Java Technology in an FPGA

Martin Schoeberl

JOP.design, Vienna, Austria
marti n@ opdesi gn. com

Abstract. The application of Field Programmable Gate Arrays (FPGA) has
moved from simple glue logic to complete systems. The potential for FPGA use
in embedded systems is steadily increasing continuously opening up new appli-
cation areas. Low cost FPGA devices are available in logic densities where the
CPU with necessary peripheral device can be integrated in a single device.
Java, with its pragmatic approach to object orientation and enhancements over
C, got very popular for desktop and server application development. Some fea-
tures of Java, such as thread support in the language, could greatly simplify de-
velopment of embedded systems. However, due to resource constraints in em-
bedded systems, the common implementations of the Java Virtual Machine
(JVM), as interpreter or just-in-time compiler, are not practical. This paper de-
scribes an alternative approach: JOP (a Java Optimized Processor) is a hard-
ware implementation of the JVM with short and predictable execution time of
most bytecodes. JOP is implemented as a configurable soft core in an FPGA.
With JOP it is possible to develop applications in pure Java on resource con-
straint devices.

1 Architecture

JOP is the implementation of the Virtual Machine (JVM) [3] in hardware. JOP is in-
tended for applications in embedded real-time systems and the primary implementa-
tion technology is in an FPGA, which results in the following design constraints:

* Every aspect of the architecture has to be time predictable
* Low worst-case execution time is favored over average execution speed
* The processor has to be small enough to fit in a low cost FPGA device

JOP is a full-pipelined architecture with single cycle execution of microinstructions
and a novel approach to map Java bytecode to these microinstructions. Figure 1
shows the datapath of JOP. Three stages form the core of JOP, executing JOP mi-
crocode. An additional stage in the front of the core pipeline fetches Java bytecodes,
the instructions of the JVM, and translates these bytecodes to addresses in microcode.
The second pipeline stage fetches JOP instructions from the internal microcode mem-
ory and executes microcode branches. The third pipeline stage performs, besides the
usual decode function, address generation for the stack ram. Since every instruction
of a stack machine has either pop or push characteristics, it is possible to generate the
address for fill or spill for the following instruction in this stage. The last pipeline
stage performs ALU operations, load, store and stack spill or fill.

bytecode branch condition

l next bytecode microcode branch condition
Bytecode Microcode Microcode Execute
fetch,
translate fetch and decode
and branch branch
T branch | <oill
bytecode branch ﬁﬁ '
Stack Stack
’l: address l[: RAM
generation

Figure 1. Datapath of JOP

Memory blocks in an FPGA are usually small (e.g. 0.5 KB) with two independent
read/write ports of configurable size. With these constraints, a stack machine is an
attractive architecture in an FPGA:

* The stack can be implemented in internal memory

* A register file in a RISC CPU needs two read ports and one write port for single
cycle instructions. A stack needs only one read and one write port

* Instruction set is simpler and instruction coding can be reduced to 8 bit
* No data forwarding is necessary

The basic stack is implemented in a FPGA memory block. The two top elements of
the stack are implemented as register A and B. Every arithmetic/logical operation is
performed with 4 and B as source and A as destination. All load operations (local
variables, internal register and memory) result in the value loaded in 4. Therefore no
write back pipeline stage is necessary. 4 is also the source for store operations. Regis-
ter B is never accessed directly. It is read as implicit operand or for stack spill on push
instructions and written during stack spill and fill. Instructions of a stack machine can
be categorized with respect to stack manipulation in pop or push:

Pop instructions reduce the stack. Register B (TOS-1) from the execution stage is
filled with a new word from stack RAM. The stack pointer is decremented. In short:

A op B » A, stack[sp] » B, sp-1 - sp

Push instructions generate a new element on the stack. Register B is spilled to stack
RAM and the stack pointer is incremented:

data - A, A - B, B - stack[sp+1], sp+l - sp

An instruction needs either read or write access to the stack RAM. Access to local
variables, also residing in the stack, need simultaneous read and write access:
stack[vp+0] - A, A - B, B - stack[sp+1], sp+l - sp

2 Microcode

There is a great variation in complexity of Java bytecodes, the instructions of the
JVM. There are simple instructions like arithmetic and logic operations on the stack.
However, the semantic of bytecodes like new or invoke are too complex for hardware
implementation. These bytecodes have to be implemented in a subroutine. One com-
mon solution, used in Suns picoJava-II [5], is to execute a subset of the bytecode na-
tive and trap on the more complex ones. This solution has an overhead (a minimum of
16 clock cycles in picoJava) for the software trap.

A different approach is used in JOP. JOP has its own instruction set (the so called
microcode). Every bytecode is translated to an address in the microcode that imple-
ments the JVM. If the bytecode has a 1 to 1 mapping with a JOP instruction, it is exe-
cuted in one cycle and the next bytecode is fetched and translated. For more complex
bytecodes, JOP just continues to execute microcode in the following cycles. At the
end of this instruction sequence the next bytecode is requested. This translation needs
an extra pipeline stage but has zero overheads for complex JVM instructions. Figure
2 shows an example of this indirection. The fetched bytecode is used as an index into
the jump table. The jump table contains the start addresses of the JVM implementa-
tion in microcode. This address is loaded into the JOP program counter for every exe-
cuted bytecode.

Java Jump JOP microcode
bytecode table
i add: add nxt
iload_1 &dmul Csub: sub
idiv -
i &f di v idiv: stmb
Istore_3 &ddi v stma
- ldmc nxt
Java instruction Sartaddress of idiv irem stmb
(e.g. Ox6c) in JVM rom \/

Figure 2. Data flow for a bytecode instruction

The example in Figure 3 shows the implementation of single cycle bytecodes and a
bytecode as a sequence of JOP instructions. In this example, ineg takes 4 cycles to
execute and after the last instruction (add) for ineg, the first instruction for the next
bytecode is executed. The microcode is translated with an assembler to a memory
initialization file, which is downloaded during FPGA configuration.

iadd: add nxt // 1 to 1 mapping

isub: sub nxt

ineg: 1di -1 // there is no -val
xor // function in the
1di 1 // ALU

add nxt // fetch next bc

Figure 3. Implementation of iadd, isub and ineg

3 HW/SW Co-Design

Using a hardware description language and loading the design in an FPGA, the tradi-
tional strict border between hardware and software gets blurred. Is configuring an
FPGA not more like loading a program for execution?

This looser distinction makes it possible to move functions easily between hard-
ware and software resulting in a highly configurable design. If speed is an issue, more
functions are realized in hardware. If cost is the primary concern these functions are
moved to software and a smaller FPGA can be used. Let us examine these possibili-
ties on a relatively expensive function: multiplication. In Java bytecode imul performs
a 32 bit signed multiplication with a 32 bit result. There are no exceptions on over-
flow.

Since single cycle multiplications for 32 bits are far beyond the possibilities of cur-
rent FPGAs, we can implement imul with a sequential booth multiplier in VHDL.
Three JOP instructions are used to access this function. If we run out of resources in
the FPGA, we can move the function to microcode. The implementation of imul
needs 73 JOP instructions and has an almost constant execution time. JOP microcode
is stored in an embedded memory block of the FPGA. This is also a resource of the
FPGA. We can move the code to external memory by implementing imul in Java
bytecode. Bytecodes not implemented in microcode result in a static method call from
a special class (com.jopdesign.sys.JVM). The class has prototypes for every bytecode
ordered by the bytecode value. This allows us to find the right method by indexing
the method table with the value of the bytecode. The additional overhead for this im-
plementation is a call and return with the cache refills.

Table 1 lists the resource usage and execution time for the three implementations.
Executions time is measured with both operands negative, the worst-case execution
time for the software implementations. Only a few lines of code have to be changed
to select one of the three implementations. The showed principle can also be applied
to other expensive bytecodes like: idiv, ishr, iushr and ishl. As a result, the resource
usage of JOP is highly configurable and can be selected for every application.

Table 1. Different implementations of imul

Hardware [LC] Microcode [Byte] Time [Cycle]
VHDL 300 12 37
Microcode 0 73 750
Java 0 0 ~2300
4 Results

Table 2 shows resource usage for different soft-core processors and different configu-
rations of JOP implemented in an EP1C6 FPGA from Altera [1]. All configurations
of JOP contain a memory interface to 32-bit static RAM and an 8-bit FLASH for the
Java program and configuration data. The minimum configuration implements multi-
plication and the shift operations in microcode. In the core configuration, these opera-
tions are implemented as sequential Booth multiplier and a single-cycle barrel shifter.
The typical configuration contains some useful I/O devices such as an UART and a

timer with interrupt logic for multi threading. Lightfood [6] is a Java processor tar-
geted at Xilinx FPGA architectures. As a reference NIOS [2], the RISC soft-core
from Altera, is also included in the list. Version A is a minimum configuration. Ver-
sion B adds an external memory interface, multiplication support and a timer.

Table 2. Different FPGA soft cores

Processor Resource [LC] Memory [KB] fimax [MHz]
JOP Minimal 1238 3.25 101
JOP Core 1670 3.25 101
JOP Typical 2036 3.25 100
Lightfoot 3400 1 40
NIOS A 1828 6.2 120
NIOS B 2923 5.5 119

5 Conclusion

Java possesses language features as safety and object orientation that can greatly im-
prove development of embedded systems. However, implementation as interpreter
with a JIT-compiler are usually not practicable in resource constraint embedded sys-
tems. This paper presented the architecture of a hardware implementation of the JVM.
The flexibility of FPGAs and HW/SW co-design makes it possible to adapt the re-
source usage of the processor for different applications. Predictable execution time of
bytecodes enables usage of Java in real-time applications. JOP has been used in three
real-world applications showing that it can compete with standard microcontrollers.
JOP encourages usage of Java in embedded systems. Full source (VHDL and Java) of
JOP can be found at [4]. The main features of JOP are summarized below:

* Small core that fits in a low cost FPGA

* Configurable resource usage through HW/SW co-design
* Predictable execution time of Java bytecodes

 Fast execution of Java bytecodes without JIT-Compiler

* Flexibility for embedded systems through FPGA implementation

References

[1] Altera Corporation. Cyclone FPGA Family, Data Sheet, ver. 1.2, April 2003.

[2] Altera Corporation. Nios Soft Core Embedded Processor, Data Sheet, ver. 1, June 2000.

[3] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Addison Wesley,
2nd edition, 1999.

[4] M. Schoeberl. JOP - a Java Optimized Processor, http://www.jopdesign.com.

[5] Sun microsystems. picoJava-II Processor Core, Data Sheet, April 1999.

[6] Xilinx Corporation. Lightfoot 32-bit Java Processor Core, Data Sheet, September 2001.

