
Embedded JIT Compilation with CACAO on YARI

Florian Brandner
Institute of Computer Languages

Vienna University of Technology, Austria
brandner@complang.tuwien.ac.at

Tommy Thorn
Unaffiliated Researcher

California, USA
tommy@thorn.ws

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Abstract

Java is one of the most popular programming languages
for the development of portable workstation and server ap-
plications available today. Because of its clean design and
typesafety, it is also becoming attractive in the domain of
embedded systems. Unfortunately, the dynamic features of
the language and its rich class library cause considerable
overhead in terms of runtime and memory consumption. Ef-
ficient techniques to implement Java virtual machines that
are suitable for use in resource constrained environments are
thus needed. In this work we present a solution for very re-
stricted environments based on CACAO. CACAO is a just-in-
time compiling virtual machine implementation, combining
high speed and small size. We have modified the original
version of CACAO to run without an underlying operating
system within only 1 MB of memory. In addition we present
a new technique to selectively compile methods during the
initialization phase of real-time Java applications to prevent
unwanted interaction between dynamic compilation and crit-
ical tasks. Furthermore we present the YARI soft-core as the
execution platform of CACAO within an field-programmable
gate array. We compare our implementation with two well
known Java processors, JOP and Sun’s picoJava-II, on the
same technology. Although JOP achieves a higher clock fre-
quency and picoJava-II occupies nearly 4 times the resource
of YARI, our solution is capable to outperform both of them
by a factor of up to 2.8 and 2.2 respectively.

1 Introduction

In the last years Java became one of the most popular pro-
gramming languages for application development on work-
stations and servers. This can be attributed to the simplic-
ity, safety, and portability of the language. Because of these
properties Java is also becoming more and more attractive
to developers of embedded systems. Technologies utilized
by Java virtual machines (JVM) on workstations are not

practical for embedded systems, due to resource constraints.
Just-in-time (JIT) code generation and adaptive optimiza-
tions lead to increased power and memory consumption, and
may incur unacceptable runtime penalties.

The memory overhead of a fully compliant Java imple-
mentation can be overcome by offering only a subset of
the rich Java library. The Java Platform Micro Edition
(JavaME) [33] is a widely used variant of such a restricted
environment intended for use in mobile and embedded de-
vices. The Micro Edition consists of a minimal set of core
classes required for a JVM to operate, and a set of optional
extensions targeting specific domains, e.g., the Mobile Infor-
mation Device Profile for mobile phones. Java Card offers an
even smaller core library for more restricted environments,
such as smart cards.

To further reduce the memory footprint the JVM itself has
to be optimized for code and data size. Complex techniques
such as JIT-compilation, runtime profiling, and adaptive op-
timizations can usually not be applied, instead, slow inter-
preters execute the Java bytecode.

Embedded systems very often have to fulfill timing con-
straints to operate correctly, e.g., to guarantee quality of ser-
vice or to control external components in a timely fashion.
Interpreters and JIT compilation do not guarantee tight real-
time bounds. The slow interpretation techniques impose a
natural limit for response time and throughput, similarly ac-
counting for the expensive compilation step of a JIT system
leads to overly conservative bounds of the programs over-
all execution time. Compiling the Java programs offline –
ahead-of-time – allows to overcome these limitations by trad-
ing flexibility with small code size and fast execution within
predictable time bounds. The use of dynamic features of the
Java language is heavily restricted.

In this paper we present a just-in-time compiling JVM so-
lution for small embedded systems. We have adapted the
CACAO research JVM [15] to run without an underlying
operating system in an environment offering only 1 MB of
memory. Based on the execution model of safety critical

Java [14, 27], we propose a new technique called mission-
start-compilation. Critical methods are pre-compiled upon
transition to the mission phase, eliminating unwanted inter-
ference of the JIT compilation process with real-time tasks.
Furthermore, we present the YARI soft-core as the execution
platform within a field-programmable gate array (FPGA).

All software tools required for our solution are publicly
available open source projects – including the build tools, the
Newlib C library [21], the phoneME Java class library [30],
the CACAO JVM [15], and the YARI soft-core [31]. We
hope that this open source approach will facilitate the re-
search on and development of JVMs in embedded systems.
The major contributions presented in this work are as fol-
lows:

• An open source JVM implementation for embedded
systems, including hard- and software components

• A Java JIT system running in a resource constrained en-
vironment offering only 1 MB of memory

• A new technique called mission-start-compilation, that
allows the use of JIT compilation on systems with tim-
ing constraints

In the remainder of this paper we will present related work
in Section 2. Section 3 introduces the YARI soft-core used
as the execution environment for our JVM. In Section 4 we
present the CACAO JVM, along with a detailed description
of the required changes to run Java programs in a resource
constrained environment. Mission-start-compilation is de-
scribed in Section 5. We present results of the empirical
evaluation in Section 6, comparing our solution with the JOP
and picoJava-II Java processors. Finally we conclude in Sec-
tion 7.

2 Related Work

The presented project touches several areas in the em-
bedded domain: embedded Java, Java processors, and RISC
soft-cores for FPGAs. The following section gives a brief
overview of the most relevant work in each area. A detailed
performance comparison of embedded Java systems can be
found in [25]. Java systems for real-time usually do not rely
on JIT compilation; instead, the main vendors of real-time
enabled JVMs perform some form of pre-compilation. For
example, the JamaicaVM [28] and OVM [3] use ahead-of-
time compilation, whereas Sun’s RTS [6] and WebSphere
RealTime [9] pre-compile classes at load time. Our proposed
approach is different in the form that compilation of Java
classes is deferred to the latest possible moment in the live
time of a real-time application: the mission start phase. This
feature allows more dynamics for soft real-time systems as
classes can be loaded dynamically during the start-up phase
of the application.

The Squawk VM [29] is an embedded JVM mostly writ-
ten in Java, that is now open source. Squawk was origi-
nally developed for Sun SPOT, a wireless sensor platform.
It runs on the bare metal and provides functionality typical
found in operating systems in Java, e.g., device drivers. Sim-
pleRTJ [23] is an interpreting JVM intended for small em-
bedded systems, which requires only 18–24 KB of memory
to run. In [4] a lightweight JIT compilation system, targeted
for resource-constrained environments, is presented. Mu-
vium [8] is an ahead-of-time compiling JVM solution for
very resource constraint Microchip PIC microcontrollers.

An alternative to interpretation and compilation is direct
execution of Java bytecode using a dedicated Java processor.
Sun introduced the first version of picoJava [18] in 1997, al-
though this processor was never released as a product by Sun.
A redesign followed in 1999, known as picoJava-II, which is
now freely available. It is the most complex Java proces-
sor available, and implements, among other optimization, a
folding mechanism in hardware, that allows to execute short
sequences of Java bytecodes as a single RISC-like instruc-
tion.

The JEMCore from aJile is a Java processor that is avail-
able as both an IP core and a standalone processor [12]. It is
based on the 32-bit JEM2 Java chip developed by Rockwell-
Collins. The Cjip processor [11, 13] supports multiple in-
struction sets, allowing Java, C, C++ and assembler to co-
exist. The JVM is implemented largely in microcode (about
88% of the Java bytecodes). Microcode instructions execute
in two or three cycles. A JVM bytecode requires several mi-
crocode instructions. Komodo [16] is a multi-threaded Java
processor for embedded real-time systems. The unique fea-
ture of Komodo is the concept of interrupt service threads.
Komodo is now commercialized under the name jamuth [32].

JOP [26] is a Java processor designed especially for em-
bedded real-time systems. The main design goal was a time
predictable processor. All hard to analyze processor features,
such as prefetching or automatic stack dribbling, as found
in picoJava, have been avoided. To still provide acceptable
performance a special stack cache and a WCET analyzable
method cache have been developed. SHAP [35] is a new Java
processor based on the architecture of JOP and enhanced by
a hardware garbage collector.

Highly configurable and optimized RISC soft-cores are
also offered by FPGA vendors. Among these 32-bit
soft-cores, probably the best known are MicroBlaze from
Xilinx [34], Nios II from Altera [2], and Mico32 from
Lattice [17]. Nios II and MicroBlaze are proprietary,
whereas Mico32 is available under an open source license.
LEON [10] is an implementation of the SPARC V8 architec-
ture. LEON, implemented on the same FPGA board we use
for YARI, consumes about 8,000 logic cells,1 11 KB on-chip
memory and can be clocked at 35 MHz. Initially designed

1The basic resource in FPGAs is the logic cell, which essentially is a
four-bit lookup table and a register.

with for the purpose of radiation hardened implementations,
LEON has been released under an open source license. All
of these soft-cores are supported by complete development
kits with compilers, libraries, and debuggers.

3 YARI

YARI (Yet Another RISC Implementation), is an open
source [31] FPGA microprocessor implementation, created
as a vehicle to investigate implementation ideas. To avoid
the burden of having to provide a complete tool-chain the in-
struction set is designed to be mostly compatible with the
MIPS-ITMarchitecture, a seminal, thoroughly documented,
and, for our purpose, sufficiently simple RISC architecture.

The core philosophy of the RISC methodology is to aim
for the best balance between hardware and software, and thus
also to create an architecture that is optimally suited to the
underlying technology, e.g. VLSI. FPGAs differ from VLSI
in the relative cost and speed of primitives: random logic,
wires, and thus muxes, are relatively slow, whereas mem-
ory and adders are relatively fast, registers cheap, etc. As a
consequence, the MIPS-ITMarchitecture, designed for VLSI,
may not be an optimal architecture for FPGAs.

YARI has a mostly classic five stage pipeline: instruc-
tion fetch, instruction decode/register files access, exe-
cute/memory, memory, and write back. Great emphasis has
been placed on load/store performance. For this reason YARI
is equipped with a four-way associative instruction cache, a
four-way write-through data cache, and a store buffer.

Pipeline stalling can have surprisingly complicated inter-
actions with branch delay slots and pipeline restarts. Fur-
thermore, the control path for the stall logic is inherently
timing critical, as the stall signal has to control every flip-
flop in the stages it stalls. Given this, the design of YARI
avoids pipeline stall completely. The only means to dis-
rupt the pipeline is through a pipeline restart which flushes
part of the pipeline. Pipeline registers are not cleared when
the stage is flushed. Instead each state carries a “valid” bit
which is only consulted at points where outputs of a pipeline
stage changes architectural state. That includes restart sig-
nals, writes to the registers file, and stores. While this can
result in more pipeline bubbles than stalling, the resulting
simpler logic leads to a shorter cycle time, and thus, higher
frequency.

In any cycle, one or more hazards can occur simulta-
neously, forcing a restart of the pipeline. The amount of
pipeline stages flushed and the resulting latency in respond-
ing to the hazard is a major factor contributing to the cycles-
per-instruction metric, thus inversely proportional to the ob-
served performance. In the configuration used in this pa-
per, YARI is configured with a radix-2 multiplier and divider,
thus the result is only available roughly 33 cycles after issu-
ing the operation. Any attempt at accessing the result earlier
will cause a restart of that instruction.

A load-use hazard occurs when an instruction immedi-
ately following a load tries to use the load result. By con-
struction, the result isn’t ready to be forwarded, and we have
to restart the load-use. This hazard is detected in the exe-
cution stage and has a two cycle penalty. Instruction sched-
ulers of MIPS compilers typically know about this hazard
and try to avoid code that violates it. Unfortunately, CACAO
doesn’t respect this load-use hazard resulting in the number
one source of pipeline inefficiencies.

Since YARI uses a split data and instruction cache without
coherency, it is necessary, that code writing data intended as
instructions flush that region from the instruction cache using
the synci instruction to force an update. This has to be taken
into account by systems that dynamically generate code, e.g.,
JIT compilers such as CACAO.

The data cache is a classic implementation: the four tags
are accessed in parallel for the four cache ways, followed by
a late select based on which tag (if any) matched. As stores
are destructive, we must know the destination way before
we can execute it. Thus, the actual store to the cache way
happens in the memory stage. The consequence is, that a
load immediately following a store of the same address, will
see stale data. This is known as load-hit-store. While we
could add logic to forward the store data to the load, this case
is so rare2 that we instead trade off the occasional pipeline
restart for a simpler data path.

4 CACAO

CACAO [15] is a research platform developed at the Vi-
enna University of Technology. Over the years it was steadily
improved and eventually grew into a stable and fast JVM for
workstation and server applications. Because of its small size
and fast JIT compilation it has become an attractive alterna-
tive for the development of Java enabled embedded systems.
So far several projects successfully employed CACAO run-
ning on Embedded Linux for MIPS and ARM platforms. We
were able to eliminate the need for an underlying operating
system and enable CACAO to run in a minimal execution
environment on top of the YARI soft-core.

In its default configuration CACAO has several prerequi-
sites that have to be met in order to run Java programs. Most
notably a full operating system, typically Linux, is required
to manage I/O operations, memory and threads. Operating
systems in turn demand more powerful hardware, offering
virtual memory and protection mechanisms. For systems us-
ing Java as their sole execution platform the operating system
can, and should be, avoided in order to reduce memory con-
sumption and to lower the hardware requirements.

The Newlib [21] project by RedHat offers a minimal, but
complete, C library implementation that allows to run pro-
grams without an underlying operating system on top of a

2Optimizing compilers generally avoid reloading a just stored value.

Figure 1. Downloading a Java application to YARI.

bare processor. It specifically targets small embedded de-
vices and thus has minimal prerequisites. The Newlib project
does not aim to offer a complete replacement for operating
systems, and thus lacks some functionality. Most notably
Newlib does not offer any kind of process or thread manage-
ment. Similarly, signal handling is not provided, on which
CACAO relies on, to invoke the code generator, the garbage
collector, and to handle traps and Java exceptions.

In order to run in a restricted environment minor exten-
sions and modifications to the core of CACAO are required.
Most of these modifications disable features of the standard
Java implementation. For example networking support, all
encryption and security related features, file compression,
and similar components of a workstation Java implementa-
tion are disabled. In addition the size of many internal buffers
has been adapted for use in an embedded system. Most no-
tably the size of the Java heap, which usually occupies 128
MB of memory, is reduced to only a few KB.

Resolving native methods at runtime using a dynamic
loader is not possible without an operating system. As a con-
sequence native methods need to be statically linked into the
executable binary. Similarly, classes required during the sys-
tem start-up phase need to be embedded into the executable
binary. A minimal set of these bootstrap classes is deter-
mined by static analysis, wrapped into regular object files,
and finally linked with the CACAO executable file. Figure 1
depicts the necessary steps to embed a Java application into
CACAO and download it to YARI.

CACAO is already designed to support different Java class
libraries. The phoneME package by Sun lends itself for em-
bedded systems, because of its small size. More specifically
the CLDC core class library is used as the basis for this
project. The use of phoneME has, besides its small memory
footprint, the advantage to be compatible with other JavaME
based technologies, such as the Real-Time Specification for
Java [7] and JSR 302 on Safety Critical Java [14, 27]. Al-
though we strive for compatibility some features are not fully
compliant with the JavaME platform. As noted, Newlib does
not provide any process management functionality, multi-
threading in Java programs is thus disabled. Green threads,
i.e., threads managed by CACAO itself, could be used to cir-
cumvent this deviancy. In addition garbage collection is dis-
abled, because of the memory requirements of the currently

used Boehm collector [5]. Development of a replacement,
which is expected to be considerable smaller, is in progress.

5 JIT-Compilation in Real-time Systems

In contrast to most high performance JVM implementa-
tions CACAO adopts a compile only approach, i.e., all Java
bytecode is compiled to machine code of the target machine
before its execution. This approach greatly simplifies the in-
ternal organization, but also entails some drawbacks. Infre-
quently executed code, e.g., static class initializers and other
initialization code, causes considerable overhead in terms
of compilation time and memory consumption. To reduce
the compilation overhead CACAO offers a highly tuned JIT
compiler.

Code generation is divided into four major steps, namely
parsing, stack analysis, register allocation, and machine code
emission. First the Java bytecode is translated into a register-
oriented intermediate representation, which is better suited
for further processing than the stack-oriented Java bytecode.
In the next step, stack slots containing intermediate results
are converted to virtual registers. The register allocation
phase maps the virtual registers to machine specific registers.
The last step of code generation is the emission of the final
machine code. This is done using a simple macro expansion
of operations in the intermediate representation to instruc-
tions of the target machine. It is important to note, that all
these phases are at most linear in runtime, and thus very fast.
More information on the internals of CACAO’s JIT compiler
can be found in [15].

Because JIT compilation is relatively expensive, methods
are compiled on demand, i.e., only when a method is to be
executed the first time. If the target method of a call is not
yet compiled, the code generator emits a call stub instead of
a regular method call. The stub triggers the compilation of
the method if required, and is replaced by a regular call using
a code patching mechanism afterwards. This lazy approach
may cause considerable delay during the start-up phase of a
program.

JIT compilation is usually avoided for real-time systems
due to this unpredictability. An exact analysis of bounds for
the execution time of the original Java program is impossi-
ble in general, because it is uncertain when the JIT compila-

Soft-Core Logic Cells Memory Frequency

JOP 3,300 7.6 KB 100 MHz
YARI 6,668 18.9 KB 80 MHz
pico-Java-II 27,560 47.6 KB 40 MHz

Table 1. FPGA synthesis results of the JOP, YARI,
and picoJava-II soft-cores.

tion will actually take place. Modern systems often choose
to interpret most methods several times, until a threshold is
reached indicating that a given piece of code is worth the ef-
fort of the expensive JIT compilation. It is thus hard for an
offline timing analysis to predict the code that actually will
be executed.

CACAO follows a compile-only approach, eliminating
some of the problems beforehand. The code generation
scheme is largely based on simple macro expansion. It is
thus relatively easy to predict basic properties of the code
that actually will be executed. Therefore, if we can tol-
erate the overhead induced by JIT compilation during the
warm-up phase, CACAO is an option for soft real-time sys-
tems. In general, however, this overhead is not acceptable for
real-time systems. The uncertainty at what time compilation
will be necessary still impedes the calculation of meaningful
bounds for the programs execution time. To avoid compi-
lation during the critical phase of a real-time task, we pro-
pose compilation during the non-critical initialization phase
of the application. We adopt the programming model for
safety critical Java [20, 27] that defines three major phases:
the initialization, the mission start, and finally the mission,
that runs forever. It has to be noted, that we do not target
safety-critical applications, at least not the most rigid levels
of DO-178B [22], with our system. We just borrow the con-
cept for less demanding real-time applications.

We propose a compile at mission start model. During the
initialization phase all classes are loaded and data structures
allocated. On the transition to the mission phase – the mis-
sion start – we analyze the application on the target and build
a list of all methods that are possibly invoked during the mis-
sion phase. The listed methods are then pre-compiled using
the regular compiler. JIT overhead during the mission phase
is completely eliminated, allowing a more accurate timing
analysis.

Pre-compiling Java programs offline is well known, and
usually referred to as ahead-of-time compilation. Systems
relying on ahead-of-time compilation usually do not allow
for dynamic features of the Java language, e.g., class load-
ing. The main benefit of our new mission-start-compilation
is that dynamic class loading can be done during the initial-
ization phase without any limitation. For example, an appli-
cation can, at each reboot, check for updates of individual
classes, and even download and make use of these classes

Benchmark JOP picoJava-II CACAO

Sieve 7386 7721 12109
Kfl 19907 23813 51200
UdpIp 8837 11950 23223
Lift 18930 25444 52261

Table 2. Number of iterations per second for the JBE
application benchmarks. A higher number means
faster.

Sieve Kfl UdpIp Lif t

0

0,5

1

1,5

2

2,5

3

1,05
1,2

1,35 1,33

1,64

2,57 2,63
2,76

JOP picoJava-II CACAO

S
p
e
e
d
u
p

Figure 2. Performance of picoJava-II and CACAO on
YARI for some embedded benchmarks, normalized
to JOP.

using dynamic class loading over a network. Especially in
the case of expensive communication, e.g., because of low-
bandwidth and high power consumption of radio elements,
this approach is beneficial, as the amount of data that needs
to be transferred is heavily reduced. In the case of ahead-of-
time compilation, selectively downloading individual classes
is not possible. Instead the complete application binary needs
to be transmitted, stored into the systems flash memory, and
an additional reboot performed in order to acquire updates.

6 Evaluation

In this section we provide an evaluation of the combina-
tion of CACAO and YARI within an FPGA. We show exe-
cution performance on a set of embedded Java benchmarks
and micro-benchmarks from the JavaBenchEmbedded (JBE)
suite [1]. A detailed description of the benchmarks can be
found in [25]. We compare the obtained results to two Java
processors, namely JOP [24] and an FPGA implementation
of Sun’s picoJava-II [19]. All three soft-cores are synthe-

Micro-Benchmark JOP picoJava-II CACAO

iload3 iadd 2 2 1
iinc 4 3 2
ldc 9 3 3
if icmplt taken 6 6 4
if icmplt not taken 6 - 3
getfield 16 3 3
getstatic 9 5 5
iaload 11 3 9
invoke 128 24 13
invokestatic 100 24 12
invokeinterface 144 196 15

Table 3. Cycles required to execute specific Java
bytecodes for JOP, picoJava-II, and CACAO on
YARI.

sized using the free Altera design software Quartus 7.1 for
an Altera FPGA; YARI and JOP for the Cyclone EP1C12C6
FPGA and picoJava-II for a larger Cyclone II FPGA. Table 1
lists the basic properties of the synthesized soft-cores. The
FPGA is integrated on an evaluation board offering 1 MB
RAM. All benchmarks were executed on the same platform,
with all required Java classes readily available in the systems
memory. In the case of CACAO all required classes were
embedded into the executable binary.

6.1 Performance

Our new solution, based on CACAO running on top of
YARI, offers the best performance compared to the two other
options. Table 2 shows the raw performance numbers and
Figure 2 the speedup of picoJava-II and CACAO on YARI
relative to JOP. Although JOP achieves the highest frequency
in our setup, the results show the least performance for the
four benchmarks. For all our tests the CACAO JVM is faster
by a factor of 1.64 to 2.8 in comparison to JOP. CACAO is
also able to outperform picoJava-II, resulting in a speedup of
a factor between 1.57 and 2.15.

In addition to an overall comparison based on these
larger benchmark programs, we also conducted experiments
to evaluate the efficiency of each approach for individual
Java bytecodes. The JBE suite contains several micro-
benchmarks for this purpose. Each micro-benchmark tests
only one or two specific Java bytecodes and reports the num-
ber of cycles required for its execution. The results of this
experiment are summarized in Table 3. For simple byte-
codes, e.g., iadd, JOP and picoJava-II basically require the
same amount of cycles. CACAO on YARI, in comparison,
executes most of these opcodes in about half the cycles.
More complex opcodes, e.g., invokeinterface, are consider-
ably more expensive on all three platforms. Nevertheless
CACAO executes these opcodes by far more efficiently, with

Benchmark Classes Data Heap Total

Sieve 56,861 81,223 230,533 715,201
Kfl 72,526 80,990 267,074 767,174
UdpIp 69,059 81,465 267,796 764,824
Lift 62,167 81,117 251,159 741,027

Table 4. Memory consumption in bytes for class
files, static and heap data, and the total memory
consumption.

Bench. Total Compiled Bc-instr. Mips-instr.

Sieve 405 78 3,419 22,436
Kfl 465 117 6,577 33,368
UdpIp 455 107 5,443 33,308
Lift 422 89 4,522 27,572

Table 5. Statistics on JIT compilation, showing the
total number of methods, the number of compiled
methods, and the size in bytes of the translated
bytecode and machine instructions.

speedups of up to a factor of 10. Because of inaccuracy in
determining the overhead of surrounding code of the micro-
benchmarks it is not always possible to derive meaningful
cycle counts. The value of if icmplt not taken for picoJava-
II is omitted because of that inaccuracy.

6.2 Memory Consumption

For resource constrained embedded systems memory con-
sumption is of utmost importance. Memory typically con-
tributes a fair amount to the overall costs of such a system,
and is thus minimized as much as possible. All benchmarks
presented in the last section were run within 1 MB of mem-
ory. In the case of CACAO the whole JVM, the original Java
classes, the dynamically generated code, and all data of the
Java programs need to fit into this small amount of RAM.
Table 4 summarizes the amount of memory required to hold
the Java classes of the benchmark, data of the CACAO JVM,
and finally the peak amount of heap memory allocated at run-
time. In addition Table 5 presents details on the JIT compi-
lation performed at runtime. In general only a small amount,
between 19% and 25%, of the available methods are actu-
ally compiled. The fraction of dynamically generated code
is thus relatively small and never exceeds 4.3% of the overall
consumed memory.

In JOP the main part of the JVM is implemented in hard-
ware and the Java library is very restricted. The memory
requirements are thus by far less demanding. For example,
the memory consumption of the linked class files for a Hello
World program is about 36 KB.

1 10 20 30 40 50 60
500

5000

50000

500000

5000000

Just-In-Time-Compilation Mission-Start-Compilation

Iteration

#
 C

yc
le

s

Figure 3. Execution time per iteration for just-in-time-compilation vs. mission-start-compilation over time.

6.3 Mission Start Compilation

We have evaluated our compile at mission start approach
using a small Java real-time application, Kfl from the JBE
suite. The program is a simple control algorithm that moni-
tors a set of sensors and controls a set of actuators. The en-
vironment for the sensors and actuators is simulated in Java.
The test executes the control function repetitively in a loop.
However, at different iterations of the loop different methods
get invoked, depending on the internal state of the controller
and its virtual environment. As a consequence JIT compi-
lation inevitably interrupts the regular execution of the pro-
gram to translate new methods that are executed for the first
time. In normal operation, i.e. no exceptional event occurred,
the last method is compiled in iteration 46.

With our mission-start-compilation strategy we are able to
completely eliminate unwanted compilation during the criti-
cal phase of a real-time task. Figure 3 shows a comparison
of the execution time of the first few iterations of the control
loop. The bars in black show the execution time of each iter-
ation for the regular JIT approach, while the gray bars repre-
sent our new approach – note the logarithmic scale. As can
be seen the overhead of dynamic compilation is completely
eliminated. Even the first few iterations closely resemble the
behavior of the application in its steady state. Because of
initialization overhead contained in the Java program itself,
the first iterations still show a slightly increased execution
time. This behavior is inherent to the program and can not
be eliminated.

7 Conclusion

From our evaluation we see that the combination of a well
designed RISC core with JIT compilation of Java performs
better than a Java processor directly executing Java bytecode.

Especially when compared with the highly optimized, but
resource hungry picoJava. In terms of FPGA resources, pi-
coJava is about three times as big as YARI, but our RISC
approach outperforms picoJava by 90%.

When comparing CACAO on YARI against JOP the speed
advantage is even bigger. However, JOP was designed for
time predictability and therefore omitted all architectural fea-
tures (e.g., a general purpose data cache) that improve aver-
age case throughput only. When we relate performance to
size, JOP is half the size of YARI and the memory consump-
tion is lower than with CACAO.

Although JIT compilation is usually avoided in real-time
Java systems we have found a way to reduce the influence of
the compiler on real-time performance. JIT at mission start
reintroduces some dynamics, e.g., class loading during the
initialization phase, into real-time Java without compromis-
ing real-time constraints.

Availability

Our modified version of CACAO, as well as the YARI
soft-core are open source projects that are publicly avail-
able. To our knowledge our system is the only available
open source Java solution that includes a soft-core RISC
and the software stack. We hope that the system is adopted
in research and industry projects, it can be retrieved us-
ing the software code management tool git from: http:
//repo.or.cz/w/yari.git

Acknowledgment

We would like to thank Christian “Twisti” Thalinger, the
main developer and maintainer of CACAO, for his support
and insights on CACAO.

References

[1] JavaBenchEmbedded. Available at http://www.jopwiki.
com/JavaBenchEmbedded.

[2] Altera Corporation. Nios II processor reference handbook,
2008. Version 8.0.0.

[3] A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes, F. Pi-
zlo, E. Pla, M. Prochazka, and J. Vitek. A real-time Java
virtual machine with applications in avionics. Trans. on Em-
bedded Computing Sys., 7(1):1–49, 2007.

[4] C. Badea, A. Nicolau, and A. V. Veidenbaum. A simplified
Java bytecode compilation system for resource-constrained
embedded processors. In CASES ’07: Proceedings of the
2007 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 218–228, New
York, NY, USA, 2007. ACM.

[5] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel
garbage collection. In PLDI ’91: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design
and implementation, pages 157–164, New York, NY, USA,
1991. ACM.

[6] G. Bollella, B. Delsart, R. Guider, C. Lizzi, and F. Parain.
Mackinac: Making HotSpotT M real-time. In ISORC, pages
45–54. IEEE Computer Society, 2005.

[7] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java Se-
ries. Addison-Wesley, June 2000.

[8] J. Caska. micro [µ] virtual-machine. Available at http://
muvium.com/.

[9] M. Fulton and M. Stoodley. Compilation techniques for real-
time Java programs. In CGO ’07: Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
pages 221–231, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[10] J. Gaisler. A portable and fault-tolerant microprocessor based
on the SPARC v8 architecture. In DSN ’02: Proceedings of
the 2002 International Conference on Dependable Systems
and Networks, page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[11] T. R. Halfhill. Imsys hedges bets on Java. Microprocessor
Report, August 2000.

[12] D. S. Hardin. Real-time objects on the bare metal: An effi-
cient hardware realization of the Java virtual machine. In Pro-
ceedings of the Fourth International Symposium on Object-
Oriented Real-Time Distributed Computing, page 53. IEEE
Computer Society, 2001.

[13] Imsys. Im1101c (the Cjip) technical reference manual / v0.25,
2004.

[14] Java Expert Group. Java specification request JSR 302:
Safety critical java technology. Available at http://jcp.
org/en/jsr/detail?id=302.

[15] A. Krall and R. Grafl. CACAO – A 64 bit JavaVM just-in-
time compiler. In G. C. Fox and W. Li, editors, PPoPP’97
Workshop on Java for Science and Engineering Computation,
Las Vegas, June 1997. ACM.

[16] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
T. Ungerer. Real-time event-handling and scheduling on a
multithreaded Java microcontroller. Microprocessors and Mi-
crosystems, 27(1):19–31, 2003.

[17] Lattice Semiconductor Corporation. LatticeMico32 processor
reference manual, 2007. Version 6.1 SP1.

[18] J. M. O’Connor and M. Tremblay. picoJava-I: The Java vir-
tual machine in hardware. IEEE Micro, 17(2):45–53, 1997.

[19] W. Puffitsch. picoJava-II in an FPGA. Master’s thesis, Vienna
University of Technology, 2007.

[20] P. Puschner and A. Wellings. A profile for high integrity real-
time Java programs. In 4th IEEE International Symposium on
Object-oriented Real-time distributed Computing (ISORC),
2001.

[21] Red Hat, Inc. Newlib. Available at http://sourceware.
org/newlib/.

[22] RTCA/DO-178B. Software considerations in airborne sys-
tems and equipment certification. December 1992.

[23] RTJ Computing. simpleRTJ a small footprint Java VM for
embedded and consumer devices. Available at http://www.
rtjcom.com/, 2000.

[24] M. Schoeberl. Java technology in an FPGA. In Proceed-
ings of the International Conference on Field-Programmable
Logic and its Applications (FPL 2004), Antwerp, Belgium,
August 2004.

[25] M. Schoeberl. Evaluation of a Java processor. In Tagungs-
band Austrochip 2005, pages 127–134, Vienna, Austria, Oc-
tober 2005.

[26] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture, 54/1–
2:265–286, 2008.

[27] M. Schoeberl, H. Sondergaard, B. Thomsen, and A. P. Ravn.
A profile for safety critical Java. In 10th IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’07), pages 94–101, Santorini
Island, Greece, May 2007. IEEE Computer Society.

[28] F. Siebert. Hard Realtime Garbage Collection in Modern
Object Oriented Programming Languages. Number ISBN:
3-8311-3893-1. aicas Books, 2002.

[29] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
Java virtual machine. In Proceedings of the 2nd international
conference on Virtual execution environments (VEE 2006),
pages 78–88, New York, NY, USA, 2006. ACM Press.

[30] Sun Microsystems, Inc. phoneME. Available at https://
phoneme.dev.java.net/.

[31] T. Thorn. Yet another RISC implementation.
http://thorn.ws/yari, 2008.

[32] S. Uhrig and J. Wiese. jamuth: an IP processor core for em-
bedded Java real-time systems. In Proceedings of the 5th
International Workshop on Java Technologies for Real-time
and Embedded Systems (JTRES 2007), pages 230–237, New
York, NY, USA, 2007. ACM Press.

[33] J. White. An introduction to java 2 micro edition (j2me); java
in small things. In ICSE ’01: Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 724–725,
Washington, DC, USA, 2001. IEEE Computer Society.

[34] Xilinx Inc. MicroBlaze processor reference guide, 2008. Ver-
sion 9.0.

[35] M. Zabel, T. B. Preusser, P. Reichel, and R. G. Spallek. Se-
cure, real-time and multi-threaded general-purpose embedded
Java microarchitecture. In Prceedings of the 10th Euromicro
Conference on Digital System Design Architectures, Methods
and Tools (DSD 2007), pages 59–62, Aug. 2007.

