rate.

Hardware accelerator: The flexibility of an FPGA implementation of a processor opens
up new possibilities for hardware accelerators. A further step would be to generate
an application specific-system in which part of the application code is moved to hard-
ware. Ideally, the hardware description should be extracted automatically from the
Java source. Preliminary work in this area, using JOP as its basis, can be found in
[48, 151].

Hardware scheduler: In JOP, scheduling and dispatch is done in Java (with some mi-
crocode support). For tasks with very short periods, the scheduling overheads can
prove to be too high. A scheduler implemented in hardware can shorten this time,
due to the parallel nature of the algorithm.

13.3 FUTURE WORK 255

Instruction cache: The cache solution, described in Section 4.5, provides predictable in-
struction cache behavior while, in the average case, still performing in a similar way
to a direct-mapped cache. However, an analysis tool for the worst-case behavior is
still needed. With this tool, and a more complex analysis tool for traditional instruc-
tion caches, we also need to verify that the worst-case miss penalty is lower than with
a traditional instruction cache.

A second interesting aspect of the method cache is the fact that the replacement de-
cision on a cache miss only occurs on method invoke and return. The infrequency
of this decision means that more time is available for more advanced replacement
algorithms.

Real-time Java: Although there is already a definition for real-time Java, i.e. the RTSJ
[25], this definition is not necessarily adequate. There is ongoing research on how
memory should be managed for real-time Java applications: scoped memory, as sug-
gested by the RTSJ, usage of a real-time GC, or application managed memory through
memory pools. However, almost no research has been done into how the Java library,
which is major part of Java’s success, can be used in real-time systems or how it can
be adapted to do so. The question of what the best memory management is for the
Java standard library remains unanswered.

Java computer: How would a processor architecture and operating system architecture
look in a ‘Java only’ system? Here, we need to rethink our approach to processes,
protection, kernel- and user-space, and virtual memory. The standard approach of
using memory protection between different processes is necessary for applications
that are programmed in languages that use memory addresses as data, i.e. pointer us-
age and pointer manipulation. In Java, no memory addresses are visible and pointer
manipulation is not possible. This very important feature of Java makes it a safe
language. Therefore, an error-free JVM means we do not need memory protection
between processes and we do not need to make a distinction between kernel and user
space (with all the overhead) in a Java system. Another reason for using virtual ad-
dresses is link addresses. However, in Java this issue does not exist, as all classes are
linked dynamically and the code itself (i.e. the bytecodes) only uses relative address-
ing.

Another issue here is the paging mechanism in a virtual memory system, which has
to be redesigned for a Java computer. For this, we need to merge the virtual memory
management with the GC. It does not make sense to have a virtual memory manager
that works with plain (e.g. 4 KB) memory pages without knowledge about object

256 13 SUMMARY

lifetime. We therefore need to incorporate the virtual memory paging with a genera-
tional GC. The GC knows which objects have not been accessed for a long time and
can be swapped out to the hard disk. Handling paging as part of the GC process also
avoids page fault exceptions and thereby simplifies the processor architecture.

Another question is whether we can substitute the process notation with threads, or
whether we need several JVMs on a Java only system. It depends. If we can live with
the concept of shared static class members, we can substitute heavyweight processes
with lightweight threads. It is also possible that we would have to define some further
thread local data structures in the system.

It is the opinion of the author that Java is a promising language for future real-time systems.
However, a number of issues remain to be solved. JOP, with its time-predictable execution
of Java bytecodes, is an important part of a real-time Java system.

A Publications

2003

• Martin Schoeberl. Using a Java Optimized Processor in a Real World Application.
In Proceedings of the First Workshop on Intelligent Solutions in Embedded Systems
(WISES 2003), pages 165–176, Austria, Vienna, June 2003.

• Martin Schoeberl. Design Decisions for a Java Processor. In Tagungsband Austrochip
2003, pages 115–118, Linz, Austria, October 2003.

• Martin Schoeberl. JOP: A Java Optimized Processor. In R. Meersman, Z. Tari, and
D. Schmidt, editors, On the Move to Meaningful Internet Systems 2003: Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES 2003), volume 2889
of Lecture Notes in Computer Science, pages 346–359, Catania, Italy, November
2003. Springer.

2004

• Martin Schoeberl. Restrictions of Java for Embedded Real-Time Systems. In Pro-
ceedings of the 7th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2004), pages 93–100, Vienna, Austria, May 2004.

• Martin Schoeberl. Design Rationale of a Processor Architecture for Predictable Real-
Time Execution of Java Programs. In Proceedings of the 10th International Con-
ference on Real-Time and Embedded Computing Systems and Applications (RTCSA
2004), Gothenburg, Sweden, August 2004.

• Martin Schoeberl. Real-Time Scheduling on a Java Processor. In Proceedings of the
10th International Conference on Real-Time and Embedded Computing Systems and
Applications (RTCSA 2004), Gothenburg, Sweden, August 2004.

258 A PUBLICATIONS

• Martin Schoeberl. Java Technology in an FPGA. In Proceedings of the International
Conference on Field-Programmable Logic and its applications (FPL 2004), Antwerp,
Belgium, August 2004.

• Martin Schoeberl. A Time Predictable Instruction Cache for a Java Processor. In
Robert Meersman, Zahir Tari, and Angelo Corsario, editors, On the Move to Mean-
ingful Internet Systems 2004: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2004), volume 3292 of Lecture Notes in Computer Sci-
ence, pages 371–382, Agia Napa, Cyprus, October 2004. Springer.

2005

• Flavius Gruian, Per Andersson, Krzysztof Kuchcinski, and Martin Schoeberl. Auto-
matic generation of application-specific systems based on a micro-programmed java
core. In Proceedings of the 20th ACM Symposium on Applied Computing, Embedded
Systems track, Santa Fee, New Mexico, March 2005.

• Martin Schoeberl. Design and implementation of an efficient stack machine. In
Proceedings of the 12th IEEE Reconfigurable Architecture Workshop (RAW2005),
Denver, Colorado, USA, April 2005. IEEE.

• Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Sys-
tems. PhD thesis, Vienna University of Technology, 2005.

• Martin Schoeberl. Evaluation of a Java processor. In Tagungsband Austrochip 2005,
pages 127–134, Vienna, Austria, October 2005.

2006

• Martin Schoeberl. A time predictable Java processor. In Proceedings of the Design,
Automation and Test in Europe Conference (DATE 2006), pages 800–805, Munich,
Germany, March 2006.

• Martin Schoeberl. Real-time garbage collection for Java. In Proceedings of the 9th
IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC 2006), pages 424–432, Gyeongju, Korea, April 2006.

• Martin Schoeberl. Instruction Cache für Echtzeitsysteme, April 2006. Austrian
patent AT 500.858.

A PUBLICATIONS 259

• Rasmus Pedersen and Martin Schoeberl. An embedded support vector machine. In
Proceedings of the Fourth Workshop on Intelligent Solutions in Embedded Systems
(WISES 2006), pages 79–89, Jun. 2006.

• Rasmus Pedersen and Martin Schoeberl. Exact roots for a real-time garbage collector.
In Proceedings of the Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES 2006), Paris, France, October 2006.

• Martin Schoeberl and Rasmus Pedersen. WCET analysis for a Java processor. In
Proceedings of the Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES 2006), Paris, France, October 2006.

2007

• Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and Anders P. Ravn. A pro-
file for safety critical java. In 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC’07), pages 94–101,
Santorini Island, Greece, May 2007. IEEE Computer Society.

• Martin Schoeberl. Mission modes for safety critical java. In 5th IFIP Workshop on
Software Technologies for Future Embedded & Ubiquitous Systems, May 2007.

• Raimund Kirner and Martin Schoeberl. Modeling the function cache for worst-case
execution time analysis. In Proceedings of the 44rd Design Automation Conference,
DAC 2007, San Diego, CA, USA, June 2007. ACM.

• Martin Schoeberl. A time-triggered network-on-chip. In International Conference
on Field-Programmable Logic and its Applications (FPL 2007), Amsterdam, Nether-
lands, August 2007.

• Christof Pitter and Martin Schoeberl. Time predictable CPU and DMA shared mem-
ory access. In International Conference on Field-Programmable Logic and its Appli-
cations (FPL 2007), Amsterdam, Netherlands, August 2007.

• Wolfgang Puffitsch and Martin Schoeberl. picoJava-II in an FPGA. In Proceedings
of the 5th international workshop on Java technologies for real-time and embedded
systems (JTRES 2007), Vienna, Austria, September 2007. ACM Press.

260 A PUBLICATIONS

• Martin Schoeberl. Architecture for object oriented programming languages. In Pro-
ceedings of the 5th international workshop on Java technologies for real-time and
embedded systems (JTRES 2007), Vienna, Austria, September 2007. ACM Press.

• Christof Pitter and Martin Schoeberl. Towards a Java multiprocessor. In Proceedings
of the 5th international workshop on Java technologies for real-time and embedded
systems (JTRES 2007), Vienna, Austria, September 2007. ACM Press.

• Martin Schoeberl and Jan Vitek. Garbage collection for safety critical Java. In Pro-
ceedings of the 5th international workshop on Java technologies for real-time and
embedded systems (JTRES 2007), Vienna, Austria, September 2007. ACM Press.

• Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect. In Proceed-
ings of the 15th Austrian Workhop on Microelectronics, Austrochip 2007, Graz, Aus-
tria, October 2007.

2008

• Martin Schoeberl. A Java processor architecture for embedded real-time systems.
Journal of Systems Architecture, 54/1–2:265–286, 2008.

• Trevor Harmon, Martin Schoeberl, Raimund Kirner, and Raymond Klefstad. A mod-
ular worst-case execution time analysis tool for Java processors. In Proceedings of
the 14th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2008), St. Louis, MO, United States, April 2008.

• Martin Schoeberl, Stephan Korsholm, Christian Thalinger, and Anders P. Ravn.
Hardware objects for Java. In Proceedings of the 11th IEEE International Sym-
posium on Object/component/service-oriented Real-time distributed Computing
(ISORC 2008), Orlando, Florida, USA, May 2008. IEEE Computer Society.

• Stephan Korsholm, Martin Schoeberl, and Anders P. Ravn. Interrupt Han-
dlers in Java. In Proceedings of the 11th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC 2008),
Orlando, Florida, USA, May 2008. IEEE Computer Society.

• Trevor Harmon, Martin Schoeberl, Raimund Kirner, and Raymond Klefstad. To-
ward libraries for real-time Java. In Proceedings of the 11th IEEE International
Symposium on Object/component/service-oriented Real-time distributed Computing
(ISORC 2008), Orlando, Florida, USA, May 2008. IEEE Computer Society.

A PUBLICATIONS 261

• Christof Pitter and Martin Schoeberl. Performance evaluation of a Java chip-
multiprocessor. In Proceedings of the 3rd IEEE Symposium on Industrial Embedded
Systems (SIES 2008), Jun. 2008.

• Martin Schoeberl. Application experiences with a real-time Java processor. In Pro-
ceedings of the 17th IFAC World Congress, Seoul, Korea, July 2008.

• Peter Puschner and Martin Schoeberl. On composable system timing, task timing,
and WCET analysis. In Proceedings of the 8th International Workshop on Worst-
Case Execution Time (WCET) Analysis, Prague, Czech Republic, July 2008.

• Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Sys-
tems. Number ISBN 978-3-8364-8086-4. VDM Verlag Dr. Müller, July 2008.

• Martin Schoeberl and Wolfgang Puffitsch. Non-blocking object copy for real-time
garbage collection. In Proceedings of the 6th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES 2008), September 2008.

• Wolfgang Puffitsch and Martin Schoeberl. Non-blocking root scanning for real-time
garbage collection. In Proceedings of the 6th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES 2008), September 2008.

• Walter Binder, Martin Schoeberl, Philippe Moret, and Alex Villazon. Cross-profiling
for embedded Java processors. In Proceedings of the 5th International Conference
on the Quantitative Evaluation of SysTems (QEST 2008), St Malo, France, September
2008.

• Walter Binder, Alex Villazon, Martin Schoeberl, and Philippe Moret. Cache-aware
cross-profiling for Java processors. In Proceedings of the 2008 international confer-
ence on Compilers, architecture, and synthesis forembedded systems (CASES 2008),
Atlanta, Georgia, October 2008. ACM.

2009

• Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal on
Embedded Systems, vol. 2009, Article ID 758480:17 pages, 2009.

• Martin Schoeberl. Time-predictable cache organization. In Proceedings of the First
International Workshop on Software Technologies for Future Dependable Distributed
Systems (STFSSD 2009), Tokyo, Japan, March 2009. IEEE Computer Society.

262 A PUBLICATIONS

• Andy Wellings and Martin Schoeberl. Thread-local scope caching for real-time Java.
In Proceedings of the 12th IEEE International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2009), Tokyo, Japan, March 2009.
IEEE Computer Society.

• Florian Brandner, Tommy Thorn, and Martin Schoeberl. Embedded JIT compilation
with CACAO on YARI. In Proceedings of the 12th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC 2009),
Tokyo, Japan, March 2009. IEEE Computer Society.

• Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen, Martin Schoeberl, and
Jan Vitek. Java for safety-critical applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled Systems (SafeCert 2009), Mar.
2009.

• Martin Schoeberl and Peter Puschner. Is chip-multiprocessing the end of real-time
scheduling? In Proceedings of the 9th International Workshop on Worst-Case Exe-
cution Time (WCET) Analysis, Dublin, Ireland, July 2009. OCG.

• Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumeration
and model checking based WCET analysis. In Proceedings of the 9th International
Workshop on Worst-Case Execution Time (WCET) Analysis, Dublin, Ireland, July
2009. OCG.

• Philippe Moret, Walter Binder, Martin Schoeberl, Alex Villazon, and Danilo Ansa-
loni. Analyzing performance and dynamic behavior of embedded Java software with
calling-context cross-profiling. In Proceedings of the 7th International Conference
on the Principles and Practice of Programming in Java (PPPJ 2009), Calgary, Al-
berta, Canada, August 2009. ACM.

• Martin Schoeberl, Walter Binder, Philippe Moret, and Alex Villazon. Design space
exploration for Java processors with cross-profiling. In Proceedings of the 6th Inter-
national Conference on the Quantitative Evaluation of SysTems (QEST 2009), Bu-
dapest, Hungary, September 2009. IEEE Computer Society.

• Philippe Moret, Walter Binder, Alex Villazon, Danilo Ansaloni, and Martin Schoe-
berl. Locating performance bottlenecks in embedded Java software with calling-
context cross-profiling. In Proceedings of the 6th International Conference on the
Quantitative Evaluation of SysTems (QEST 2009), Budapest, Hungary, September
2009. IEEE Computer Society.

A PUBLICATIONS 263

• Jack Whitham, Neil Audsley, and Martin Schoeberl. Using hardware methods to
improve time-predictable performance in real-time java systems. In Proceedings of
the 7th International Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2009), Madrid, Spain, September 2009. ACM Press.

2010

• Martin Schoeberl and Wolfgang Puffitsch. Non-blocking real-time garbage collec-
tion. Trans. on Embedded Computing Sys., accepted, 2010.

• Christof Pitter and Martin Schoeberl. A real-time Java chip-multiprocessor. Trans.
on Embedded Computing Sys., accepted, 2010.

• Walter Binder, Martin Schoeberl, Philippe Moret, and Alex Villazon. Cross-profiling
for Java processors. Software: Practice and Experience, accepted, 2010.

B Acronyms

ADC Analog to Digital Converter
ALU Arithmetic and Logic Unit
ASIC Application-Specific Integrated Circuit
BCET Best Case Execution Time
CFG Control Flow Graph
CISC Complex Instruction Set Computer
CLDC Connected Limited Device Configuration
CPI average Clock cycles Per Instruction
CRC Cyclic Redundancy Check
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
EDF Earliest Deadline First
EMC Electromagnetic Compatibility
ESD Electrostatic Discharge
FIFO Fist In, First Out
FPGA Field Programmable Gate Array
GC Garbage Collect(ion/or)
IC Instruction Count
ILP Instruction Level Parallelism
JOP Java Optimized Processor
J2ME Java2 Micro Edition
J2SE Java2 Standard Edition
JDK Java Development Kit
JIT Just-In-Time
JVM Java Virtual Machine
LC Logic Cell
LRU Least-Recently Used
MBIB Memory Bytes read per Instruction Byte
MCIB Memory Cycles per Instruction Byte

266 B ACRONYMS

MP Miss Penalty
MTIB Memory Transactions per Instruction Byte
MUX Multiplexer
OO Object Oriented
OS Operating System
RISC Reduced Instruction Set Computer
RT Real-Time
RTOS Real-Time Operating System
RTSJ Real-Time Specification for Java
SCADA Supervisory Control And Data Acquisition
SDRAM Synchronous DRAM
SRAM Static Random Access Memory
TOS Top Of Stack
UART Universal Asynchronous Receiver/Transmitter
VHDL Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language
WCET Worst-Case Execution Time

C JOP Instruction Set

The instruction set of JOP, the so-called microcode, is described in this appendix. Each
instruction consists of a single instruction word (8 bits) without extra operands and executes
in a single cycle1. Table C.1 lists the registers and internal memory areas that are used in
the dataflow description.

Name Description

A Top of the stack
B The element one below the top of stack
stack[] The stack buffer for the rest of the stack
sp The stack pointer for the stack buffer
vp The variable pointer. Points to the first local in the stack buffer
ar Address register for indirect stack access
pc Microcode program counter
offtbl Table for branch offsets
jpc Program counter for the Java bytecode
opd 8 bit operand from the bytecode fetch unit
opd16 16 bit operand from the bytecode fetch unit
memrda Read address register of the memory subsystem
memwra Write address register of the memory subsystem
memrdd Read data register of the memory subsystem
memwrd Write data register of the memory subsystem
mula, mulb Operands of the hardware multiplier
mulr Result register of the hardware multiplier
membcr Bytecode address and length register of the memory subsystem
bcstart Method start address register in the method cache

Table C.1: JOP hardware registers and memory areas

1The only multicycle instruction is wait and depends on the access time of the external memory

268 C JOP INSTRUCTION SET

pop

Operation Pop the top operand stack value

Opcode 00000000

Dataflow B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent pop

Description Pop the top value from the operand stack.

and

Operation Boolean AND int

Opcode 00000001

Dataflow A∧B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent iand

Description Build the bitwise AND (conjunction) of the two top elements of the
stack and push back the result onto the operand stack.

C JOP INSTRUCTION SET 269

or

Operation Boolean OR int

Opcode 00000010

Dataflow A∨B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ior

Description Build the bitwise inclusive OR (disjunction) of the two top elements
of the stack and push back the result onto the operand stack.

xor

Operation Boolean XOR int

Opcode 00000011

Dataflow A 6≡ B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ixor

Description Build the bitwise exclusive OR (negation of equivalence) of the two
top elements of the stack and push back the result onto the operand
stack.

270 C JOP INSTRUCTION SET

add

Operation Add int

Opcode 00000100

Dataflow A+B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent iadd

Description Add the two top elements from the stack and push back the result
onto the operand stack.

sub

Operation Subtract int

Opcode 00000101

Dataflow A−B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent isub

Description Subtract the two top elements from the stack and push back the result
onto the operand stack.

C JOP INSTRUCTION SET 271

stmul

Operation Multiply int

Opcode 00000110

Dataflow A→ mula
B→ mulb
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as first operand for the mul-
tiplier. The value one below the top of stack is stored as second
operand for the multiplier. This operation starts the multiplier. The
result is read with the ldmul instruction.

stmwa

Operation Store memory write address

Opcode 00000111

Dataflow A→ memwra
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as write address in the memory
subsystem for a following stmwd.

272 C JOP INSTRUCTION SET

stmra

Operation Store memory read address

Opcode 00001000

Dataflow A→ memrda
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as read address in the memory
subsystem. This operation starts the concurrent memory read. The
processor can continue with other operations. When the datum is
needed a wait instruction stalls the processor till the read access is
finished. The value is read with ldmrd.

C JOP INSTRUCTION SET 273

stmwd

Operation Store memory write data

Opcode 00001001

Dataflow A→ memwrd
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as write data in the memory
subsystem. This operation starts the concurrent memory write The
processor can continue with other operations. The wait instruction
stalls the processor till the write access is finished.

274 C JOP INSTRUCTION SET

stald

Operation Start array load

Opcode 00001010

Dataflow A→ memidx
B→ A
B→ memptr
stack[sp]→ B
sp−1→ sp

JVM equivalent xaload

Description The top value from the stack is stored as array index, the next as ref-
erence in the memory subsystem. This operation starts the concur-
rent array load. The processor can continue with other operations.
The wait instruction stalls the processor till the read access is fin-
ished. A null pointer or out of bounds exception is generated by the
memory subsystem and thrown at the next bytecode fetch.

C JOP INSTRUCTION SET 275

stast

Operation Start array store

Opcode 00001011

Dataflow A→ memval
B→ A
stack[sp]→ B
sp−1→ sp
nextcycle
A→ memidx
B→ A
B→ memptr
stack[sp]→ B
sp−1→ sp

JVM equivalent xastore

Description In the first cycle the top value from the stack is stored as value into
the memory subsystem. A microcode pop has to follow. In the sec-
ond cycle the top value from the stack is stored as array index, the
next as reference in the memory subsystem. This operation starts the
concurrent array store. The processor can continue with other oper-
ations. The wait instruction stalls the processor till the write access is
finished. A null pointer or out of bounds exception is generated by
the memory subsystem and thrown at the next bytecode fetch.

276 C JOP INSTRUCTION SET

stgf

Operation Start getfield

Opcode 00001100

Dataflow A→ memidx
B→ A
B→ memptr
stack[sp]→ B
sp−1→ sp

JVM equivalent getfield

Description The top value from the stack is stored as field index, the next as refer-
ence in the memory subsystem. This operation starts the concurrent
getfield. The processor can continue with other operations. The wait
instruction stalls the processor till the read access is finished. A null
pointer exception is generated by the memory subsystem and thrown
at the next bytecode fetch.

C JOP INSTRUCTION SET 277

stpf

Operation Start putfield

Opcode 00001101

Dataflow A→ memval
B→ A
stack[sp]→ B
sp−1→ sp
nextcycle
A→ memidx
B→ A
B→ memptr
stack[sp]→ B
sp−1→ sp

JVM equivalent putfield

Description In the first cycle the top value from the stack is stored as value into
the memory subsystem. A microcode pop has to follow. In the sec-
ond cycle the top value from the stack is stored as field index, the
next as reference in the memory subsystem. This operation starts the
concurrent putfield. The processor can continue with other opera-
tions. The wait instruction stalls the processor till the write access
is finished. A null pointer exception is generated by the memory
subsystem and thrown at the next bytecode fetch.

278 C JOP INSTRUCTION SET

stcp

Operation Start copy step

Opcode 00001110

Dataflow A→ memidx
B→ memsrc
stack[sp]→ B
sp−1→ sp
nextcycle
B→ memdest
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description In the first cycle the top value from the stack is stored as index, the
next as reference to which the index must be added for the source
position. A microcode pop has to follow. In the second cycle the ref-
erence for the destination is stored in the memory subsystem. This
operation starts the concurrent copy step. The processor can con-
tinue with other operations. The wait instruction stalls the processor
till the write access is finished. The memory subsystem translates
addresses such that copying of memory areas may be interrupted
without affecting the consistency of data. Copying has to be done
with increasing indices for correct operation. A negative index stops
the address translation.

C JOP INSTRUCTION SET 279

stbcrd

Operation Start bytecode read

Opcode 00001111

Dataflow A→ membcr
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as address and length of a
method in the memory subsystem. This operation starts the memory
transfer from the main memory to the bytecode cache (DMA). The
processor can continue with other operations. The wait instruction
stalls the processor till the transfer has finished. No other memory
accesses are allowed during the bytecode read.

280 C JOP INSTRUCTION SET

st<n>

Operation Store 32-bit word into local variable

Opcode 000100nn

Dataflow A→ stack[vp+n]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent astore <n>, istore <n>, fstore <n>

Description The value on the top of the operand stack is popped and stored in the
local variable at position n.

st

Operation Store 32-bit word into local variable

Opcode 00010100

Dataflow A→ stack[vp+opd]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent astore, istore, fstore

Description The value on the top of the operand stack is popped and stored in
the local variable at position opd. opd is taken from the bytecode
instruction stream.

C JOP INSTRUCTION SET 281

stmi

Operation Store in local memory indirect

Opcode 00010101

Dataflow A→ stack[ar]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the operand stack is stored in the local memory
(stack) at position ar.

stvp

Operation Store variable pointer

Opcode 00011000

Dataflow A→ vp
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in the
variable pointer (vp).

282 C JOP INSTRUCTION SET

stjpc

Operation Store Java program counter

Opcode 00011001

Dataflow A→ jpc
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in the
Java program counter (jpc).

star

Operation Store adress register

Opcode 00011010

Dataflow A→ ar
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in the
address register (ar). Due to a pipeline delay the register is valid on
cycle later for usage by ldmi and stmi.

C JOP INSTRUCTION SET 283

stsp

Operation Store stack pointer

Opcode 00011011

Dataflow A→ sp
B→ A
stack[sp]→ B

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in the
stack pointer (sp).

ushr

Operation Logical shift rigth int

Opcode 00011100

Dataflow B >>> A→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent iushr

Description The values are popped from the operand stack. An int result is cal-
culated by shifting the TOS-1 value rigth by s position, with zero
extension, where s is the value of the low 5 bits of the TOS. The
result is pushed onto the operand stack.

284 C JOP INSTRUCTION SET

shl

Operation Shift left int

Opcode 00011101

Dataflow B << A→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ishl

Description The values are popped from the operand stack. An int result is cal-
culated by shifting the TOS-1 value left by s position, where s is the
value of the low 5 bits of the TOS. The result is pushed onto the
operand stack.

shr

Operation Arithmetic shift rigth int

Opcode 00011110

Dataflow B >> A→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ishr

Description The values are popped from the operand stack. An int result is cal-
culated by shifting the TOS-1 value rigth by s position, with sign
extension, where s is the value of the low 5 bits of the TOS. The
result is pushed onto the operand stack.

C JOP INSTRUCTION SET 285

stm

Operation Store in local memory

Opcode 001nnnnn

Dataflow A→ stack[n]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the operand stack is stored in the local mem-
ory (stack) at position n. These 32 memory destinations represent
microcode local variables.

286 C JOP INSTRUCTION SET

bz

Operation Branch if value is zero

Opcode 010nnnnn

Dataflow if A = 0 then pc+o f f tbl[n]+2→ pc
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description If the top value from the operand stack is zero a microcode branch is
taken. The value is popped from the operand stack. Due to a pipeline
delay, the zero flag is delayed one cycle, i.e. the value from the last
but one instruction is taken. The branch is followed by two branch
delay slots. The branch offset is taken from the table o f f tbl indexed
by n.

C JOP INSTRUCTION SET 287

bnz

Operation Branch if value is not zero

Opcode 011nnnnn

Dataflow if A 6= 0 then pc+o f f tbl[n]+2→ pc
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description If the top value from the operand stack is not zero a microcode branch
is taken. The value is popped from the operand stack. Due to a
pipeline delay, the zero flag is delayed one cycle, i.e. the value from
the last but one instruction is taken. The branch is followed by two
branch delay slots. The branch offset is taken from the table o f f tbl
indexed by n.

nop

Operation Do nothing

Opcode 10000000

Dataflow −

JVM equivalent nop

Description The famous no operation instruction.

288 C JOP INSTRUCTION SET

wait

Operation Wait for memory completion

Opcode 10000001

Dataflow −

JVM equivalent –

Description This instruction stalls the processor until a pending memory instruc-
tion (stmra, stmwd or stbcrd) has completed. Two consecutive wait
instructions are necessary for a correct stall of the decode and exe-
cute stage.

jbr

Operation Conditional bytecode branch and goto

Opcode 10000010

Dataflow −

JVM equivalent ifnull, ifnonnull, ifeq, ifne, iflt, ifge, ifgt, ifle, if acmpeq, if acmpne, if icmpeq,
if icmpne, if icmplt, if icmpge, if icmpgt, if icmple, goto

Description Execute a bytecode branch or goto. The branch condition and offset
are calculated in the bytecode fetch unit. Arguments must be re-
moved with pop instructions in the following microcode instructions.

C JOP INSTRUCTION SET 289

ldm

Operation Load from local memory

Opcode 101nnnnn

Dataflow stack[n]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the local memory (stack) at position n is pushed
onto the operand stack. These 32 memory destinations represent mi-
crocode local variables.

ldi

Operation Load from local memory

Opcode 110nnnnn

Dataflow stack[n+32]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the local memory (stack) at position n+32 is pushed
onto the operand stack. These 32 memory destinations represent mi-
crocode constants.

290 C JOP INSTRUCTION SET

ldmrd

Operation Load memory read data

Opcode 11100010

Dataflow memrdd→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the memory system after a memory read is pushed
onto the operand stack. This operation is usually preceded by two
wait instructions.

ldmul

Operation Load multiplier result

Opcode 11100101

Dataflow mulr→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent (imul)

Description The result of the multiplier is pushed onto the operand stack.

C JOP INSTRUCTION SET 291

ldbcstart

Operation Load method start

Opcode 11100111

Dataflow bcstart→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The method start address in the method cache is pushed onto the
operand stack.

ld<n>

Operation Load 32-bit word from local variable

Opcode 111010nn

Dataflow stack[vp+n]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent aload <n>, iload <n>, fload <n>

Description The local variable at position n is pushed onto the operand stack.

292 C JOP INSTRUCTION SET

ld

Operation Load 32-bit word from local variable

Opcode 11101100

Dataflow stack[vp+opd]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent aload, iload, fload

Description The local variable at position opd is pushed onto the operand stack.
opd is taken from the bytecode instruction stream.

ldmi

Operation Load from local memory indirect

Opcode 11101101

Dataflow stack[ar]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the local memory (stack) at position ar is pushed onto
the operand stack.

C JOP INSTRUCTION SET 293

ldsp

Operation Load stack pointer

Opcode 11110000

Dataflow sp→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The stack pointer is pushed onto the operand stack.

ldvp

Operation Load variable pointer

Opcode 11110001

Dataflow vp→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The variable pointer is pushed onto the operand stack.

294 C JOP INSTRUCTION SET

ldjpc

Operation Load Java program counter

Opcode 11110010

Dataflow jpc→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The Java program counter is pushed onto the operand stack.

ld opd 8u

Operation Load 8-bit bytecode operand unsigned

Opcode 11110100

Dataflow opd→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description A single byte from the bytecode stream is pushed as int onto the
operand stack.

C JOP INSTRUCTION SET 295

ld opd 8s

Operation Load 8-bit bytecode operand signed

Opcode 11110101

Dataflow opd→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent (bipush)

Description A single byte from the bytecode stream is sign-extended to an int and
pushed onto the operand stack.

ld opd 16u

Operation Load 16-bit bytecode operand unsigned

Opcode 11110110

Dataflow opd 16→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description A 16-bit word from the bytecode stream is pushed as int onto the
operand stack.

296 C JOP INSTRUCTION SET

ld opd 16s

Operation Load 16-bit bytecode operand signed

Opcode 11110111

Dataflow opd 16→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent (sipush)

Description A 16-bit word from the bytecode stream is sign-extended to an int
and pushed onto the operand stack.

dup

Operation Duplicate the top operand stack value

Opcode 11111000

Dataflow A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent dup

Description Duplicate the top value on the operand stack and push it onto the
operand stack.

D Bytecode Execution Time

Table D.1 lists the bytecodes of the JVM with their opcode, mnemonics, the implementation
type and the execution time on JOP. In the implementation column hw means that this
bytecode has a microcode equivalent, mc means that a microcode sequence implements
the bytecode, Java means the bytecode is implemented in Java, and a ‘-’ indicates that
this bytecode is not yet implemented. For bytecodes with a variable execution time the
minimum and maximum values are given.

Opcode Instruction Implementation Cycles

0 nop hw 1
1 aconst null hw 1
2 iconst m1 hw 1
3 iconst 0 hw 1
4 iconst 1 hw 1
5 iconst 2 hw 1
6 iconst 3 hw 1
7 iconst 4 hw 1
8 iconst 5 hw 1
9 lconst 0 mc 2

10 lconst 1 mc 2
11 fconst 0 Java
12 fconst 1 Java
13 fconst 2 Java
14 dconst 0 -
15 dconst 1 -
16 bipush mc 2
17 sipush mc 3
18 ldc mc 7+r
19 ldc w mc 8+r

Table D.1: Implemented bytecodes and execution time in cycles

298 D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

20 ldc2 w20 mc 17+2*r
21 iload mc 2
22 lload mc 11
23 fload mc 2
24 dload mc 11
25 aload mc 2
26 iload 0 hw 1
27 iload 1 hw 1
28 iload 2 hw 1
29 iload 3 hw 1
30 lload 0 mc 2
31 lload 1 mc 2
32 lload 2 mc 2
33 lload 3 mc 11
34 fload 0 hw 1
35 fload 1 hw 1
36 fload 2 hw 1
37 fload 3 hw 1
38 dload 0 mc 2
39 dload 1 mc 2
40 dload 2 mc 2
41 dload 3 mc 11
42 aload 0 hw 1
43 aload 1 hw 1
44 aload 2 hw 1
45 aload 3 hw 1
46 iaload46 hw 7+3*r
47 laload mc 43+4*r
48 faload46 hw 7+3*r
49 daload -
50 aaload46 hw 7+3*r
51 baload46 hw 7+3*r
52 caload46 hw 7+3*r

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 299

Opcode Instruction Implementation Cycles

53 saload46 hw 7+3*r
54 istore mc 2
55 lstore mc 11
56 fstore mc 2
57 dstore mc 11
58 astore mc 2
59 istore 0 hw 1
60 istore 1 hw 1
61 istore 2 hw 1
62 istore 3 hw 1
63 lstore 0 mc 2
64 lstore 1 mc 2
65 lstore 2 mc 2
66 lstore 3 mc 11
67 fstore 0 hw 1
68 fstore 1 hw 1
69 fstore 2 hw 1
70 fstore 3 hw 1
71 dstore 0 mc 2
72 dstore 1 mc 2
73 dstore 2 mc 2
74 dstore 3 mc 11
75 astore 0 hw 1
76 astore 1 hw 1
77 astore 2 hw 1
78 astore 3 hw 1
79 iastore79 hw 10+2*r+w
80 lastore1 mc 48+2*r+2*w
81 fastore79 hw 10+2*r+w
82 dastore -
83 aastore Java
84 bastore79 hw 10+2*r+w
85 castore79 hw 10+2*r+w

Table D.1: Implemented bytecodes and execution time in cycles

300 D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

86 sastore79 hw 10+2*r+w
87 pop hw 1
88 pop2 mc 2
89 dup hw 1
90 dup x1 mc 5
91 dup x2 mc 7
92 dup2 mc 6
93 dup2 x1 mc 8
94 dup2 x2 mc 10
95 swap2 mc 4
96 iadd hw 1
97 ladd mc 26
98 fadd Java
99 dadd -

100 isub hw 1
101 lsub mc 38
102 fsub Java
103 dsub -
104 imul mc 35
105 lmul Java
106 fmul Java
107 dmul -
108 idiv Java
109 ldiv Java
110 fdiv Java
111 ddiv -
112 irem Java
113 lrem Java
114 frem Java
115 drem -
116 ineg mc 4
117 lneg mc 34
118 fneg Java

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 301

Opcode Instruction Implementation Cycles

119 dneg -
120 ishl hw 1
121 lshl mc 28
122 ishr hw 1
123 lshr mc 28
124 iushr hw 1
125 lushr mc 28
126 iand hw 1
127 land mc 8
128 ior hw 1
129 lor mc 8
130 ixor hw 1
131 lxor mc 8
132 iinc mc 8
133 i2l mc 5
134 i2f Java
135 i2d -
136 l2i mc 3
137 l2f -
138 l2d -
139 f2i Java
140 f2l -
141 f2d -
142 d2i -
143 d2l -
144 d2f -
145 i2b Java
146 i2c mc 2
147 i2s Java
148 lcmp Java
149 fcmpl Java
150 fcmpg Java
151 dcmpl -

Table D.1: Implemented bytecodes and execution time in cycles

302 D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

152 dcmpg -
153 ifeq mc 4
154 ifne mc 4
155 iflt mc 4
156 ifge mc 4
157 ifgt mc 4
158 ifle mc 4
159 if icmpeq mc 4
160 if icmpne mc 4
161 if icmplt mc 4
162 if icmpge mc 4
163 if icmpgt mc 4
164 if icmple mc 4
165 if acmpeq mc 4
166 if acmpne mc 4
167 goto mc 4
168 jsr not used
169 ret not used
170 tableswitch170 Java
171 lookupswitch171 Java
172 ireturn172 mc 23+r+l
173 lreturn173 mc 25+r+l
174 freturn172 mc 23+r+l
175 dreturn173 mc 25+r+l
176 areturn172 mc 23+r+l
177 return177 mc 21+r+l
178 getstatic mc 7+r
179 putstatic mc 8+w
180 getfield hw 11+2*r
181 putfield hw 13+r+w
182 invokevirtual182 mc 98+4r+l
183 invokespecial183 mc 74+3*r+l
184 invokestatic183 mc 74+3*r+l

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 303

Opcode Instruction Implementation Cycles

185 invokeinterface185 mc 112+6r+l
186 unused ba -
187 new187 Java
188 newarray188 Java
189 anewarray Java
190 arraylength mc 6+r
191 athrow3 Java
192 checkcast Java
193 instanceof Java
194 monitorenter mc 19
195 monitorexit mc 22
196 wide not used
197 multianewarray4 Java
198 ifnull mc 4
199 ifnonnull mc 4
200 goto w not used
201 jsr w not used
202 breakpoint -
203 reserved -
204 reserved -
205 reserved -
206 reserved -
207 reserved -
208 reserved -
209 jopsys rd209 mc 4+r
210 jopsys wr mc 5+w
211 jopsys rdmem mc 4+r
212 jopsys wrmem mc 5+w
213 jopsys rdint mc 3
214 jopsys wrint mc 3
215 jopsys getsp mc 3
216 jopsys setsp mc 4
217 jopsys getvp hw 1

Table D.1: Implemented bytecodes and execution time in cycles

304 D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

218 jopsys setvp mc 2
219 jopsys int2ext219 mc 14+r+n*(23+w)
220 jopsys ext2int220 mc 14+r+n*(23+r)
221 jopsys nop mc 1
222 jopsys invoke mc
223 jopsys cond move mc 5
224 getstatic ref mc 12+2*r
225 putstatic ref Java
226 getfield ref mc 11+2*r
227 putfield ref Java
228 getstatic long mc
229 putstatic long mc
230 getfield long mc
231 putfield long mc
232 jopsys memcpy mc
233 reserved -
234 reserved -
235 reserved -
236 invokesuper mc -
237 reserved -
238 reserved -
239 reserved -
240 sys int240 Java
241 sys exc240 Java
242 reserved -
243 reserved -
244 reserved -
245 reserved -
246 reserved -
247 reserved -
248 reserved -
249 reserved -
250 reserved -

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 305

Opcode Instruction Implementation Cycles

251 reserved -
252 reserved -
253 reserved -
254 sys noimp Java
255 sys init not used

Table D.1: Implemented bytecodes and execution time in cycles

306 D BYTECODE EXECUTION TIME

Memory Timing

The external memory timing is defined in the top level VHDL file (e.g. jopcyc.vhd) with
ram cnt for the number of cycles for a read and write access. At the moment there is no
difference for a read and write access. For the 100 MHz JOP with 15 ns SRAMs this access

1The exact value is given below.
2Not tested as javac does not emit the swap bytecode.
3A simple version that stops the JVM. No catch support.
4Only dimension 2 supported.

20The exact value is 17+
{

r−2 : r > 2
0 : r ≤ 2

+
{

r−1 : r > 1
0 : r ≤ 1

46The exact value is no hidden wait states at the moment.
79The exact value is no hidden wait states at the moment.

170tableswitch execution time depends to a great extent on the caching of the corresponding Java method or the
memory transfer time for the method.

171lookupswitch execution time depends to a great extent on the caching of the corresponding Java method or
the memory transfer time for the method. lookupswitch also depends on the argument as it performs a linear
search in the jump table.

172The exact value is: 23+
{

r−3 : r > 3
0 : r ≤ 3

+
{

l−10 : l > 10
0 : l ≤ 10

173The exact value is: 25+
{

r−3 : r > 3
0 : r ≤ 3

+
{

l−11 : l > 11
0 : l ≤ 11

177The exact value is: 21+
{

r−3 : r > 3
0 : r ≤ 3

+
{

l−9 : l > 9
0 : l ≤ 9

182The exact value is: 100+2r +
{

r−3 : r > 3
0 : r ≤ 3

+
{

r−2 : r > 2
0 : r ≤ 2

+
{

l−37 : l > 37
0 : l ≤ 37

183The exact value is: 74+ r +
{

r−3 : r > 3
0 : r ≤ 3

+
{

r−2 : r > 2
0 : r ≤ 2

+
{

l−37 : l > 37
0 : l ≤ 37

185The exact value is: 114+4r +
{

r−3 : r > 3
0 : r ≤ 3

+
{

r−2 : r > 2
0 : r ≤ 2

+
{

l−37 : l > 37
0 : l ≤ 37

187new execution time depends to a great extent on the caching of the corresponding Java method or the memory
transfer time for the method. new also depends on the size of the created object as the memory for the object
is filled with zeros – This will change with the GC

188newarray execution time depends to a great extent on the caching of the corresponding Java method or the
memory transfer time for the method. newarray also depends on the size of the array as the memory for the
object is filled with zeros – This will change with the GC

209The native instructions jopsys rd and jopsys wr are alias to the jopsys rdmem and jopsys wrmem instructions
just for compatibility to existing Java code. I/O devices are now memory mapped. In the case for simple I/O
devices there are no wait states and the exact values are 4 and 5 cycles respective.

219The exact value is 14+ r +n(23+
{

w−8 : w > 8
0 : w≤ 8

). n is the number of words transferred.

220The exact value is 14+ r +n(23+
{

r−10 : r > 10
0 : r ≤ 10

). n is the number of words transferred.

D BYTECODE EXECUTION TIME 307

time is two cycles (ram cnt=2, 20 ns). Therefore the wait state nws is 1 (ram cnt-1). A basic
memory read in microcode is as follows:

stmra // start read with address store
wait // fill the pipeline with two
wait // wait instructions
ldmrd // push read result on TOS

In this sequence the last wait executes for 1+nws cycles. Therefore the whole read sequence
takes 4+nws cycles. For the example with ram cnt=2 this basic memory read takes 5 cycles.

A memory write in microcode is as follows:

stmwa // store address
stmwd // store data and start the write
wait // fill the pipeline with wait
wait // wait for the memory ready

The last wait again executes for 1+nws cycles and the basic write takes 4+nws cycles. For
the native bytecode jopsys wrmem an additional nop instruction for the nxt flag is necessary.

The read and write wait states rws and wws are:

rws = wws =
{

ram cnt−1 : ram cnt > 1
0 : ram cnt ≤ 1

In the instruction timing we use r and w instead of rws and wws. The wait states can be
hidden by other microcode instructions between stmra/wait and stmwd/wait. The exact value
is given in the footnote.

Instruction Timing

The bytecodes that access memory are indicated by an r for a memory read and an w for
a memory write at the cycles column (r and w are the additional wait states). The wait
cycles for the memory access have to be added to the execution time. These two values are
implementation dependent (clock frequency versus RAM access time, data bus width); for
the Cyclone EP1C6 board with 15 ns SRAMs and 100 MHz clock frequency these values
are both 1 cycle (ram cnt-1).

For some bytecodes, part of the memory latency can be hidden by executing microcode
during the memory access. However, these cycles can only be subtracted when the wait
states (r or w) are larger then 0 cycles. The exact execution time with the subtraction of the
saved cycles is given in the footnote.

308 D BYTECODE EXECUTION TIME

Cache Load

Memory access time also determines the cache load time on a miss. For the current imple-
mentation the cache load time is calculated as follows: the wait state cws for a single word
cache load is:

cws =
{

rws : rws > 1
1 : rws ≤ 1

On a method invoke or return, the respective method has to be loaded into the cache on a
cache miss. The load time l is:

l =
{

6+(n+1)(1+ cws) : cache miss
4 : cache hit

where n is the size of the method in number of 32-bit words. For short methods, the load
time of the method on a cache miss, or part of it, is hidden by microcode execution. The
exact value is given in the footnote.

lastore

tlastore = 48+2rws +wws +
{

wws−3 : wws > 3
0 : wws ≤ 3

E Printed Circuit Boards

This chapter provides the schematics of the Cycore FPGA boards and several I/O extension
boards.

310 E PRINTED CIRCUIT BOARDS

E.1 Cyclone FPGA Board

Figure E.1: Top and bottom side of the Cyclone FPGA board

E PRINTED CIRCUIT BOARDS 311

Figure E.2: Schematic of the Cyclone FPGA board, page 1

312 E PRINTED CIRCUIT BOARDS

Figure E.3: Schematic of the Cyclone FPGA board, page 2

E PRINTED CIRCUIT BOARDS 313

Figure E.4: Schematic of the Cyclone FPGA board, page 3

314 E PRINTED CIRCUIT BOARDS

E.2 Baseio Board

Figure E.5: The Baseio extension board

E PRINTED CIRCUIT BOARDS 315

Figure E.6: Schematic of the Baseio extension board, page 1

316 E PRINTED CIRCUIT BOARDS

Figure E.7: Schematic of the Baseio extension board, page 2

E PRINTED CIRCUIT BOARDS 317

Figure E.8: Schematic of the Baseio extension board, page 3

318 E PRINTED CIRCUIT BOARDS

Figure E.9: Schematic of the Baseio extension board, page 4

E PRINTED CIRCUIT BOARDS 319

E.3 Dspio Board

Figure E.10: The dspio extension board

320 E PRINTED CIRCUIT BOARDS

Figure E.11: Schematic of the dspio extension board, page 1

E PRINTED CIRCUIT BOARDS 321

Figure E.12: Schematic of the dspio extension board, page 2

322 E PRINTED CIRCUIT BOARDS

Figure E.13: Schematic of the dspio extension board, page 3

E PRINTED CIRCUIT BOARDS 323

Figure E.14: Schematic of the dspio extension board, page 4

324 E PRINTED CIRCUIT BOARDS

Figure E.15: Schematic of the dspio extension board, page 5

E PRINTED CIRCUIT BOARDS 325

E.4 Simpexp Board

Figure E.16: The simpexp extension board

326 E PRINTED CIRCUIT BOARDS

Figure E.17: Schematic of the simpexp extension board

Bibliography

[1] Hija safety critical java proposal. available at http://www.aicas.com/papers/scj.pdf,
May 2006.

[2] aJile. aj-100 real-time low power Java processor. preliminary data sheet, 2000.

[3] Altera. Cyclone FPGA Family Data Sheet, ver. 1.2, April 2003.

[4] Altera. Avalon interface specification, April 2005.

[5] Altera. Quartus ii version 7.1 handbook, May 2007.

[6] Aonix. Perc pico 1.1 user manual. http://research.aonix.com/jsc/pico-manual.4-19-
08.pdf, April 2008.

[7] ARM. AMBA specification (rev 2.0), May 1999.

[8] ARM. AMBA AXI protocol v1.0 specification, March 2004.

[9] ARM. Jazelle technology: ARM acceleration technology for the Java platform. white
paper, 2004.

[10] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes,
Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A real-time Java virtual
machine with applications in avionics. Trans. on Embedded Computing Sys., 7(1):1–
49, 2007.

[11] Robert Arnold, Frank Mueller, David Whalley, and Marion Harmon. Bounding
worst-case instruction cache performance. In IEEE Real-Time Systems Symposium,
pages 172–181, 1994.

[12] Cyrille Artho and Armin Biere. Subroutine inlining and bytecode abstraction to sim-
plify static and dynamic analysis. Electronic Notes in Theoretical Computer Science,
141(1):109–128, December 2005.

328 BIBLIOGRAPHY

[13] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time
scheduling: The deadline monotonic approach. In Proceedings 8th IEEE Workshop
on Real-Time Operating Systems and Software, Atalanta, 1991.

[14] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael Dawson,
Mike Fulton, David Grove, Darren Hart, and Mark Stoodley. Design and implemen-
tation of a comprehensive real-time java virtual machine. In EMSOFT ’07: Proceed-
ings of the 7th ACM & IEEE international conference on Embedded software, pages
249–258, New York, NY, USA, 2007. ACM.

[15] Azul. Azul compute appliances. Whitepaper, 2009.

[16] David F. Bacon, Perry Cheng, David Grove, Michael Hind, V. T. Rajan, Eran Ya-
hav, Matthias Hauswirth, Christoph M. Kirsch, Daniel Spoonhower, and Martin T.
Vechev. High-level real-time programming in java. In EMSOFT ’05: Proceedings
of the 5th ACM international conference on Embedded software, pages 68–78, New
York, NY, USA, 2005. ACM Press.

[17] David F. Bacon, Perry Cheng, and V. T. Rajan. The metronome: A simpler approach
to garbage collection in real-time systems. In Robert Meersman and Zahir Tari,
editors, OTM Workshops, volume 2889 of Lecture Notes in Computer Science, pages
466–478. Springer, 2003.

[18] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector with
low overhead and consistent utilization. In POPL ’03: Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 285–
298, New York, NY, USA, 2003. ACM Press.

[19] Henry G. Baker. List processing in real time on a serial computer. Commun. ACM,
21(4):280–294, 1978.

[20] Henry G. Baker. The treadmill: real-time garbage collection without motion sick-
ness. SIGPLAN Not., 27(3):66–70, 1992.

[21] Iain Bate, Guillem Bernat, Greg Murphy, and Peter Puschner. Low-level analysis
of a portable Java byte code WCET analysis framework. In Proc. 7th International
Conference on Real-Time Computing Systems and Applications, pages 39–48, Dec.
2000.

BIBLIOGRAPHY 329

[22] Iain Bate, Guillem Bernat, and Peter Puschner. Java virtual machine support for
portable worst-case execution time analysis. In ISORC. IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing, Washington, USA, Jan
2002.

[23] Guillem Bernat, Alan Burns, and Andy Wellings. Portable worst-case execution time
analysis using Java byte code. In Proc. 12th EUROMICRO Conference on Real-time
Systems, Jun 2000.

[24] Thomas Bogholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and Kim G.
Larsen. Model-based schedulability analysis of safety critical hard real-time Java
programs. In Proceedings of the 6th international workshop on Java technologies
for real-time and embedded systems (JTRES 2008), pages 106–114, New York, NY,
USA, 2008. ACM.

[25] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr, and Mark
Turnbull. The Real-Time Specification for Java. Java Series. Addison-Wesley, June
2000.

[26] Gregory Bollella, Bertrand Delsart, Romain Guider, Christophe Lizzi, and Frédéric
Parain. Mackinac: Making HotSpotT M real-time. In ISORC, pages 45–54. IEEE
Computer Society, 2005.

[27] Florian Brandner, Tommy Thorn, and Martin Schoeberl. Embedded JIT compila-
tion with CACAO on YARI. Technical Report RR 35/2008, Institute of Computer
Engineering, Vienna University of Technology, Austria, June 2008.

[28] Florian Brandner, Tommy Thorn, and Martin Schoeberl. Embedded JIT compi-
lation with CACAO on YARI. In Proceedings of the 12th IEEE International
Symposium on Object/component/service-oriented Real-time distributed Computing
(ISORC 2009), Tokyo, Japan, March 2009. IEEE Computer Society.

[29] Rodney A. Brooks. Trading data space for reduced time and code space in real-
time garbage collection on stock hardware. In Prgrm. Chrm. G. L. Steele, Jr., editor,
LISP and Functional Programming. Conference Record of the 1984 ACM Sympo-
sium, Austin, Texas, August 6-8, 1984, number ISBN 0-89791-142-3, New York,
1984. ACM.

330 BIBLIOGRAPHY

[30] Ben Brosgol and Brian Dobbing. Real-time convergence of Ada and Java. In Pro-
ceedings of the 2001 annual ACM SIGAda international conference on Ada, pages
11–26. ACM Press, 2001.

[31] José V. Busquets-Mataix, Juan José Serrano, Rafael Ors, Pedro J. Gil, and Andy J.
Wellings. Adding instruction cache effect to schedulability analysis of preemptive
real-time systems. In IEEE Real-Time Technology and Applications Symposium
(RTAS ’96), pages 204–213, Washington - Brussels - Tokyo, June 1996. IEEE Com-
puter Society Press.

[32] C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM,
13(11):677–678, 1970.

[33] Cyrille Comar, Gary Dismukes, and Franco Gasperoni. Targeting gnat to the java
virtual machine. In Proceedings of the conference on TRI-Ada ’97, pages 149–161.
ACM Press, 1997.

[34] Markus Dahm. Byte code engineering with the BCEL API. Technical report, Freie
Universitat Berlin, April 2001.

[35] DCT. Lightfoot 32-bit Java processor core. data sheet, September 2001.

[36] Derivation. Lavacore configurable Java processor core. data sheet, April 2001.

[37] S. Dey, P. Sanchez, D. Panigrahi, L. Chen, C. Taylor, and K. Sekar. Using a soft core
in a SOC design: Experiences with picoJava. IEEE Design and Test of Computers,
17(3):60–71, July 2000.

[38] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Stef-
fens. On-the-fly garbage collection: an exercise in cooperation. Commun. ACM,
21(11):966–975, 1978.

[39] Brian Dobbing and Alan Burns. The ravenscar tasking profile for high integrity
real-time programs. In Proceedings of the 1998 annual ACM SIGAda international
conference on Ada, pages 1–6. ACM Press, 1998.

[40] M. Eden and M. Kagan. The Pentium processor with MMX technology. In Proceed-
ings of Compcon ’97, pages 260–262. IEEE Computer Society, 1997.

[41] EJC. The ejc (embedded java controller) platform. Available at
http://www.embedded-web.com/index.html.

BIBLIOGRAPHY 331

[42] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time Analy-
sis. PhD thesis, Uppsala University, 2002.

[43] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafsson, and Hans Hans-
son. Worst-case execution-time analysis for embedded real-time systems. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 4(4):437–455,
August 2003.

[44] Jiri Gaisler. A portable and fault-tolerant microprocessor based on the SPARC v8
architecture. In DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks, page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[45] Jiri Gaisler, Edvin Catovic, Marko Isomäki, Kristoffer Carlsson, and Sandi Habinc.
GRLIB IP core user’s manual, version 1.0.14. Available at http://www.gaisler.com/,
February 2007.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison Wesley Profes-
sional, 1994.

[47] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation Second Edition. The Java Series. Addison-Wesley, Boston, Mass., 2000.

[48] Flavius Gruian, Per Andersson, Krzysztof Kuchcinski, and Martin Schoeberl. Auto-
matic generation of application-specific systems based on a micro-programmed java
core. In Proceedings of the 20th ACM Symposium on Applied Computing, Embedded
Systems track, Santa Fee, New Mexico, March 2005.

[49] Flavius Gruian and Zoran Salcic. Designing a concurrent hardware garbage collector
for small embedded systems. In Proceedings of Advances in Computer Systems
Architecture: 10th Asia-Pacific Conference, ACSAC 2005, pages 281–294. Springer-
Verlag GmbH, October 2005.

[50] Flavius Gruian and Mark Westmijze. Bluejep: a flexible and high-performance java
embedded processor. In JTRES ’07: Proceedings of the 5th international work-
shop on Java technologies for real-time and embedded systems, pages 222–229, New
York, NY, USA, 2007. ACM.

[51] Jan Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Using Ab-
stract Interpretation. PhD thesis, Uppsala University, 2000.

332 BIBLIOGRAPHY

[52] Jan Gustafsson. Worst case execution time analysis of object-oriented programs. In
Proceedings of the Seventh International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2002), pages 71–76, 2002.

[53] Tom R. Halfhill. Imsys hedges bets on Java. Microprocessor Report, August 2000.

[54] David Hardin, Mike Frerking, Philip Wiley, and Gregory Bollella. Getting down
and dirty: Device-level programming using the real-time specification for Java. In
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2002),
pages 457–464, 2002.

[55] David S. Hardin. Real-time objects on the bare metal: An efficient hardware re-
alization of the Java virtual machine. In Proceedings of the Fourth International
Symposium on Object-Oriented Real-Time Distributed Computing, page 53. IEEE
Computer Society, 2001.

[56] Trevor Harmon. Interactive Worst-case Execution Time Analysis of Hard Real-time
Systems. PhD thesis, University of California, Irvine, 2009.

[57] Trevor Harmon and Raymond Klefstad. Interactive back-annotation of worst-case
execution time analysis for Java microprocessors. In Proceedings of the Thirteenth
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2007), August 2007.

[58] Trevor Harmon, Martin Schoeberl, Raimund Kirner, and Raymond Klefstad. A mod-
ular worst-case execution time analysis tool for Java processors. In Proceedings of
the 14th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2008), St. Louis, MO, United States, April 2008.

[59] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and
Marion G. Harmon. Bounding pipeline and instruction cache performance. IEEE
Trans. Computers, 48(1):53–70, 1999.

[60] Christopher A. Healy, David B. Whalley, and Marion G. Harmon. Integrating the
timing analysis of pipelining and instruction caching. In IEEE Real-Time Systems
Symposium, pages 288–297, 1995.

[61] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm.
The influence of processor architecture on the design and results of WCET tools.
Proceedings of the IEEE, 91(7):1038–1054, Jul. 2003.

BIBLIOGRAPHY 333

[62] John Hennessy and David Patterson. Computer Architecture: A Quantitative Ap-
proach, 3rd ed. Morgan Kaufmann Publishers Inc., Palo Alto, CA 94303, 2002.

[63] John Hennessy and David Patterson. Computer Architecture: A Quantitative Ap-
proach, 4th ed. Morgan Kaufmann Publishers, 2006.

[64] Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen, Martin Schoeberl, and
Jan Vitek. Java for safety-critical applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled Systems (SafeCert 2009), Mar.
2009.

[65] Teresa Higuera, Valerie Issarny, Michel Banatre, Gilbert Cabillic, Jean-Philippe
Lesot, and Frederic Parain. Memory management for real-time Java: an efficient
solution using hardware support. Real-Time Systems Journal, 2002.

[66] Benedikt Huber. Worst-case execution time analysis for real-time Java. Master’s
thesis, Vienna University of Technology, Austria, 2009.

[67] Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumeration
and model checking based WCET analysis. In Proceedings of the 9th International
Workshop on Worst-Case Execution Time (WCET) Analysis, Dublin, Ireland, July
2009. OCG.

[68] IBM. On-chip peripheral bus architecture specifications v2.1, April 2001.

[69] Imsys. ISAJ reference 2.0, January 2001.

[70] Imsys. Im1101c (the Cjip) technical reference manual / v0.25, 2004.

[71] S.A. Ito, L. Carro, and R.P. Jacobi. Making Java work for microcontroller applica-
tions. IEEE Design & Test of Computers, 18(5):100–110, 2001.

[72] Richard E. Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996. With a chapter on
Distributed Garbage Collection by R. Lins.

[73] Hermann Kopetz and Günther Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[74] Stephan Korsholm, Martin Schoeberl, and Anders P. Ravn. Interrupt han-
dlers in Java. In Proceedings of the 11th IEEE International Symposium on

334 BIBLIOGRAPHY

Object/component/service-oriented Real-time distributed Computing (ISORC 2008),
Orlando, Florida, USA, May 2008. IEEE Computer Society.

[75] Andreas Krall and Reinhard Grafl. CACAO – A 64 bit JavaVM just-in-time compiler.
In Geoffrey C. Fox and Wei Li, editors, PPoPP’97 Workshop on Java for Science and
Engineering Computation, Las Vegas, June 1997. ACM.

[76] Jochen Kreuzinger, Uwe Brinkschulte, Matthias Pfeffer, Sascha Uhrig, and Theo
Ungerer. Real-time event-handling and scheduling on a multithreaded Java micro-
controller. Microprocessors and Microsystems, 27(1):19–31, 2003.

[77] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java: A high integrity
profile for real-time Java. In Proceedings of the 2002 joint ACM-ISCOPE conference
on Java Grande, pages 131–140. ACM Press, 2002.

[78] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo
Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-
related preemption delay in fixed-priority preemptive scheduling. IEEE Trans. Com-
put., 47(6):700–713, 1998.

[79] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In LCTES ’95: Proceedings of the ACM SIGPLAN
1995 workshop on languages, compilers, & tools for real-time systems, pages 88–98,
New York, NY, USA, 1995. ACM Press.

[80] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient microarchitecture
modeling and path analysis for real-time software. In RTSS ’95: Proceedings of the
16th IEEE Real-Time Systems Symposium (RTSS ’95), page 298, Washington, DC,
USA, 1995. IEEE Computer Society.

[81] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estimation of
embedded software with instruction cache modeling. In Proceedings of the 1995
IEEE/ACM international conference on Computer-aided design, pages 380–387.
IEEE Computer Society, 1995.

[82] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, MA, USA, second edition, 1999.

[83] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61, 1973.

BIBLIOGRAPHY 335

[84] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled
microprocessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS 1999), pages 12–21, Washington, DC, USA, 1999. IEEE Computer Society.

[85] Mälardalen Real-Time Research Center. WCET benchmarks. Available at http:
//www.mrtc.mdh.se/projects/wcet/benchmarks.html, accessed 2009.

[86] Stefan Metzlaff, Sascha Uhrig, Jörg Mische, and Theo Ungerer. Predictable dynamic
instruction scratchpad for simultaneous multithreaded processors. In Proceedings of
the 9th workshop on Memory performance (MEDEA 2008), pages 38–45, New York,
NY, USA, 2008. ACM.

[87] Albert F. Niessner and Edward G. Benowitz. RTSJ memory areas and their affects
on the performance of a flight-like attitude control system. In Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES), LNCS, 2003.

[88] K. Nilsen, L. Carnahan, and M. Ruark. Requirements for real-time extensions for
the Java platform. Available at http://www.nist.gov/rt-java/, September 1999.

[89] S. C. North and J. H. Reppy. Concurrent garbage collection on stock hardware. In
G. Kahn, editor, Functional Programming Languages and Computer Architecture,
pages 113–133. Springer-Verlag, 1987. Lecture Notes in Computer Science 274;
Proceedings of Conference held at Portland, OR.

[90] J. Michael O’Connor and Marc Tremblay. picoJava-I: The Java virtual machine in
hardware. IEEE Micro, 17(2):45–53, 1997.

[91] OCP-IP Association. Open core protocol specification 2.1. http://www.ocpip.org/,
2005.

[92] Rasmus Pedersen and Martin Schoeberl. Exact roots for a real-time garbage col-
lector. In Proceedings of the 4th International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES 2006), pages 77–84, New York, NY, USA,
2006. ACM Press.

[93] Rasmus Ulslev Pedersen. Hard real-time analysis of two java-based kernels for
stream mining. In Proceedings of the 1st Workshop on Knowledge Discovery from
Data Streams (IWKDDS, ECML PKDD 2006), Berlin, Germany, September 2006.

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

336 BIBLIOGRAPHY

[94] Wade D. Peterson. WISHBONE system-on-chip (SoC) interconnection architecture
for portable IP cores, revision: B.3. Available at http://www.opencores.org, Septem-
ber 2002.

[95] Matthias Pfeffer, Theo Ungerer, Stephan Fuhrmann, Jochen Kreuzinger, and Uwe
Brinkschulte. Real-time garbage collection for a multithreaded java microcontroller.
Real-Time Systems, 26(1):89–106, 2004.

[96] Christof Pitter. Time-predictable memory arbitration for a Java chip-multiprocessor.
In Proceedings of the 6th International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2008), 2008.

[97] Christof Pitter. Time-Predictable Java Chip-Multiprocessor. PhD thesis, Vienna
University of Technology, Austria, 2009.

[98] Christof Pitter and Martin Schoeberl. Time predictable CPU and DMA shared mem-
ory access. In International Conference on Field-Programmable Logic and its Ap-
plications (FPL 2007), pages 317 – 322, Amsterdam, Netherlands, August 2007.

[99] Christof Pitter and Martin Schoeberl. Towards a Java multiprocessor. In Proceedings
of the 5th International Workshop on Java Technologies for Real-time and Embed-
ded Systems (JTRES 2007), pages 144–151, Vienna, Austria, September 2007. ACM
Press.

[100] Christof Pitter and Martin Schoeberl. Performance evaluation of a Java chip-
multiprocessor. In Proceedings of the 3rd IEEE Symposium on Industrial Embedded
Systems (SIES 2008), Jun. 2008.

[101] Filip Pizlo, J. M. Fox, David Holmes, and Jan Vitek. Real-time java scoped memory:
Design patterns and semantics. In Proceedings of the 7th IEEE International Sym-
posium on, Object-Oriented Real-Time Distributed Computing (ISORC 2004), pages
101–110, 2004.

[102] Thomas B. Preusser, Martin Zabel, and Rainer G. Spallek. Bump-pointer method
caching for embedded java processors. In Proceedings of the 5th international work-
shop on Java technologies for real-time and embedded systems (JTRES 2007), pages
206–210, New York, NY, USA, 2007. ACM.

[103] Wolfgang Puffitsch. picoJava-II in an FPGA. Master’s thesis, Vienna University of
Technology, 2007.

BIBLIOGRAPHY 337

[104] Wolfgang Puffitsch. Supporting WCET analysis with data-flow analysis of Java byte-
code. Research Report 16/2009, Institute of Computer Engineering, Vienna Univer-
sity of Technology, Austria, February 2009.

[105] Wolfgang Puffitsch and Martin Schoeberl. picoJava-II in an FPGA. In Proceedings
of the 5th International Workshop on Java Technologies for Real-time and Embed-
ded Systems (JTRES 2007), pages 213–221, Vienna, Austria, September 2007. ACM
Press.

[106] Peter Puschner and Guillem Bernat. Wcet analysis of reusable portable code. In
ECRTS ’01: Proceedings of the 13th Euromicro Conference on Real-Time Systems,
page 45, Washington, DC, USA, 2001. IEEE Computer Society.

[107] Peter Puschner and Alan Burns. A review of worst-case execution-time analysis
(editorial). Real-Time Systems, 18(2/3):115–128, 2000.

[108] Peter Puschner and Alan Burns. Writing temporally predictable code. In Proceed-
ings of the The Seventh IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2002), pages 85–94, Washington, DC, USA, 2002.
IEEE Computer Society.

[109] Peter Puschner and Christian Koza. Calculating the maximum execution time of
real-time programs. Real-Time Syst., 1(2):159–176, 1989.

[110] Peter Puschner and Anton Schedl. Computing maximum task execution times – a
graph-based approach. Journal of Real-Time Systems, 13(1):67–91, Jul. 1997.

[111] Peter Puschner and Andy Wellings. A profile for high integrity real-time Java pro-
grams. In 4th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing (ISORC), 2001.

[112] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing pre-
dictability of cache replacement policies. Journal of Real-Time Systems, 37(2):99–
122, Nov. 2007.

[113] Sven Gestegard Robertz and Roger Henriksson. Time-triggered garbage collection:
robust and adaptive real-time GC scheduling for embedded systems. In LCTES ’03:
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool
for embedded systems, pages 93–102, New York, NY, USA, 2003. ACM Press.

338 BIBLIOGRAPHY

[114] Sven Gestegøard Robertz. Automatic memory management for flexible real-time
systems. PhD thesis, Department of Computer Science Lund University, 2006.

[115] RTCA/DO-178B. Software considerations in airborne systems and equipment certi-
fication. December 1992.

[116] William J. Schmidt and Kelvin D. Nilsen. Performance of a hardware-assisted real-
time garbage collector. In ASPLOS-VI: Proceedings of the sixth international con-
ference on Architectural support for programming languages and operating systems,
pages 76–85, New York, NY, USA, 1994. ACM Press.

[117] Martin Schoeberl. Using a Java optimized processor in a real world application.
In Proceedings of the First Workshop on Intelligent Solutions in Embedded Systems
(WISES 2003), pages 165–176, Austria, Vienna, June 2003.

[118] Martin Schoeberl. Real-time scheduling on a Java processor. In Proceedings of the
10th International Conference on Real-Time and Embedded Computing Systems and
Applications (RTCSA 2004), Gothenburg, Sweden, August 2004.

[119] Martin Schoeberl. Restrictions of Java for embedded real-time systems. In Pro-
ceedings of the 7th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2004), pages 93–100, Vienna, Austria, May 2004.
IEEE.

[120] Martin Schoeberl. A time predictable instruction cache for a Java processor. In
On the Move to Meaningful Internet Systems 2004: Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES 2004), volume 3292 of LNCS, pages
371–382, Agia Napa, Cyprus, October 2004. Springer.

[121] Martin Schoeberl. Design and implementation of an efficient stack machine. In
Proceedings of the 12th IEEE Reconfigurable Architecture Workshop (RAW2005),
Denver, Colorado, USA, April 2005. IEEE.

[122] Martin Schoeberl. Evaluation of a Java processor. In Tagungsband Austrochip 2005,
pages 127–134, Vienna, Austria, October 2005.

[123] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Sys-
tems. PhD thesis, Vienna University of Technology, 2005.

BIBLIOGRAPHY 339

[124] Martin Schoeberl. Real-time garbage collection for Java. In Proceedings of the 9th
IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC 2006), pages 424–432, Gyeongju, Korea, April 2006.
IEEE.

[125] Martin Schoeberl. Architecture for object oriented programming languages. In Pro-
ceedings of the 5th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2007), pages 57–62, Vienna, Austria, September 2007.
ACM Press.

[126] Martin Schoeberl. Mission modes for safety critical Java. In Software Technologies
for Embedded and Ubiquitous Systems, 5th IFIP WG 10.2 International Workshop
(SEUS 2007), volume 4761 of Lecture Notes in Computer Science, pages 105–113.
Springer, May 2007.

[127] Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect. In Pro-
ceedings of the 15th Austrian Workhop on Microelectronics, Austrochip 2007, Graz,
Austria, October 2007.

[128] Martin Schoeberl. A time-triggered network-on-chip. In International Conference
on Field-Programmable Logic and its Applications (FPL 2007), pages 377 – 382,
Amsterdam, Netherlands, August 2007.

[129] Martin Schoeberl. Application experiences with a real-time Java processor. In Pro-
ceedings of the 17th IFAC World Congress, Seoul, Korea, July 2008.

[130] Martin Schoeberl. A Java processor architecture for embedded real-time systems.
Journal of Systems Architecture, 54/1–2:265–286, 2008.

[131] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Sys-
tems. Number ISBN 978-3-8364-8086-4. VDM Verlag Dr. Müller, July 2008.

[132] Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal on
Embedded Systems, vol. 2009, Article ID 758480:17 pages, 2009.

[133] Martin Schoeberl, Stephan Korsholm, Christian Thalinger, and Anders P. Ravn.
Hardware objects for Java. In Proceedings of the 11th IEEE International Symposium
on Object/component/service-oriented Real-time distributed Computing (ISORC
2008), Orlando, Florida, USA, May 2008. IEEE Computer Society.

340 BIBLIOGRAPHY

[134] Martin Schoeberl and Rasmus Pedersen. WCET analysis for a Java processor. In
Proceedings of the 4th International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2006), pages 202–211, New York, NY, USA, 2006.
ACM Press.

[135] Martin Schoeberl and Wolfgang Puffitsch. Non-blocking object copy for real-time
garbage collection. In Proceedings of the 6th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES 2008). ACM Press, Septem-
ber 2008.

[136] Martin Schoeberl and Peter Puschner. Is chip-multiprocessing the end of real-time
scheduling? In Proceedings of the 9th International Workshop on Worst-Case Exe-
cution Time (WCET) Analysis, Dublin, Ireland, July 2009. OCG.

[137] Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and Anders P. Ravn. A pro-
file for safety critical Java. In 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC’07), pages 94–101,
Santorini Island, Greece, May 2007. IEEE Computer Society.

[138] Martin Schoeberl and Jan Vitek. Garbage collection for safety critical Java. In
Proceedings of the 5th International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2007), pages 85–93, Vienna, Austria, September
2007. ACM Press.

[139] Alan C. Shaw. Reasoning about time in higher-level language software. IEEE Trans.
Softw. Eng., 15(7):875–889, 1989.

[140] Fridtjof Siebert. Hard Realtime Garbage Collection in Modern Object Oriented
Programming Languages. Number ISBN: 3-8311-3893-1. aicas Books, 2002.

[141] International J Consortium Specification. Real-time core extensions, draft 1.0.14.
Available at http://www.j-consortium.org/, September 2000.

[142] Guy L. Steele. Multiprocessing compactifying garbage collection. Commun. ACM,
18(9):495–508, 1975.

[143] Sun. A brief history of the green project. Available at:
http://today.java.net/jag/old/green/.

[144] Sun. Java technology: The early years. Available at:
http://java.sun.com/features/1998/05/birthday.html.

BIBLIOGRAPHY 341

[145] Sun. picoJava-II Microarchitecture Guide. Sun Microsystems, March 1999.

[146] Sun. picoJava-II Programmer’s Reference Manual. Sun Microsystems, March 1999.

[147] Systronix. Jstamp real-time native Java module. data sheet.

[148] Y.Y. Tan, C.H. Yau, K.M. Lo, W.S. Yu, P.L. Mok, and A.S. Fong. Design and imple-
mentation of a java processor. Computers and Digital Techniques, IEE Proceedings-,
153:20–30, 2006.

[149] Sascha Uhrig and Jörg Wiese. jamuth: an IP processor core for embedded Java
real-time systems. In Proceedings of the 5th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES 2007), pages 230–237, New
York, NY, USA, 2007. ACM Press.

[150] Andy Wellings and Martin Schoeberl. Thread-local scope caching for real-
time Java. In Proceedings of the 12th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC 2009),
Tokyo, Japan, March 2009. IEEE Computer Society.

[151] Jack Whitham, Neil Audsley, and Martin Schoeberl. Using hardware methods to
improve time-predictable performance in real-time java systems. In Proceedings of
the 7th International Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2009), Madrid, Spain, September 2009. ACM Press.

[152] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per
Stenström. The worst-case execution time problem – overview of methods and sur-
vey of tools. Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

[153] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical report, Uni-
versity of Texas, January 1994. Expanded version of the IWMM92 paper.

[154] Xilinx. Spartan-3 FPGA family: Complete data sheet, ver. 1.2, January 2005.

[155] Tan Yiyu, Richard Li Lo Wan Yiu, Yau Chi Hang, and Anthony S. Fong. A java
processor with hardware-support object-oriented instructions. Microprocessors and
Microsystems, 30(8):469–479, 2006.

342 BIBLIOGRAPHY

[156] Taichi Yuasa. Real-time garbage collection on general-purpose machines. Journal
of Systems and Software, 11(3):181–198, 1990.

[157] Martin Zabel, Thomas B. Preusser, Peter Reichel, and Rainer G. Spallek. Secure,
real-time and multi-threaded general-purpose embedded Java microarchitecture. In
Prceedings of the 10th Euromicro Conference on Digital System Design Architec-
tures, Methods and Tools (DSD 2007), pages 59–62, Aug. 2007.

[158] R. Zulauf. Entwurf eines Java-Mikrocontrollers und prototypische Implementierung
auf einem FPGA. Master’s thesis, University of Karlsruhe, 2000.

Index

amd, 23
amd.exe, 16
ant, 21
application

download, 12
array layout, 96

Baseio, 226, 314
BlockGen, 16
bytecode

execution time, 106

cache
configuration, 27
load time, 108

class structure, 96
clock frequency, 27
CMP, 217

booting, 218
scheduling, 219
TDMA arbiter, 217

down.exe, 15, 28
Dspio, 319

e.exe, 16, 24, 28
extension

.asm, 21

.bat, 21

.bit, 23

.cdf, 22

.class, 22

.c, 21

.dat, 22

.jar, 22

.java, 21

.jbc, 23

.jop, 22

.mif, 22

.npl, 22

.pof, 23

.qpf, 21

.qsf, 22

.rbf, 23

.sof, 22

.tcl, 22

.ttf, 23

.ucf, 22

.vhd, 21

.v, 21

.xml, 21

gcc, 13

hardware object, 177
arrays, 182
board configuration, 184

344 INDEX

creation, 184
definition, 179
example, 177
implementation, 185
usage, 182

I/O access, 177
interrupt, 61

dispatch, 194
handler, 190
implementation, 193
non-blocking queue, 191
synchronization, 190

jar, 22
Java coprocessor

Jazelle, 243
Java processor

aJile, 229, 246
Azul, 249
Cjip, 229, 247
FemtoJava, 248
jamuth, 229, 248
jHISC, 249
Komodo, 248
picoJava, 227, 229, 244
SHAP, 229, 249

javac, 2, 22
jbi32, 12, 23
jbi32.exe, 28
JOP porting, 23
jop2dat, 13, 20
jop blink test, 24
jop testmon, 24
Jopa, 10, 16, 20, 21, 27
jopflash, 13

JOPizer, vii, 10, 12, 16, 22, 25, 30, 39,
98, 99

jopser, 13
JopSim, 10, 16, 19, 22
jopsim, 13
jopusb, 13
JVM, 94

boot-up, 100
class initialization, 98
data structures, 94

make, 2, 21, 24
memory test, 24
method cache, 73

analysis, 119
microcode

add, 270
and, 268
bnz, 287
bz, 286
dup, 296
jbr, 288
ld<n>, 291
ld opd 16s, 296
ld opd 16u, 295
ld opd 8s, 295
ld opd 8u, 294
ldbcstart, 291
ldi, 289
ldjpc, 294
ldmi, 292
ldmrd, 290
ldmul, 290
ldm, 289
ldsp, 293
ldvp, 293
ld, 292

INDEX 345

nop, 287
or, 269
pop, 268
shl, 284
shr, 284
st<n>, 280
stald, 274
star, 282
stast, 275
stbcrd, 279
stcp, 278
stgf, 276
stjpc, 282
stmi, 281
stmra, 272
stmul, 271
stmwa, 271
stmwd, 273
stm, 285
stpf, 277
stsp, 283
stvp, 281
st, 280
sub, 270
ushr, 283
wait, 288
xor, 269

native method, 25
non-blocking queue, 191

object layout, 95

pcsim, 16

quartus pgm, 12, 22

run -all, 21

schematics, 309
sim.bat, 21
SimpCon, 197

CMP, 205
I/O port example, 206
interconnection, 204
pipelining, 204
read transaction, 198
ready count, 202
signals, 199
SRAM interface, 208
write transaction, 199

simulation
JopSim, 16, 19
VHDL, 13, 20

stack
size, 27

system device, 195

UART test, 24
udp.Flash, 23
USBRunner, 23
USBRunner.exe, 16

WCET, 103
analysis, 103, 109
annotations, 110
bytecode timing, 106
cache analysis, 117
ILP example, 115
integer linear programming, 111
memory access, 106
microcode, 104
tool, 120

Xilinx, 11, 18

	Foreword
	Acknowledgements
	Introduction
	A Quick Tour on JOP
	Building JOP and Running ``Hello World"
	The Design Structure

	A Short History
	JOP Features
	Is JOP the Solution for Your Problem?
	Outline of the Book

	The Design Flow
	Introduction
	Tools
	Getting Started
	Xilinx Spartan-3 Starter Kit

	Booting JOP --- How Your Application Starts
	FPGA Configuration
	Java Download
	Combinations
	Stand Alone Configuration

	The Design Flow
	Tools
	Targets

	Eclipse
	Simulation
	JopSim Simulation
	VHDL Simulation

	Files Types You Might Encounter
	Information on the Web
	Porting JOP
	Test Utilities

	Extending JOP
	Native Methods
	A new Peripheral Device
	A Customized Instruction
	Dependencies and Configurations

	Directory Structure
	The Java Sources for JOP

	The JOP Hello World Exercise
	Manual build
	Using make
	Change the Java Program
	Change the Microcode
	Use a Different Target Board
	Compile a Different Java Application
	Simulation
	WCET Analysis

	Java and the Java Virtual Machine
	Java
	History
	The Java Programming Language

	The Java Virtual Machine
	Memory Areas
	JVM Instruction Set
	Methods
	Implementation of the JVM

	Embedded Java
	Summary

	Hardware Architecture
	Overview of JOP
	Microcode
	Translation of Bytecodes to Microcode
	Compact Microcode
	Instruction Set
	Bytecode Example
	Microcode Branches
	Flexible Implementation of Bytecodes
	Summary

	The Processor Pipeline
	Java Bytecode Fetch
	Microcode Instruction Fetch
	Decode and Address Generation
	Execute
	Interrupt Logic
	Summary

	The Stack Cache
	Java Computing Model
	Access Patterns on the Java Stack
	JVM Stack Access Revised
	A Two-Level Stack Cache
	Summary

	The Method Cache
	Method Cache Architecture
	WCET Analysis
	Caches Compared
	Summary

	Runtime System
	A Real-Time Profile for Embedded Java
	Application Structure
	Threads
	Scheduling
	Memory
	Restrictions on Java
	Interaction of RtThread, the Scheduler, and the JVM
	Implementation Results
	Summary

	A Profile for Safety Critical Java
	Introduction
	SCJ Level 1

	JVM Architecture
	Runtime Data Structures
	Class Initialization
	Synchronization
	Booting the JVM

	Worst-Case Execution Time
	Microcode WCET Analysis
	Microcode Path Analysis
	Microcode Low-level Analysis
	Bytecode Independency
	WCET of Bytecodes

	WCET Analysis of the Java Application
	High-Level WCET Analysis
	WCET Annotations
	ILP Formulation
	An Example
	Dynamic Method Dispatch
	Cache Analysis
	WCET Analyzer

	Evaluation
	Benchmarks
	Analysis and Measurements

	Discussion
	On Correctness of WCET Analysis
	Is JOP the Only Target Architecture?
	Object-oriented Evaluation Examples
	WCET Analysis for Chip-multiprocessors
	Co-Development of Processor Architecture and WCET Analysis
	Further Paths to Explore

	Summary
	Further Reading
	WCET Analysis
	WCET Analysis for Java
	WCET Analysis for JOP

	Real-Time Garbage Collection
	Introduction
	Incremental Collection
	Conservatism
	Safety Critical Java

	Scheduling of the Collector Thread
	An Example
	Minimum Heap Size
	Garbage Collection Period

	SCJ Simplifications
	Simple Root Scanning
	Static Memory

	Implementation
	Heap Layout
	The Collector
	The Mutator

	Evaluation
	Scheduling Experiments
	Measuring Release Jitter
	Measurements
	Discussion

	Analysis
	Worst Case Memory Consumption
	WCET of the Collector

	Summary
	Further Reading

	Low-level I/O
	Hardware Objects
	An Example
	Definition
	Access Control
	Using Hardware Objects
	Hardware Arrays
	Garbage Collection
	Hardware Object Creation
	Board Configurations
	Implementation
	Legacy Code

	Interrupt Handlers
	Synchronization
	Interrupt Handler Registration
	Implementation
	An Example

	Standard Devices
	The System Device
	The UART

	The SimpCon Interconnect
	Introduction
	Features
	Basic Read Transaction
	Basic Write Transaction

	SimpCon Signals
	Master Signal Details
	Slave Signal Details

	Slave Acknowledge
	Pipelining
	Interconnect
	Examples
	I/O Port
	SRAM interface

	Available VHDL Files
	Components
	Bridges

	Why a New Interconnection Standard?
	Common SoC Interconnections
	What's Wrong with the Classic Standards?
	Evaluation

	Summary

	Chip Multiprocessing
	Memory Arbitration
	Main Memory
	I/O Devices

	Booting a CMP System
	CMP Scheduling
	One Thread per Core
	Scheduling on the CMP System

	Evaluation
	Hardware Platforms
	Chip Area and Clock Frequency
	Performance
	Applications
	The Kippfahrleitung
	The SCADA Device TeleAlarm
	Support for Single Track Railway Control
	Communication and Common Design Patterns
	Discussion

	Summary

	Related Work
	Java Coprocessors
	Jazelle

	Java Processors
	picoJava
	aJile JEMCore
	Cjip
	Lightfoot
	LavaCORE
	Komodo, jamuth
	FemtoJava
	jHISC
	SHAP
	Azul

	Summary
	A Real-Time Java Processor
	A Resource-Constrained Processor
	Future Work

	Publications
	Acronyms
	JOP Instruction Set
	Bytecode Execution Time
	Printed Circuit Boards
	Cyclone FPGA Board
	Baseio Board
	Dspio Board
	Simpexp Board

	Bibliography
	Index

