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ABSTRACT
A real-time garbage collector has to fulfill two conflicting prop-
erties: avoid heap fragmentation and provide short blocking time.
The heap needs to be compacted to avoid probably unbounded frag-
mentation. During compaction all objects are copied; copying is
usually performed atomically to avoid interference with mutator
threads. Copying of large objects and especially large arrays in-
troduces long blocking times that are unacceptable for real-time
systems.

In this paper an interruptible copy unit is presented that implements
non-blocking object copy. The unit intercepts object and array field
access and redirects the access either to the source or destination
part of the moving object. The unit can be interrupted after a single
word move. The resulting maximum blocking time is the time for a
memory word read and write. We have implemented the proposed
non-blocking copy unit in the Java processor JOP and are able to
run high priority real-time tasks at 10 kHz parallel to the garbage
collection task on a 100 MHz system.

1. INTRODUCTION
Garbage collection (GC) is a feature in modern object oriented lan-
guages, such as Java and C#, that increases programmer productiv-
ity and program safety. However, dynamic memory management is
usually avoided in hard real-time systems. Even the real-time spec-
ification for Java (RTSJ) [3], which targets soft real-time systems,
defines an additional memory model, with immortal and scoped
memory, to avoid garbage collection.

However, the memory model introduced by the RTSJ is unusual to
most programmers. It also requires that the Java virtual machine
(JVM) checks all assignments to references. If a program does not
adhere to the specified model, run-time exceptions are triggered.
Arguably, this is a different level of safety than most Java program-
mers would expect. Therefore, much research activity is spent to
enable garbage collection in real-time systems.

One of the open issues that need to be solved is heap compaction
with short blocking times. Heap fragmentation is one of the main
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reasons to avoid dynamic memory management in hard real-time
systems and safety critical systems. The worst case memory con-
sumption within a fragmented heap is too high to be acceptable.
A garbage collector that performs heap compaction as part of the
collection task eludes this fragmentation issue.

In a system with a concurrent GC, the GC thread and the mutator
threads have to synchronize their work. Several operations (e.g.,
barrier code, stack scanning, and object copy) need to be performed
atomically. Stack scanning and object copy in atomic sections can
introduce considerable blocking times. This paper deals with one
of those atomic sections, the potentially long operation of an ob-
ject copy in a compacting GC. In an accompanying paper [14] we
propose a solution to avoid blocking at root scanning of the stack.

Heap compaction comes at a cost: objects need to be moved in
the heap. This object copy consumes processor execution time,
memory bandwidth, and needs to be performed atomically. We can
accept the first two cost factors as a tradeoff for safer real-time pro-
grams. However, the blocking time introduced by the atomic copy
operation can be in the range of milliseconds on actual systems.
This value can be too high for many real-time applications.

In this paper we propose a memory unit for non-blocking object
copy. The memory copy is performed independent of the activity
in the CPU, similar to a direct memory access (DMA) unit. The
copy unit executes at the priority of the GC thread. When a higher
priority thread becomes ready, the copy unit is interrupted. The
memory unit stores the state of the copy task. The object field and
array access is also performed by this memory unit. When a field
of an object under copy is accessed by the mutator, the memory
unit redirects the access to the correct version of the object: to the
original object when the field has not yet been copied or to the
destination object when the field has already been copied.

The non-blocking copy unit is evaluated by an implementation in
the context of the Java processor JOP [18]. The resulting maximum
blocking time due to the object copy is 120 ns (12 clock cycles) on
the 100 MHz system, orders of magnitudes lower than other atomic
operations in the JVM. It is possible to run a 10 kHz high priority
task without a single deadline miss with ongoing garbage collec-
tion. The maximum task frequency is limited by the scheduler and
not by garbage collection. It has to be noted that the proposed copy
unit is not JOP specific. The unit can also be integrated in a stan-
dard RISC processor that executes compiled Java.

The paper is organized as follows: in the next section related work
on real-time collectors and approaches to minimize GC blocking



time is presented. Section 3 presents the idea of non-blocking ob-
ject and array copy. The implementation within the Java processor
JOP is described in Section 4. The design is evaluated in Section 5
and the findings are discussed in Section 6. The paper is concluded
in Section 7.

2. RELATED WORK
Real-time garbage collection research dates back to the 1970s where
collectors for LISP and ML have been developed. Therefore, a vast
number of papers on real-time garbage collection have been pub-
lished. A good introduction to garbage collection techniques can
be found in Wilson’s survey [24] and in [7].

The simplest way to avoid blocking times due to object copying
is simply to avoid moving objects at all. The real-time GC of the
JamaicaVM does exactly this [22]. Objects and arrays are split
into fix sized blocks and are never moved. This approach trades
external fragmentation for internal fragmentation. However, the
internal fragmentation can be bounded.

The Metronome GC splits arrays, similar to the JamaicaVM ap-
proach, into small chunks called Arraylets [1]. Metronome com-
pacts the heap to avoid fragmentation and the Arraylets reduce
blocking time on the copy of large arrays. Both approaches, the
JamaicaVM GC and Metronome, have to pay the price of a more
complex (and time consuming) array access.

Another approach to allow interruption of GC copy is to perform
field writes to both copies of the object or array [6]. This approach
slows down write access, but those are less common than read ac-
cesses. The main drawback of this solution is the additional pointer
needed between the two copies of the object. Nettles and O’Toole
propose a GC where the mutator is allowed to modify the original
copy of the objects [9]. All writes are recorded in a mutation log
and the GC has to apply the writes from this log after updating the
pointer(s) to the new object copy.

Nilsen and Schmidt propose hardware support, the object-space
manager (OSM), for real-time GC on a standard RISC processor
[10]. The concurrent GC is based on [2], but the concurrency is of
finer grain than the original Baker algorithm as it allows the mu-
tator to continue during the object copy. The OSM redirects field
access to the correct location for an object that is currently being
copied.

The clever usage of atomic two-field compare-and-swap (CAS) op-
erations for an incremental object copy is proposed in [13]. During
the copy process, an object is expanded to an intermediate wide
version and an uninitialized narrow version in tospace. The wide
version is protected by CAS operations. However, this solution in-
troduces some overheads to the mutator field access especially dur-
ing the copy process. In the worst case, the mutator has to expand
the object to the wide version on a field write.

Meyer presents a hardware implementation of Baker’s read-barrier
[2] in an object-based RISC processor [8]. The cost of the read-
barrier is between 5 and 50 clock cycles. The resulting minimum
mutator utilization (MMU) for a time quantum of 1 ms was mea-
sured to be 55%. For a real-time task with a period of 1 kHz the
resulting overhead is about a factor of 2. We consider the 50 cycles,
even if they are quite low, too expensive for a read-barrier and use
the Brooks-style [4] indirection instead.

The solution proposed by Meyer for object-oriented systems also
contains a garbage collection coprocessor in the same chip. Close
interaction between the RISC pipeline and the GC coprocessor al-
low the redirection for field access in the correct semi-space with a
concurrent object copy. The hardware cost of this feature is given
as an additional word for the back-link in every pointer register and
every attribute cache line. The only additional runtime cost is on
an attribute cache miss. In that case, two instead of one memory
accesses resolve the cache miss. It is not explicitly described in the
paper when the GC coprocessor performs the object copy. We as-
sume that the memory copy is performed in parallel with the execu-
tion of the RISC pipeline. In that case, the GC unit steals memory
bandwidth from the application thread. Our copy unit, in contrast,
respects thread priorities and has no influence on the worst-case
execution time (WCET) of hard real-time threads.

The Java processor SHAP [26], with a pipeline and cache architec-
ture based on the architecture of JOP, contains a memory manage-
ment unit with a hardware GC. That unit redirects field and array
access during a copy operation of the GC unit.

The three hardware-assisted GC proposals [10, 8, 26] do not ad-
dress the influence of the copy hardware on the WCET of the muta-
tor threads. It is known that background DMA complicates WCET
analysis. In our proposal, we allow object copy only when the GC
thread is running. Therefore, that task is simple to integrate into the
schedulability analysis. Scheduling the GC thread at low priority
and providing an interruptible (non-blocking) object copy result in
100% MMU for high priority real-time tasks.

Compared to a to a fix block size GC (e.g., the JamaicaVM ap-
proach) a compacting GC avoids the internal fragmentation. The
tradeoff is the additional memory bandwidth that is consumed by
the object copy and the handling of the object relocation. Field
and array accesses need two and three memory accesses for an ob-
ject layout with a handle indirection. In the JamaicaVM the cost
of the field and array access varies and depends on the location of
the field or the layout of the array. In the average case the cost of
a field access is close to one and of an array access close to two
memory accesses [21]. With the jvm98 benchmarks most arrays
are allocated contiguous instead of a tree of fix sized blocks. How-
ever, in the worst case a tree needs to be traversed and 2+d memory
accesses are needed for a tree of depth d. Constant access time is
simpler to handle by WCET analysis than a location and organiza-
tion dependent access time.

3. NON-BLOCKING OBJECT COPY
Copying large arrays and objects in a compacting GC attributes to
the largest blocking times. To avoid losing updates on the object
during copying (write to fields that are already copied), it is usually
performed atomically. To avoid those long blocking times in a real-
time GC, we propose an interruptible copy unit. The copy unit has
two important properties:

• It can be preempted at single word copy boundaries

• The copy process is executed at the GC thread priority

A real-time GC needs to be interruptible by higher priority threads.
If the copy task is performed by the hardware, which works au-
tonomously in its own hardware thread, that hardware also needs
to be interrupted on a thread switch. Furthermore, the copy task
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Figure 1: Memory controller state machine with background
copy

needs to be restarted at the correct time, i.e., when no thread with a
priority higher than the GC thread priority is ready.

A simplified solution is to start the copy as a background DMA
operation and let the GC thread wait for completion before contin-
uing the GC work. However, this background activity, even when
interruptible at word boundaries, changes the WCET of high pri-
ority threads. It steals memory cycles from those threads. Even
when the copy unit starts at idle cycles it will still block incoming
read or write requests from the real-time threads during the copy.
Therefore, it will delay most of the load and store instructions.

Figure 1 shows a simplified state diagram of the memory controller
that performs the background copy. From the idle state either a
normal read, normal write or a start of the copy task is performed.
The states of the copy task are: start with setting a flag that an object
copy is pending, perform the copy (via states copy read and copy
write), and end with the reset of the copy flag. After each write in
the copy loop the CPU is checked for an outstanding read or write
request. In that case the copy task stops and that request is fulfilled.
A stopped copy is resumed from states read and write if the copy
flag is set.

For time predictability we need a complete stop of the copy task
on a software thread switch (from the GC thread to an application
thread). Two solutions are possible: (a) integrate the control of the
copy task into the scheduler, or (b) let the copy unit itself detect a
thread switch.

For the first solution the stopping of the copy unit is integrated into
the scheduler. On a non-GC thread dispatch the scheduler has to
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Figure 2: Memory controller state machine with interruptible
copy

explicitly stop the copy task. However, this approach needs inte-
gration of GC related work into the scheduler, which is not possible
in all JVMs.

The second approach is to interrupt the copy task by a normal mem-
ory operation (read or write). Interruption can be detected by the
memory unit by a pending read or write request. During the object
copy the GC thread performs a busy wait on the status of the copy.
Therefore, the GC thread does not access main memory at this time.
If the memory unit recognizes a read or write request it comes from
an application thread that interrupted the GC thread. That request
is the signal to stop copying. The state machine for this behavior is
depicted in Figure 2. As in the former state machine the copy loop
can be interrupted by a pending read or write request. The differ-
ence is that there is no automatic transition from the read and write
state back to the copy loop. The copy task needs to be explicitly
restarted from the processor as indicated by the transition from idle
to copy read.

The remaining question is how to restart the copy task? Similar to
the stopping of the copy unit, two solutions are possible: (a) the
scheduler restarts the copy task, or (b) the GC thread performs the
restart.

The scheduler integration works as follows: When the GC thread
is about to be rescheduled, the scheduler has to resume the copy
operation as well. This approach is only possible when the sched-
uler has knowledge about the thread types (mutator or GC thread).
Scheduling and dispatching are atomic operations with respect to
software threads (only higher priority interrupt handlers are allowed
to interrupt the scheduler). Performing the copy unit restart within



startCopy(src, dst, size);
while (!copyFinished()) {

if (copyInterrupted()) {
restartCopy();

}
}
synchronized (GC.mutex) {

updateHandle(handle, dst);
}

Figure 3: Busy waiting copy loop in the GC thread with copy
restart

this atomic operation slightly increases the blocking time intro-
duced by the scheduler.

The proposed solution lets the GC thread resume the copy task
when getting rescheduled. To perform this function, the GC thread
needs to know that it was preempted – an information that is usu-
ally not available for a thread. However, the copy unit preserves
this information and the state interrupted can be queried by the GC
from the copy unit in the copy loop.

Figure 3 shows the copy code in the GC. The GC thread kicks off
the copy task with startCopy() and performs a busy wait till the copy
task is finished – copyFinished() returns true. Within the loop the
state of the copy state machine is checked with copyInterrupted()
and the copy task is restarted if necessary. It has to be noted that
this busy waiting loop does not consume any memory bandwidth.
The code is executed from the instruction cache, stack operations
are performed in the stack cache, and all state queries go via an on-
chip bus directly to the memory controller. The memory controller
can perform the copy at maximum speed during the GC busy wait.
At the end of the copying process, the reference to the object in the
handle is updated atomically.

A further simplification of the copy unit is possible when the GC
thread triggers only single word copies in a tight loop. The copy
process is automatically preempted when the GC thread gets pre-
empted. No restart is necessary due to the incremental copy trigger
and the polling for the finished copy task can be omitted. The dis-
advantage of this simplification is the slower copy of the object.

4. IMPLEMENTATION
We implemented the proposed non-blocking copy unit in the Java
processor JOP [18]. JOP was designed from scratch as a real-time
processor [16] to simplify the low-level part of WCET analysis.
The main benefit of a Java processor for real-time Java is the pos-
sibility to perform WCET analysis at bytecode level [19].

In the following section the GC algorithm that is part of the JOP
runtime environment is briefly described. It has to be noted that the
proposed copy unit is independent of the processor platform and
also independent from the GC algorithm.

4.1 The GC Algorithm
The collector for JOP is a concurrent copy collector [15, 20] based
on [2, 5]. Baker’s expensive read-barrier is avoided by using a
write-barrier and performing the object copy in the collector thread.
Therefore, the collector is concurrent and resembles the collectors
presented by Steele [23] and Dijkstra et al. [5]. The collector and

private static void putfield_ref(int ref, int value,
int index) {

synchronized (GC.mutex) {

// snapshot-at-beginning barrier
int oldVal = Native.getField(ref, index);
// Is it white?
if (oldVal!=0 &&

Native.rdMem(oldVal+GC.OFF_SPACE)!=GC.toSpace) {
// mark gray
GC.push(oldVal);

}
// assign value
Native.putField(ref, value, index);

}
}

Figure 4: Snapshot-at-beginning write-barrier in JOP’s JVM

the mutator are synchronized by two barriers. A Brooks-style [4]
forwarding directs the access to the object either into tospace or
fromspace. The forwarding pointer is kept in a separate handle area
as proposed in [11]. The separate handle area reduces the space
overheads as only one pointer is needed for both object copies. Fur-
thermore, the indirection pointer does not need to be copied. The
handle also contains other object related data, such as type infor-
mation, and the mark list. The objects in the heap only contain the
fields and no object header.

The second synchronization barrier is a snapshot-at-beginning write-
barrier [25]. A snapshot-at-beginning write-barrier synchronizes
the mutator with the collector on a reference store into a static field,
an object field, or an array. The to be overwritten field is shaded
gray as shown in Figure 4. An object is shaded gray by pushing the
reference of the object onto the mark stack.1 Further scanning and
copying into tospace – coloring it black – is left to the GC thread.
One field in the handle area is used to implement the mark stack as
a simple linked list.

This write-barrier and atomic stack scanning allow using expensive
write-barriers only for reference field access (putfield, putstatic, and
aastore in Java bytecode). Local variables and the operand stack
need no barrier protection.

Note that field and array access is implemented in hardware on JOP.
Only write accesses to reference fields need to be protected by the
write-barrier, which is implemented in software. During class link-
ing all write operations to reference fields (putfield and putstatic
when accessing reference fields) are replaced by a JVM internal
bytecodes (e.g., putfield_ref) to execute the write-barrier code as
shown in Figure 4.

The methods of class Native are JVM internal methods needed to
implement part of the JVM in Java. The methods are replaced by
regular or JVM internal bytecodes during class linking. Methods
getField(ref, index) and putField(ref, value, index) map to the JVM
bytecodes getfield and putfield. The method rdMem() is an exam-
ple of an internal JVM bytecode and performs a memory read.
The null pointer check for putfield_ref is implicitly performed by
the hardware implementation of getfield that is executed by Na-
tive.getField(). The hardware implementation of getfield triggers an

1Although the GC is a copying collector a mark stack is needed to
perform the object copy in the GC thread and not by the mutator.
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Figure 5: Redirection of a putfield operation by the memory
unit

exception interrupt when the reference is null. The implementation
of the write-barrier shows how a bytecode is substituted by a spe-
cial version (pufield_ref), but uses in the software implementation
the hardware implementation of that bytecode (Naitve.putfield()).

In principle this write-barrier could also be implemented in mi-
crocode to avoid the expensive invoke of a Java method. However,
the interaction with the GC, which is written in Java, is simplified
by the Java implementation. As a future optimization we intend to
inline the write-barrier code.

The collector runs in its own thread and the priority is assigned ac-
cording to the deadline, which equals the period of the GC cycle.
As the GC period is usually longer than the mutator task deadlines,
the GC runs at the lowest priority. When a high priority task be-
comes ready, the GC thread will be preempted. Atomic operations
of the GC are protected simply by turning the timer interrupt off.2

Those atomic sections lead to release jitter of the real-time tasks
and shall be minimized. It has to be noted that the GC protection
with interrupt disabling is not an option for multiprocessor systems.

4.2 The Memory Controller
The memory controller in JOP already implements the field and
array access in hardware. The hardware implementation of those
functions reduces the overheads of the read-barrier (the handle in-
direction) and speeds up null pointer and bounds checks [17]. This
memory controller is extended with a copy function and the redi-
rection of field and array accesses to the correct part of the object.

Figure 5 shows an example of the write access to an object that is
under copy from address src to address dst. The index i points to
the next word that will be moved. The object contains four fields
(a, b, c, and d). Gray memory cells show the current locations of
the fields. Fields a and b are already in tospace, fields c and d are in
the original object in fromspace. The upper figure shows the access

2If interrupt handlers are allowed to change the object graph those
interrupts also need to be disabled.

memCopy:
distance <= dst-src;
tmp <= read(src+i);
write(dst+i, tmp);

getfield:
if (ref==0) trigger exception;
addr <= read(ref);
if (addr==src and index<i)

value <= read(addr+index+distance);
else

value <= read(addr+index);

Figure 6: The algorithm in the memory unit for a copy step and
bytecode getfield

to field d that goes to the original object. The lower figure shows
the redirection of the access to field b into the tospace copy of the
object.

Figure 6 shoes the hardware implementation of the copy function
and bytecode getfield in pseudo code. Note that all operations with-
out data dependencies are executed in parallel in the hardware, e.g.,
the calculation of distance and the start of the memory access with
read().

We have implemented the simplified version of the copy unit with
the simple interaction with the GC thread. Instead of kicking off the
whole copy task once and restarting it after preemption, the copy
task is continually triggered for individual words in the GC loop.
The following code fragment shows that loop.

for (i=0; i<size; i++) {
Native.memCopy(dst, src, i);

}

The method memCopy() is mapped to a JVM internal bytecode and
triggers the hardware to perform a single word copy from src to dst
at offset i. Note that this loop is not protected by a synchronized
block and can be preempted when a high priority thread becomes
ready. The copy task is preempted implicitly as well. When the GC
thread is running again, it just continues to copy the object.

The advantage of that implementation is a simple state machine
in the memory unit and less hardware resource consumption. The
disadvantage is the slower copying of the object. A hardware im-
plementation of the copy operation could perform a single word
copy in 5 cycles (two cycles for the word read and 3 cycles for the
word write) on the actual platform. Copy of a single word with the
simplified solution takes 27 cycles: 12 cycles are spent in the JVM
internal bytecode and 15 cycles are loop overhead and pushing the
arguments for memCopy() onto the operand stack. The maximum
blocking time of the copy operation is the execution of the internal
bytecode,3 therefore, 12 clock cycles.

One important feature of the memory controller is the redirection
of field and array access to the correct copy of the object. Field
and array access are already part of the memory unit [17]. There-
fore, the pointer of the access just needs to be compared with the

3Interrupts are only accepted at bytecode boundaries.



Thread Period Deadline Priority

τh f 100 µs 100 µs 5
τp 2 ms 2 ms 4
τc 10 ms 10 ms 3
τlog 1000 ms 40 ms 2
τgc 50 ms 50 ms 1

Table 1: Task set for the evaluation

pointer of the object currently copied and the index with the copy
pointer. If the index is higher than the copy pointer the access is
performed normal – the pointer in the handle indirection points to
the old copy until the whole copy is performed. The handle is up-
dated afterwards atomically by the GC thread. If the access goes
to a field or array element that is already copied, the access is redi-
rected. To speedup the redirection the memory unit precalculates
the distance between the old copy and the new copy of the object
at the start of the copy operation. This offset is simply added at the
effective address calculation when a redirection is necessary.

The redirection is performed in the same cycle as the effective ad-
dress calculation. Therefore, field and array access takes the same
time as in the original implementation. The calculation of the off-
set and the redirection is carefully designed to avoid introduction
of a slow critical path in the memory unit that would reduce the
maximum operation frequency of the processor.

The hardware resource consumption of the copy unit is moderate.
The additional registers, adders, and multiplexors in the memory
unit consume 310 additional logic cells (LC). This is about 10% of
the complete processor. However, it doubled the size of the mem-
ory unit from 296 LC to 605 LC. The memory unit is now almost
as large as the execution unit (669 LC).

5. EVALUATION
For the evaluation of the copy unit we have setup a similar experi-
ment as in [20]. The task set contains a 10 kHz high-priority thread
τh f . We measure the release jitter of this thread to reason about the
blocking time introduced due to the GC thread. Two threads (τp,
τc) act as a producer/consumer pair exchanging arrays. For the ex-
periment the array size is varied to measure the blocking time due
to the array copy. The logging thread τlog prints out the maximum
release jitter of the high-priority task. Thread τgc with the lowest
priority performs the GC work.

Table 1 shows the period, deadline, and priorities of the task set. To
avoid a constant phasing of the release times slightly different val-
ues (prime numbers) of the periods are used and each experiment
run for at least 10 minutes.

For reference we performed three base line tests. The first test con-
sisted of only two threads: the high-priority thread τh f and the log-
ging thread τlog. The maximum observed jitter was 41 µs. This
jitter is introduced by the scheduler.4 For the second test the GC
thread τgc was added and a maximum release jitter of 56 µs was
measured. In the last base line test the producer and consumer
threads exchanging small objects. In that case two synchronized
blocks, to add an object to the list and to remove it, are part of the
benchmark. The maximum observed jitter was 68 µs.

4The scheduling decision and the thread dispatch consume about
20 µs.

Release jitter
Array size original copy unit

256 B 73 µs 68 µs
512 B 73 µs 67 µs
1 KB 72 µs 66 µs
2 KB 124 µs 66 µs
4 KB 226 µs 68 µs
8 KB – 67 µs

Table 2: Release jitter measured on a 100 MHz processor for
the high priority thread with different array sizes

Release jitter
Array size original copy unit

8 KB 415 µs 58 µs
16 KB 804 µs 57 µs
32 KB 1572 µs 57 µs
64 KB 3137 µs 58 µs

128 KB 6252 µs 58 µs
256 KB 12464 µs 58 µs

Table 3: Release jitter measured on a 100 MHz processor with
statically allocated arrays of different sizes

For the copy unit test the producer and consumer exchange integer
arrays. The producer allocates one array each period and appends it
to the list. The consumer removes all array elements from the list.
Depending on the phasing of the threads 4 to 6 elements are re-
moved. We increased the array size until the GC thread was unable
to keep up with the collection.

The maximum observed release jitter of τh f for various array sizes
is reported in Table 2. The second column gives the jitter values for
the GC that performs the object/array copy atomically. The third
column shows the jitter values with the proposed copy unit. Per-
forming the array copy atomically introduces considerable jitter for
the high frequency thread. The interruptible array copy performed
by the proposed copy unit introduces no additional jitter.

With an 8 KB array the JVM run out of memory as the GC thread
could not keep up with the allocation of the producer thread. For
arrays larger than 1 KB the blocking time of the atomic copy is
longer than the period of the high-frequency thread. Therefore,
some iterations of the periodic thread are either delayed for more
than the period or lost.5

To check the observed blocking time in the original version we
analyze the copy time. In the original version of JOP the array
copy is performed in microcode; one iteration of the microcode
loop (where one 32-bit word is copied) needs 18 cycles. Therefore,
copying 1 KB takes 46 µs at 100 MHz (1024/4× 18/100). This
value is in line with the measurement.

To measure blocking times for larger arrays we performed a sec-
ond experiment. At program start, as many arrays of a given size

5Wether an iteration is completely lost or delayed depends on the
scheduler implementation on a deadline miss. If the next release
time is adjusted, the default implementation on JOP to avoid queu-
ing up pending releases, some iterations can get lost. When the next
release times are not adjusted, as configured for this experiment, the
periodic thread can try to ‘catch up’ in the following releases.



as fit into one semi-space are allocated and only threads τh f , τgc,
and τlog are started. The period of τgc is set to 1 ms (a deadline that
will be missed) so the GC thread runs effectively as a background
thread. To provoke more GC runs we moved the memory initializa-
tion for new objects from the GC thread to the allocation operation
(bytecode newarray). Table 3 shows the observed results.

For an atomic array copy we observe the expected linear increase of
the blocking time with respect to the array size. The blocking time
is about 50 µs/KB and verifies the results from the first experiment.
The array copy with the copy unit results in no additional latency
due to the GC thread. The release jitter times are lower in this
experiment than in the former one as fewer threads are running (no
producer and consumer threads).

6. DISCUSSION
From the evaluation it can be seen that an interruptible copy unit
in the memory controller can eliminate blocking time due to com-
paction during GC. Without such a unit arrays larger than 1 KB
introduce blocking and therefore release jitter for high priority real-
time threads. Objects are usually way smaller and providing hard-
ware support to copy those objects is therefore not necessary. For
small arrays and objects, the blocking due to thread dispatching
dominates. The jitter introduced by the scheduler is between 60 µs
and 70 µs for the 100 MHz system. If we want to run higher
frequency threads (e.g., at 100 kHz) we need to enhance thread
scheduling and dispatch. The GC is not the limiting factor any-
more.

There is some room for improvement in the implementation. The
simple implementation of triggering just a single word copy trans-
action results in a slow copy. A more advanced memory controller
could speedup the copy task by a factor of 5. However, copy speed
was not the main focus of the implementation. We aimed at fine
grain granularity of atomic operations. Furthermore, there is some
room to reduce the resource consumption in the memory controller.

We have implemented the copy unit in the context of a Java pro-
cessor – a natural choice. It will be an interesting experiment to
enhance a RISC processor that executes compiled Java with such a
copy unit. The RISC processor needs to be extended by customized
instructions for array access that cooperate with the copy unit. En-
hancing a RISC pipeline with array access is a good idea anyway.
Array bounds check and null pointer check without a MMU is ex-
pensive for compiled Java, even though some checks can be elimi-
nated by the compiler.

For a chip multiprocessor (CMP) version of JOP [12] the memory
controller must be split. The redirection of object and array access
has to be performed for all cores. Therefore, this functionality has
to be placed after the memory arbiter. The copy task itself will be
a simple DMA master connected to the arbiter in the same way as
CPU cores. For time sliced arbitration of the memory bus the copy
task does not need to be interrupted on a thread switch. The arbiter
itself performs the interruption and guarantees the bandwidth for
the individual cores. The time sliced arbiter reserves bandwidth for
the copy unit. This bandwidth consumption by the copy unit will be
integrated into the WCET analysis as any other thread/processor.

On a CMP system the whole memory controller, including the logic
for the field and array access, can be placed between the arbiter
and the memory interface. Therefore, the pressure to reduce the
resource consumption of that unit diminishes. However, in order

to support local, program managed memory, some functionality of
the memory controller core is still needed processor locally. The
best balance between local and shard functionality of the memory
controller is the topic of future research.

7. CONCLUSION
Atomic copy of large arrays by a compacting garbage collector in-
troduces considerable blocking times for real-time threads. In this
paper we proposed and evaluated a hardware extension to elimi-
nate that blocking time. A copy unit performs the object and array
copy and redirects field and array access to the correction version
of the object or array. An important feature of the proposed copy
unit is scheduling the copy task at GC priority. Therefore, a high
priority real-time thread can interrupt the copy task at single word
copy boundaries. As the copy task is completely interrupted (no
background activity) it does not influence the WCET of real-time
threads.

With the proposed solution the main source of blocking due to
a real-time garbage collector is practically removed. The second
source of blocking is due to atomic root scanning of the threads’
runtime stack. This issue is addressed in an accompanying paper
[14] by scheduling of the root scanning task. Both solutions to-
gether allow using a real-time GC concurrently to high frequency
real-time tasks. In the 100 MHz JOP system, which is used for the
evaluation of the approach, it is feasible to run a thread at 10 kHz
concurrently to GC without losing a single deadline.

The current implementation of the copy unit is for uniprocessors.
We plan to implement the copy unit in the CMP version of JOP.
The copy unit needs to redirect access from all processors during
the copy. Therefore, part of the functionality has to be placed after
the memory arbiter. In a CMP setting with a time sliced arbiter the
bandwidth is reserved for the copy task – the copy unit will act just
like another CPU. In that case the copy task does not need to be
interrupted as proposed for the uniprocessor version.
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