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Abstract—Avionics applications need to be certified for

the highest criticality standard. This certification includes

schedulability analysis and worst-case execution time (WCET)

analysis. WCET analysis is only possible when the software

is written to be WCET analyzable and when the platform is

time-predictable. In this paper we present prototype avionics

applications that have been ported to the time-predictable

T-CREST platform. The applications are WCET analyzable,

and T-CREST is supported by the aiT WCET analyzer. This

combination allows us to provide WCET bounds of avionic

tasks, even when executing on a multicore processor.

I. INTRODUCTION

The mission of the T-CREST project [1], [2] is to develop
and build a multicore processor that is time-predictable and
easy to analyze for the worst-case execution time (WCET).
Furthermore, the T-CREST platform increases the perfor-
mance with multicore technology. Consequently, we expect
that the T-CREST platform results in lower costs for safety-
relevant applications, reducing system complexity, and en-
suring faster and time-predictable execution. A processor
designed for real-time systems and safety-critical systems is
radically different from one optimized for average-case per-
formance. For certification only the worst-case performance
is important, not the average-case performance.

The T-CREST project builds the time-predictable multi-
core platform from scratch, encompassing the following five
technology elements: (1) a new processor named Patmos [3],
(2) the network-on-chip (NoC) infrastructure supporting
time-predictable communication between processors [4], [5]
and a specific memory NoC for shared main memory
access [6], [7], (3) a time-predictable memory controller [8],
(4) a compiler infrastructure for the Patmos processor [9],
and (5) the aiT WCET analysis tool [10] adapted to support
Pamtos and to guide the compiler optimizations for the
WCET. The overall purpose of the T-CREST platform is
building time-predictable computer architecture [11].

This paper demonstrates the platform’s ability to host real-
time applications with delicate predictability requirements.
We use avionics use cases where time-predictability is of
primary importance. More challenging use cases combine
two or more applications. We use the term “demonstrators”
to refer to the individual applications and the combination
of two or more applications.

The demonstrators were ported to the T-CREST platform
using its compiler tool-chain and analysis tools. The demon-
strators validate the T-CREST platform. Part of the exercise,
however, is to evaluate the added value of the platform. The
platform shall enable application developers to determine the
WCET of their applications more precisely or more easily.
Therefore, we compare the T-CREST platform with a well-
established platform in the avionics domain.

The T-CREST platform was evaluated with the aid of
the following three real-world avionic applications: (1) an
Airlines Operational Centre (AOC), (2) a Crew Alerting
System (CAS), and (3) an I/O Partition (IOP). We chose
T-CREST as platform for avionics applications as this is
currently the only multicore processor where static WCET
analysis of C programs is possible.

This paper is organized in 7 sections: Section II introduces
the T-CREST platform used in the evaluation. Section III
gives the background on Integrated Modular Avionics and
presents the avionic demonstrators. Section IV describes part
of the software stack that has been adapted or developed for
the T-CREST platform. Section V is the core part of this
paper, presenting and discussing the evaluation results. Sec-
tion VI presents related work on time-predictable multicore
processors. Section VII concludes.

II. THE T-CREST MULTICORE PROCESSOR

The T-CREST project builds the time-predictable multi-
core platform from scratch. The main design objective of
T-CREST is its time-predictability—predictable timing is a
first-order design factor [12]. It is developed according to
the following design principle [11]:

Make the worst-case fast and the whole system
easy to analyze.

All components of a platform, including processor,
network-on-chip, memory hierarchies, and the compiler,
need to be designed for time-predictability for future, safety-
critical avionics applications.

Designing and optimizing a multicore processor for real-
time systems results in a radically different design than
that of a standard processor. For example, communication
between cores via shared memory, and then implicitly via a
cache coherence protocol is not analyzable for the WCET.
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Figure 1. A Patmos processor node and its interfaces to the memory-tree
NoC and the Argo message passing NoC.

Therefore, we support explicit message passing between
cores via a NoC.

Figure 1 shows a Patmos processor node and its in-
terfaces towards both the Bluetree memory NoC and the
Argo message-passing NoC. The memory tree NoC provides
access to a shared off-chip memory and is used exclusively
for booting the platform and servicing the (non-coherent)
cache memories. The Argo message-passing NoC provides
inter-processor communication and is extensively used by
the applications described in this paper.

A new processor named Patmos has been developed
within T-CREST. Patmos is a 32-bit, RISC-style dual-issue
VLIW processor core [3]. To support the single-path pro-
gramming paradigm [13], Patmos supports predicates on all
instructions.

For time-predictable caches, the processor supports sev-
eral variants of caches and on-chip memories: a method
cache [14] handles the caching of complete methods/func-
tions. Moreover, stack allocated data can be cached in the
special stack cache [15]; other data is cached in the data
cache. The method cache is supported by a scope-based
WCET analysis [16]; the stack cache, by a intra-procedural
data-flow analysis [17]. Functions and data can also be
placed into the instruction and data scratchpad memories
(SPM). Another SPM serves as a communication SPM with
the Argo NoC.

Argo is a packet-switched source-routed NoC that im-
plements virtual channels using statically scheduled time-
division multiplexing (TDM) of the resources (i.e., links)
in the NoC [4]. In this way, once a packet is injected
into the network of routers, it traverses the end-to-end path
(i.e., the virtual channel) in a pipelined fashion without ever
competing with other packets for access to resources in the
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Figure 2. IMA terminology

NoC. A physical DMA controller is shared by all outgoing
virtual channel from a processor node. As messages are
usually larger than the payload of a single packet, messages
are typically sent from a processor node in an interleaved
fashion, following the TDM schedule.

The hardware implementation of Argo has two novel
features that distinguish it from other NoCs with similar
functionality. First, the DMA controllers are moved into
the network interfaces and tightly integrated with the TDM
scheduling [18], as illustrated in Figure 1. Second, the
Argo NoC use asynchronous routers [5], [19]. The result
is a hardware-efficient implementation that at the same time
enables a globally asynchronous, locally synchronous timing
organization of the entire multiprocessor platform.

All processor cores are connected via a memory tree
called “Bluetree” [20]. Bluetree provides access to a shared
external SDRAM memory controlled by a real-time memory
controller [8], [21]. An alternative memory NoC implements
distributed TDM arbitration [7].

The compiler infrastructure is an essential part of the
system developed in the project [9]. WCET-aware opti-
mization methods [22] were developed, along with detailed
timing models, so that the compiler benefits from the known
behavior of the hardware. The T-CREST partner AbsInt
adapted the aiT WCET analysis tool [10] to support the
Patmos processor. Furthermore, aiT provides information to
the compiler that can then optimize along the WCET path.

III. AVIONICS APPLICATIONS

This section first introduces the Integrated Modular
Avionics (IMA) concept and then presents the avionics
demonstrators based on IMA.

A. IMA and ARINC 653

The goal of IMA (shown in Figure 2) is to reduce
hardware and thereby weight and power consumption by
sharing resources among applications. IMA enables multiple
unrelated applications, with different criticality levels, to
share the same computing platform without interference.

Partitioning separates applications in two dimensions:
space and time. Spatial separation means that the memory of
a partition is protected. Temporal separation means that only
one application at a time has access to system resources,
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including the processor; therefore, only one application is
executing at any time—with no competition for system
resources between partitioned applications. Furthermore,
processors are statically assigned to partitions. A processor
cannot change its partition at runtime.

ARINC 653 is an IMA-compliant specification that de-
fines an application-programming interface (API) called
“APEX” [23]. APEX provides applications with a common
interface for accessing system services and specifying the
distribution of time and memory among the partitions. As
illustrated in Figure 3, APEX provides applications with a
set of services:

• inter-process communication within a partition (events,
message buffers, black boards, semaphores, etc.)

• time services
• an interface to the health monitor
• interfaces to the partition associated with the applica-

tion and the processes it consists of
Communication among partitions occurs through ports

defined at the partition level. A port is either incoming or
outgoing and may be either a queueing port, holding zero
or more messages, or a sampling port containing the current
instance of a periodically updated message. Ports are linked
by channels, which are transparent to applications.

B. The Airlines Operational Centre Use Case

The Airlines Operational Centre (AOC) is the on-board
part of an air traffic management system that enables digital
text communication between the aircrew and ground units.
It was developed according to DO-178B Design Assurance
Level C and is thus a moderately critical application. The
AOC is a communication router and message database. It
stores reports sent from ground stations or created by aircraft
subsystems.

Typical reports sent from the ground to the aircraft are
weather reports, messages advising the aircraft about unfore-
seen events, constraint lists for aircraft trajectory planning,
flight plans, in-flight traffic management messages, and free
text messages. Typical reports sent from the aircraft to the
ground are information on the main flight events (out of
parking position, off the runway, on the runway, in the

Figure 4. AOC MCDU display

parking position), the expected time of arrival (updated and
sent periodically), reports on engine and fuel state, reports
on observed weather conditions, aircraft trajectory plans, and
free text messages.

The AOC solution contains a user interface for the pilot,
the Multifunction Control Display Unit (MCDU). Figure 4
shows the MCDU with the main menu. This interface is used
for displaying received reports, changing report settings such
as contracts, requesting reports from the ground and creating
reports such as free text messages or malfunction reports.
The MCDU also presents engine data such as engine and
oil temperature, fuel flow, and engine RPM (Revolutions
Per Minute).

The actual AOC application provides the link between
the ground unit and the pilot’s MCDU. This means that the
AOC is responsible for storing all the messages exchanged
between those interfaces, receiving new messages as they are
transmitted, and dispatching the proper data whenever the
pilot switches its interface to a new menu or new data needs
to be displayed in the current MCDU menu. The AOC is an
IMA application, compliant with ARINC 653, and therefore
running on all ARINC 653-compliant operating systems.

C. The Crew Alert System Use Case

Modern aircrafts have a Crew Alert System (CAS) to
aid the aircrew. The CAS receives signals from on-board
subsystems, such as doors, engines, or the environment
control system, and displays relevant aircraft information
such as engine parameters (e.g., temperature values, fuel
flow, and quantity). The CAS improves situational awareness
by allowing the aircrew to view complex information in
a graphical format and by alerting the crew to unusual or
hazardous situations.

The CAS prototype follows the DO-178B guidance for
Design Assurance Level A, the highest certification level.



Figure 5. CAS display unit

The CAS comprises two elements: the display unit and
the processing unit. The display unit, shown in Figure 5,
is responsible for presenting information to the aircrew.
The processing unit receives input signals from selected
aircraft subsystems, translates this information if needed, and
manages the messages to be presented to the aircrew in ac-
cordance with specified requirements. The CAS processing
unit input signals are simulated in the demonstrator.

The processing unit must assign each received signal to
one of the following message-criticality groups: Warning
messages in red, Caution messages in amber, and Advisory
messages in green.

The ranking of a message in the displayed list of mes-
sages, an example shown in Figure 5, is determined by its
time of activation, acknowledgement status, and criticality
group. Warning and Caution messages are initially presented
in flashing mode, until the pilot acknowledges them. Upon
acknowledgement, all messages of that criticality group lose
their highlight status and return to normal mode. Advisory
messages do not need acknowledgement.

D. The I/O Partition

General-purpose operating systems hide the custom code
that controls I/O devices and provide applications with clean
high-level interfaces to the I/O devices. The same approach
cannot be applied to a robust partitioned operating system, as
doing so may violate spatial partitioning. If I/O devices are
shared across partitions, there is a risk of the devices being
left in an unknown state following a partition error [24].
Consequently, the independence and isolation of partitions
could be compromised.

We solve this problem by introducing a central generic
I/O module executing in its own partition to route data to
and from applications in several partitions. Figure 6 shows
this configuration.

The I/O partition (IOP), being subject to time and space
partitioning, does not forward the data directly. Instead,
communication is asynchronous by design. In its execution
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Figure 6. System configuration with an I/O module implemented by a
dedicated partition

window, an application sends its data to the IOP. The IOP
will handle this data only during its next execution window.
On the other side of the channel, the same process may
occur. The IOP receives the data and forwards it to the final
destination. But the targeted partition will receive this data
only during its next execution window. Execution windows
of IOPs thus extend the path through the network. The IOP
currently implements (1) drivers and protocol stacks for RS-
232, SpaceWire and MIL-STD-1553B including Bus Con-
troller and Remote Terminal modes, and (2) a deterministic
IP stack providing UDP on top of an Ethernet driver.

From an application’s perspective, there are three ways
of accessing the IOP services: through the middleware API,
through remote ports, or through shared memory. For most
cases, the underlying communication mechanism will be
a set of queuing ports [23]. This set of queuing ports is
used for sending requests to the I/O device and sending
results back to the requesting partition. In cases involving
the exchange of huge amount of data, an additional interface
(such as shared memory) will be used.

Internally, the IOP consists of a set of tasks that are peri-
odically executed according to the partition frequency. The
scheduler executes the internal schedule, i.e., the sequence
of task execution according to their periods and priorities,
to always achieve a full read-and-write cycle per partition
execution window.

IV. THE SOFTWARE STACK

Along with the hardware development and the porting of
the avionics applications, a software stack was ported or
developed. The software stack consists of: (1) the RTEMS
real-time operating system, (2) ARINC 653 functions, and
(3) a message-passing library for the NoC.

A. RTEMS Port

A major effort involved in porting the avionics demon-
strators to the T-CREST platform was porting a real-time
operating system to the new platform. The Patmos CPU was
added to the collection of supported architectures of RTEMS
4.10.2.

Porting RTEMS to Patmos entailed developing a set
of RTEMS-internal functions: platform-specific initializa-
tion, context management (context initialization and context



switching), clock management, and support for a serial port.
In addition, a message-passing library for the NoC was
added to RTEMS and is available to application developers.

Porting RTEMS had a positive side effect. Because it is
a complex piece of software, it covers a wider range of
features from the processor and associated tool-chain than
would a simple application. In a way, RTEMS acted as a use
case for the platform in its own right. Building and running
RTEMS ended up assessing the maturity of the T-CREST
platform.

B. ARINC 653 Functions

Both avionics applications (AOC and CAS) rely on AR-
INC 653 functions to operate. They use processes to run
modular sequences of instructions, force process switching
through timed waits, adopt buffers to store and transmit large
amounts of data, and employ sampling and queuing ports to
communicate with other applications.

We use RTEMS tasks, message queues, and timer func-
tions for implementing ARINC processes, buffers, and
timers. The mapping between RTEMS and ARINC functions
is straightforward, as each ARINC function always has a
corresponding RTEMS counterpart. For the bare applications
(without RTEMS), buffers have been implemented, whereas
the existing process structure was erased. Instead of running
different processes, the applications consist of one single line
of execution, running the different modules in an endless
loop, switching periodically between the modules.

The implementation of sampling and queuing ports is the
same for the RTEMS and the bare-bone configuration. It
relies on platform-specific features, namely, the communi-
cation scratchpad memory for the NoC local to each core. In
our implementation, sampling and queuing messages lie in
each core’s local communication scratchpad memory, as well
as auxiliary information for the messages. These messages
are then transmitted via the NoC to all participating cores,
thereby avoiding the expensive access to shared memory. In
addition, this implementation imposes a static configuration
of ports, i.e., there must be a set of configuration files
declaring and defining the characteristics of the ports to be
created during the execution of the use case.

C. Message-passing Library

Porting the avionics applications to the T-CREST plat-
form, we consider executing single partitions on separate
cores of the platform. For executing the individual parti-
tions on separate cores, we need to map the inter-partition
communication onto the NoC. Therefore, we avoid copying
messages between main memories of the individual parti-
tions.

ARINC 653 specifies sample-based communication and
queuing-based communication for inter-partition commu-
nication. The original ARINC interface for queuing and
sampling ports specify that data be copied in and out of
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Figure 7. Example configuration of an avionic demonstrator

buffers internally in the library, when the data is sent and
received, respectively.

However, as this copying is not optimal for the T-CREST
platform, we developed a zero-copying message-passing
library [25]. The messages are created in local memory and
sent automatically from there via the NoC. The message is
not copied before transmission; therefore the current sending
buffer can be reused only when the sending has finished.
The same approach is used on the receiver side. A received
message is not copied out of the local memory but processed
in place. When the processing of the message is completed,
the buffer for it is marked as free for re-use.

To enable overlapping of computation and communica-
tion, the library supports double buffering on the sender side
and a queue of message buffers on the receiver side. The
message-passing library is written in a WCET-analyzable
way. As we avoid the copying of messages, the WCET of
the individual library functions are independent from the
message size.

V. EVALUATION

All demonstrators were originally IMA applications that
communicated with other applications and external systems
through queuing and sampling ports. These communication
interfaces are originally based on buffers in main memory
and, thus, are subject to heavy contention in a multicore
processor. As part of the optimization to the T-CREST
platform, the port interfaces used by the demonstrators were
mapped to inter-core communication using the configurable
Argo NoC. This optimization removes part of the contention
for the main memory and therefore reduces the WCET of
the demonstrators.

A. Evaluation Configuration

An example configuration is shown in Figure 7. Both
CAS and IOP are hosted on the T-CREST board, and a
workstation is used to interface with the board and the
demonstrators via both a serial and an Ethernet connection.
The IOP demonstrator is deployed on core 0, so that it can
access the Ethernet port, and the CAS application is loaded
to core 1.
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The IOP demonstrator was originally developed to man-
age I/O access in partitioned systems, where various par-
titions need to communicate with I/O devices in a safe,
controlled manner. In all the avionics demonstrators, IOP’s
main duty is to manage the Ethernet interface. Applications
trying to access the network will send data to the core, where
the IOP is running using the Argo NoC. This communication
is abstracted by the ARINC 653 queuing and sampling port
interface. Once the data has been received, the IOP routes
it according to its internal routing tables and sends it to the
Ethernet network and data received by the IOP from the
network is routed and sent to the applications via the NoC.

The CAS demonstrator is composed of the display unit
and the processing unit. For the user to visualize messages,
the display unit corresponds to a graphical interface. The
display unit is simulated on the workstation.

The core of the CAS application is the processing part that
is executed on the T-CREST platform. It can be decomposed
in 6 subcomponents: (1) management of CAS messages, (2)
interaction with the display, (3) setting of the flight phase,
(4) message activation logic, (5) message acknowledgement,
and (6) CAS main function for periodically calling the other
CAS components.

At the workstation, the user can send one of two com-
mands to the CAS processing element: (1) change of the
flight phase and (2) activation of a specific message.

In the original application, sampling and queuing ports
were used for communicating between the processing unit
and the display unit (see Figure 8). In the T-CREST system,
communication between the processing unit and the display
unit was replaced by the Ethernet connection between the
platform and the user workstation (see Figure 9). The arrows
in these figures show the direction of the message exchange.

The IOP demonstrator serves as the middleman for CAS
to communicate with its graphical interface at the user
workstation (see Figure 9). In this case, the initial sampling
and queuing ports are mapped to NoC-based ports that
associate the various CAS processing components to IOP.

B. Evaluation Results

The main objective of the avionics evaluation was to
demonstrate that, given a configuration of the T-CREST plat-
form, independently obtaining the WCET of any application
is possible, regardless of other software executing on the
platform. This temporal independence between applications
is a cornerstone in the IMA concept, which is difficult to
obtain in current multicore systems. The lack of analyzable
multicore platforms hampers their adoption in the aerospace
market, preventing the potential benefits in terms of higher
system integration that can lead to more cost-efficient avion-
ics systems.

To validate application independence, a demonstrator was
set up in which each core hosts a different application
(AOC, IOP, CAS) that would, in a typical IMA system,
be a stand-alone partition. This asymmetric distribution of
applications on cores was used to show that the timing of
each application depends solely on its own execution and
the hardware configuration.

To provide further insight over the behavior of the T-
CREST platform, several test cases were setup by varying
the number, configuration, and distribution of the avionics
applications. For the different test cases, we estimated the
WCET of selected tasks and, in some cases, compared the
WCET against a measurement of the average-case execution
time. We obtain the measured execution time by reading
the cycle-accurate timer of Patmos at specific points in the
source code.

The following tables show the WCET results of individual
tasks of the avionics demonstrators. The WCETs are ob-
tained for variations of the hardware (4 or 9 cores) and vari-
ations of the application setup. The hardware configuration
has an impact on the WCET because more cores access the
shared main memory. The application setup shows almost
no influence on the WCET of tasks.

As Tables I and II show, we were able to obtain WCET
estimations for every avionics application. Table I shows
that the main factor influencing the WCET estimation is the
number of cores available in the platform. In contrast, varia-
tions in concurrently executing applications, here appearing
as different test cases, have no noticeable impact on the
WCET estimation. The WCET estimation for the cas loop
entry point displays a twofold increase when changed from
a quad-core platform to a nine-core platform.

Some applications, listed in Table I, exhibit a very small
variance in the WCET estimation for different application
setups while using the same number of cores. This small
variation is due to different configurations used in different



Table I
WCET RESULTS FOR SELECTED TASKS OF AVIONICS DEMONSTRATORS

Analysis entry Test case Cores WCET
(in ms)

cas loop
CAS+IOP 4 284

AOC+CAS+IOP 9 619

AGPAOCReceiveMainLoop
AOC+IOP 9 5.41

AOC+CAS+IOP 9 5.45

AirplanePAOCMainTask
AOC+IOP 9 1.92

AOC+CAS+IOP 9 1.94

decoderLoop
AOC+IOP 9 210

AOC+CAS+IOP 9 210

AOCAlertMainLoop
AOC+IOP 9 2.72

AOC+CAS+IOP 9 2.74

Table II
WCET ESTIMATIONS AND AVERAGE-CASE EXECUTION TIME

MEASUREMENTS FOR IOP: PRE DISPATCHER AND POS ROUTER ENTRY
POINTS

Analysis entry Test case Cores WCET Timing
est. meas.

(in ms) (in ms)

pre dispatcher
CAS+IOP 4 6.24 0.952
AOC+IOP 9 14.64 0.239

AOC+CAS+IOP 9 23.57 1.110

pre router
CAS+IOP 4 6.42 0.121
AOC+IOP 9 15.35 0.120

AOC+CAS+IOP 9 27.07 0.151

test cases. Some of these configurations (e.g., the number
of ARINC 653 ports) have a small impact over loop bounds
and, hence, over the estimated WCET. This effect is also
present on the WCET estimation results from the IOP
application presented in Table II.

All WCET estimations are, as expected, higher than
the average case measurements. However, as average case
measurements usually do not trigger the worst-case exe-
cution path, the big difference between WCET estimates
and measurements has no real meaning, Triggering the
worst-case execution path is practically impossible for non-
trivial application, as this path is usually unknown, providing
another argument for static WCET analysis of tasks in
safety-critical applications.

C. Comparison with LEON

LEON processors [26] are very common in real-time
systems, especially in the space domain. LEON is also
supported by the aiT WCET analysis tool. We selected the
IOP application, as an example, to compare the T-CREST
platform against a LEON 3 processor.

Alongside the compiled IOP executable for LEON 3, a
manually composed AIS annotations file is used as input
to AbsInt’s WCET analysis tool for obtaining the estimated
WCET values for the LEON processor. These values are then
compared with the values obtained, using the same source

Table III
COMPARISON OF WCET RESULTS BETWEEN PATMOS AND LEON FOR

THE IOP APPLICATION

Analysis entry Cores Target CPU WCET
(in ms)

pre dispatcher
1 Patmos 2.20

LEON 2.32

4 Patmos 5.75
LEON 45.28

pre router
1 Patmos 2.21

LEON 2.15

4 Patmos 6.06
LEON 41.81

code compiled for the T-CREST platform. However, this
comparison is feasible only for a single core, as determin-
ing the WCET for multicore configurations of the LEON
processor are impossible (the problem is unbounded).

Nonetheless, an approximate value of the expectable
WCET, for multicore LEON, is estimated by factoring
single-core WCET values with a maximum interference
multiplier representative of a LEON multicore processor.
This maximum interference multiplier is extracted from the
literature [27], namely a European Space Agency-funded
study aimed at characterizing the NGMP processor (quad-
core LEON 4). This study found that inter-core interference
could increase the execution time of a given code segment
up to twenty times compared to its single-core value.

Table III presents the comparison between LEON 3 and
T-CREST/Patmos. From the comparison in Table III we
can conclude that, in single-core configurations, Patmos and
LEON have similar results with one alternately exhibiting
a marginal reduction (<5 %) in the WCET bound over the
other, depending on the specific task analyzed.

In multicore configurations, the difference is more sig-
nificant; Patmos, as part of the T-CREST platform, can
be directly targeted by static WCET analysis techniques.
Such analysis is unfeasible in multicore versions of the
LEON processor, such as the NGMP. Being analyzable in
terms of WCET behavior offers the T-CREST platform a
key advantage over the LEON multicore processor. When
comparing the WCET values obtained in multicore T-
CREST with those empirically estimated for the LEON,
we see the T-CREST platform yielding a seven times lower
WCET bound. Nonetheless, we cannot use the LEON values
presented to build a safety case around the software, because
they are rough estimates derived from empirically obtained
interference patterns.

VI. RELATED WORK

As standard processors do not fit for future avionics
applications, research on time-predictable architectures is
gaining momentum. This section compares related research
with the T-CREST platform.



A bus-based multicore processor has been developed
within the MERASA (Multi-Core Execution of Hard Real-
Time Applications Supporting Analysability) [28] project.
In contrast to MERASA, we developed a network-on-chip
based multicore architecture. We also tackled the time
predictability challenge by developing a new processor ar-
chitecture, with a WCET optimized instruction set, and the
supporting compiler.

The FP-7 project PREDATOR studied the factors that
influence time-predictability in processors [29]. Within the
T-CREST project we followed the design principles of the
PREDATOR project.

The precision-timed (PRET) machine [30], [31] is a
processor that supports repeatable timing. The initial version
of PRET implements one version of the ARM instruction
set [32], [33]. PRET supports several threads in execution via
chip-multithreading. Scratchpad memories are used instead
of instruction and data caches. FlexPRET [34] extends PRET
to support two different thread types, hard and soft real-
time threads, directly in the hardware. This extension is
intended for mixed-critically systems. The main difference
between our proposal and PRET is that we focus on time
predictability [11], [12] and PRET on repeatable timing.

Fernandez et al. [35] explore the task interference in
a LEON 4-based quad-core processor. The processor is a
conventional multiprocessor that has been developed with
critical real-time systems in mind. The study shows that in-
terference may cause the execution time of a task to increase
by a factor of 2-9 times when executing on the multicore
configuration, compared to a single core configuration. This
result is a strong argument in support of time-predictable
multicore architectures such as the one we have built with
the T-CREST platform.

VII. CONCLUSION

Avionics applications need to be certified for the highest
criticality standard. In this paper we presented avionics
applications that have been ported to the time-predictable
T-CREST multicore processor. We showed that the avionics
applications can be analyzed for their worst-case execution
time when executing on the T-CREST multicore processor,
although multicore processors are usually a very hard target
for worst-case execution time analysis. Therefore, we con-
clude that the T-CREST platform is a good choice for high
criticality real-time systems.
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