
Towards Utilizing Reconfigurable Shared Resources
in Multi-Core Hard Real-Time Systems

Luca Pezzarossa
lpez@dtu.dk

Martin Schoeberl
masca@dtu.dk

Jens Sparsø
jspa@dtu.dk

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Kongens Lyngby, Denmark

ABSTRACT
Dynamic partial reconfiguration (DPR) of FPGAs allows
the reconfiguration of selected areas of an FPGA after its
initial configuration, while the remaining part of the sys-
tem continues to operate without interruption. Hard real-
time systems are a class of systems whose temporal behav-
ior has to be completely predictable. Our research explores
the use of DPR of FPGAs in the context of hard real-time
multi-processor systems for embedded applications, target-
ing the T-CREST multi-core platform. This paper provides
an overview and discusses the challenges related to the use of
DPR to share reconfigurable resource in a time-predictable
manner. It presents an approach to the application of DPR
in multi-core hard real-time systems and proposes two mod-
els to describe the effect of DPR on the software tasks exe-
cution and scheduling. Related works, plans for future eval-
uation and a preliminary test are also presented.

1. INTRODUCTION
Dynamic partial reconfiguration (DPR) is an emerging

concept in the FPGA industry that allows the reconfigu-
ration of portions of the FPGA, while the rest of the device
continues to operate without interruption [1, 2, 3].

Hard real-time embedded systems are a class of systems
characterized by strict timing constraints on the execution
time of the tasks. These systems are used for safety-critical
applications where a failure to respond in time may lead
to catastrophic consequences (e.g., flight electronics, wind
turbine control systems, medical devices, factory automa-
tion systems, etc.). The design process of such systems,
addressing multi-core architectures instead of single proces-
sor architectures, is more complicated and challenging due
to the fact that the temporal behavior has to be completely
predictable and analyzable.

For multi-core hard real-time embedded systems, which
are mainly used in professional or high-end applications, the
development and the fabrication cost of an ASIC is typically
prohibitive, since it is not possible to amortize the develop-
ment costs over the production volume. Therefore, FPGAs
usage is preferable for this class of applications. FPGAs
are less efficient than ASICs, but this can be compensated
for by shorter development time and increased flexibility.
DPR brings this flexibility even further by enabling run-time
changes in the hardware.

Our research investigates the usage of FPGAs’ DPR in
the context of multi-core hard real-time systems. It tar-
gets the existing platform T-CREST [4] and aims to sup-

plement it with the DPR feature. T-CREST is a homoge-
neous multi-core platform for embedded hard real-time ap-
plications especially optimized to simplify static worst-case
execution time (WCET) analysis. Our hypothesis is that
DPR can provide substantial benefits by allowing dynamic
hardware modifications. More specifically, we hypothesize
that a system which uses a DPR approach can be more ef-
ficient in terms of size, power consumption and cost than
an equivalent static version, while maintaining comparable
computational performance.

This paper provides an overview and discusses the chal-
lenges related to the use of DPR to share reconfigurable
resources between software tasks in a time-predictable man-
ner. More specifically, it contributes (i) by presenting an
approach to the application of DPR in multi-core hard real-
time systems and (ii) by proposing two models to describe
the effect of DPR on the tasks execution and scheduling. Re-
lated works, plans for future evaluation and a preliminary
test are also presented.

This paper is organized as follows: Section 2 provides gen-
eral background about DPR by presenting the state-of-the-
art, the potential benefits and the limitations of the cur-
rent FPGA technology. Section 3 presents a classification of
DPR with the relative configuration latencies and proposes
two formulated models for DPR feature in hard real-time
systems. Section 4 describes our plans for evaluation and a
preliminary test utilizing the T-CREST platform. Section 5
briefly presents related works and finally Section 6 concludes
the paper.

2. DYNAMIC PARTIAL
RECONFIGURATION OF FPGAS

Dynamic partial reconfiguration (DPR) allows the modi-
fication of an operating FPGA design by loading a partial
configuration file (bit-file), while the remaining part of the
system continues to operate without interruption. After the
initial configuration of the FPGA, partial bit-files can be
loaded into the FPGA to modify selected regions, without
compromising the integrity and the functionality of those
parts of the device that are not being affected by the recon-
figuration.

Therefore, a system that uses DPR can be conceptually
considered as divided in two main parts: a static part and
a dynamic part. The static part is configured only once at
boot-time with a full bit-file. The dynamic part, which may
consist of several independent reconfigurable regions, can be
reconfigured multiple times during run-time with different



static part

partial

bit-files

FPGA

dynamic part

(two reconfigurable regions)

A1

A2

An

B2

Bm

A

B

B1

Figure 1: A FPGA divided into a static and a dy-
namic part (two reconfigurable regions).

partial bit-files. Figure 1 shows a FPGA divided into a static
part and a dynamic part, where the dynamic part consists of
two non-topologically-connected reconfigurable regions (A
and B). For every region, a partial bit-file can be loaded
from a set (e.g., A1, A2, ..., An) without interfering with the
functionality of the static part.

The use of DPR allows the creation of systems with a
very high level of flexibility since reconfigurable regions can
be dynamically reused by realizing the functionality that
is needed at any point in time. This makes more efficient
usage of the FPGA hardware resources, leading to a reduc-
tion of the FPGA size, with consequent reduction of power
consumption and cost. Moreover, a blank (empty) partial
bit-file can be loaded into a temporarily not used reconfig-
urable region in order to reduce the power consumption to
the minimum.

Using DPR to obtain these benefits increases the com-
plexity of the design process and of the hardware design
itself. The design flow performed with the commercial tools
is more articulated and it requires additional steps to gen-
erate the partial bit-files. For instance, the definition of the
physical areas on the FPGA chip where the reconfigurable
regions must be placed and the specification of dedicated
timing constrains for the reconfigurable regions. Something
that is not required for standard non-reconfigurable design.

From a hardware point of view, additional logic is needed
in the borders between the static part and the dynamic part
in order to insulate the reconfigurable regions during recon-
figuration. Moreover, a hardware controller is also required
to manage the reconfiguration process and to move the par-
tial bit-file from the memory where they are stored (on-chip
block-RAM or off-chip memory) to the FPGA’s configura-
tion memory.

The next section addresses this design challenges keeping
in mind that, since we target multi-core platform for hard
real-time systems, the time behavior has to be completely
predictable. Therefore, also the DPR approach must be per-
formed in a time-predictable manner and be completely an-
alyzable.

3. APPROACH AND MODELS
The main idea is to share the dynamic part of the FPGA

between the resources used by one or more processors of
the platform for a limited period of time (e.g., hardware
accelerators, co-processors, I/O units, etc.) or to reconfigure
part of the platform (e.g., processors or sections of them,
networks-on-chip, etc.) to dynamically adapt the hardware

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

CPU
N
I

R

HW

acc.
N
I

R

I/O
N
I

HW

acc.

Colors legend

HW

acc.

Fine grain DPR

Medium grain DPR

Coarse grain DPR

Figure 2: Example of the three DPR classes in a
network-on-chip-based multi-core platform.

to the actual needs of the software tasks running on it.
In this section we address how to perform this. First we

identify 3 classes of DPR, then we present the interfaces
available for invoking DPR, we discuss latency aspects of
these and finally we propose two models for the DPR feature
in hard real-time system.

3.1 Classes of DPR
In a multi-core platform, such as T-CREST, we have iden-

tified three possible classes of DPR depending on the size of
the reconfigured area: fine grain, medium grain, and coarse
grain DPR. An example of the DPR classes is shown in
Figure 2, where the three granularities are represented in
different colors.

We define the DPR as fine grain when the area to be
reconfigured is very small, in the order of hundreds of FPGA
logic cells (LCs). An example of fine grain reconfiguration
is the application of minor changes to a CPU architecture in
order to modify, during run-time, its instruction set (shown
in red in Figure 2).

A medium grain DPR involves an area in the order of
thousands of LCs. An example is a reconfiguration of an
entire intellectual property of the platform, such as CPUs,
small stateless hardware accelerators, etc. (shown in green
in Figure 2).

Finally, a coarse grain DPR involves a large area of the
FPGA, in the order of tenths of thousands of LCs. An ex-
ample of this class is a set of stateful hardware accelerators
for compute-intensive operations (fast Fourier transform, en-
cryption/decryption, etc.) to be swapped into large recon-
figurable regions and connected to a subset of CPUs with a
dedicated network-on-chip or a shared bus (shown in yellow
in Figure 2).

Since the reconfiguration time depends on the amount of
LCs to be reconfigured, it is immediately clear that a fine
grain DPR is very fast. On the contrary, a coarse grain DPR
is a relatively slow process.

3.2 Interfaces and Reconfiguration Latencies
For XILINX FPGAs, DPR can be performed through dif-

ferent interfaces. In this paper we mention only the two
interfaces that we have considered to use: the internal con-
figuration access port (ICAP) and the SelectMap interface.

The ICAP is a primitive found in XILINX FPGAs. It is
an internal interface on the FPGA fabric that can be ac-
cessed by the hardware implemented on the FPGA itself
and it provides direct access to the configuration memory.



Table 1: Calculated reconfiguration latencies for the
three classes of DPR for a XILINX Virtex-6 FPGA.

Class of # of Bit-file Reconfig.
DPR CLBs size latency

Fine grain 150 45 kB 110 µs
Medium grain 2 000 680 kB 1.5 ms
Coarse grain 10 000 2.9 MB 7.3 ms

It requires the instantiation of an ICAP controller and the
logic to drive the interface itself.

The SelectMap interface is a fast external reconfiguration
interface that also provides direct access to the configuration
memory. It dedicates I/O pins for a bi-directional data bus
and control signals.

For a XILINX Virtex-6 FPGA, both interfaces have a
maximum data width of 32 bits and a maximum frequency
of 100 MHz, hence the maximum transfer speed that can be
reached to load a partial bit-file is 3.2 Gb/s. Table 1 shows
some calculated values of reconfiguration latencies for the
three classes of DPR, based on the aforementioned transfer
speed. CLB stands for configurable logic block of XILINX
FPGAs. The reconfiguration latency is the time interval
needed to load a partial bit-file in a reconfigurable region.

3.3 DPR Models
Considering the granularity of the DPR and the associ-

ated configuration latencies we have formulated two differ-
ent models to describe the effect of DPR on the tasks execu-
tion and schedule: a task-level DPR model and a mode-level
DPR model.

Task-Level DPR Model
Observing the reconfiguration latencies shown in Table 1 we
can safely assume that the latency for fine grain DPR is
smaller than (or comparable to) the WCET of a software
task (maximum possible duration of a task). Therefore, the
effect of DPR can be modelled by associating the reconfig-
uration latency to the tasks to which the reconfiguration is
related. In other words, the tasks that uses reconfigurable
resources need to include the reconfiguration latency in their
WCET before the task set is scheduled.

As an example, Figure 4(a) shows a static schedule period
with three tasks T1, T2 and T3 sharing a reconfigurable
region. Every time a task is started or resumed, it needs to
reconfigure the dynamic part in order to have available the
hardware resources to perform its operation. The solid color
at the beginning of each task represents the reconfiguration
delay added to each task WCET. The last row of the diagram
shows how the reconfigurable region is shared between the
tasks.

Mode-Level DPR Model
Assuming the reconfiguration latency for coarse grain DPR
larger than the WCET of a software task, the reconfigura-
tion of this DPR class must be associated to an operation
mode change, where the system, during normal operation,
changes a subset of the executing tasks to adapt its behavior
to new environment conditions.

The graph in Figure 3 shows the operational mode changes
between three modes: M1, M2, and M3. Every mode con-
sists of a set of tasks and a set of resources (e.g., hardware

M1

M3 M2

MC31

MC13 MC21

MC12

MC32

MC23

Figure 3: Graph showing the operational mode
changes for three modes.

accelerators) implemented on the dynamic part of the design
that corresponds to a different operational scenario.

A reconfiguration associated with a mode change can be
modelled as a task that belongs to a mode change scenario
(e.g., MC12, MC21, etc. in Figure 3). A mode change sce-
nario consists of a set of task that need to be maintained
active in the transition between the old and the new mode
and a set of tasks that models the reconfiguration process.

As an example, Figure 4(b) shows a change between two
statically scheduled modes M1 and M2. M1 consists of the
tasks T1 and T2, while M2 consists of the tasks T1 and T3.
We assume that T2 and T3 need different resources to be
implemented on the shared reconfigurable region and that
the periodic execution of T1 cannot be suspended during the
mode change. We also assume that a task that continues its
execution through the mode change cannot reconfigure its
own resources. We can observe that during the mode change
scenario MC12 the task T1 continues to run and the task
Trec, which models the reconfiguration process, is executed.
The last row of the diagram shows how the reconfigurable
region usage changes between different modes. Also in this
case, the solid color represents the reconfiguration delay.

3.4 Final Remarks
The two models presented above, which are applicable to

different classes of DPR, are not exclusive. Fine, medium,
and coarse grain DPR can be present in the same architec-
ture and be modelled independently using the proper model.
However, since the current FPGA technology allows to re-
configure only one region at a time, interference between
tasks can occur and this must be taken into account during
the task scheduling. Utilizing the presented models to de-
scribe the effects of the DPR makes still possible to apply the
traditional shared resources scheduling protocol (e.g., PIP,
PCP, SRP, etc.) to properly share the reconfigurable regions
between the tasks. Finally, we mention that medium grain
DPR can be modelled with both methods depending on the
actual relation between the task WCET and the reconfigu-
ration latency. If the reconfiguration latency is smaller or
comparable than the task WCET, the task-level model can
be applied. Otherwise, the mode-level DPR model needs to
be used.

4. EVALUATION
We plan to evaluate our approach, models and design uti-

lizing the T-CREST platform. T-CREST is a homogeneous
multi-core platform for embedded hard real-time applica-



T1

T2

T3

recon.

region T1 T1T1 T1T2 T2 T2 T3 T3

t t+T

(a) Task-level DPR model.

T1

T2

T3

recon.

region T2 T3

t t+T’

M1 M2MC12

Trec

t+T’+TMC t+T’+TMC+T’’

(b) Mode-level DPR model.

Figure 4: Example of time diagrams for the task-level and the mode-level DPR models.

tions [4]. All features are optimized to simplify static WCET
analysis. The T-CREST platform contains several process-
ing cores, called Patmos [5], and it is supported by the
WCET analysis tool aiT [6] from AbsInt that allows to stat-
ically derive tight WCET bounds. T-CREST contains two
time-predictable networks-on-chip (NOCs): a time-division
multiplexing message passing NOC between the cores, called
Argo [7], and a memory tree NOC towards the shared ex-
ternal main memory.

We are currently developing an ICAP/SelectMap controller
that allows to load partial bit-files in a time-predictable
manner. Preliminary experiments have been carried out
targeting the XILINX Virtex-6 FPGA on the ML605 devel-
opment board. The tested architecture consists of a single
Patmos processor that manage a fine grain reconfigurable
region, using the ICAP/SelectMap controller to swap a sim-
ple I/O led driver between different configurations. The
test allowed to prove the functionality of the controller and
to collect some preliminary measurements regarding the re-
configuration latency. With a size of 40 configurable logic
blocks, and a bit-file size of 12.7 kB stored in block-RAM,
the measured reconfiguration latency is 35 µs.

Further evaluation is expected in the near future when the
ICAP/SelectMap controller and the software tools currently
under development will be completed and stable.

5. RELATED WORKS
The use of DPR in the context of hard real-time sys-

tems and of multi-processor platforms is largely unexplored.
However, we briefly mention two works addressing general
purpose non-real-time platforms that have been taken into
account in our research.

The ReCoBus-builder [8] is a FPGA design oriented frame-
work for component-based reconfigurable systems. It uses
DPR to generate systems with one or more reconfigurable
areas to be used by different hardware modules.

The LogiCORE IP XPS HWICAP [9] is an IP from XIL-
INX that enables an embedded microprocessor to read and
write the FPGA configuration memory through the ICAP
interface. This controller, although being widely used, is not
designed to be time-predictable. Hence, it is not suitable to
be directly used in our design.

6. CONCLUSION
This paper presented a preliminary exploration of the use

of FPGAs’ DPR in the context of multi-core hard real-time
systems. It discussed the challenges related to the use of
DPR and it presented an approach on how to use the DPR
feature to share reconfigurable resource in a time predictable
manner. The paper also proposed two models to describe
the effect of DPR on the tasks execution and scheduling.

7. REFERENCES
[1] L. Wang and F. Y. Wu. Dynamic partial

reconfiguration in FPGAs. In Proc. of IEEE Third
International Symposium on Intelligent Information
Technology Application, volume 2, pages 445–448, 2009.

[2] XILINX. UG702: Partial reconfiguration user guide.
Technical report, 2012. Online.

[3] ALTERA Corporation. QII51026: Design planning for
partial reconfiguration. Technical report, 2013. Online.

[4] M. Schoeberl et al. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal
of Systems Architecture, 2015. Accepted for
pubblication. Online at
http://www.jopdesign.com/doc/t-crest-jnl.pdf.

[5] M. Schoeberl, P. Schleuniger, W. Puffitsch,
F. Brandner, C. W. Probst, S.Karlsson, and T. Thorn.
Towards a time-predictable dual-issue microprocessor:
the Patmos approach. In Proc. of First Workshop on
Bringing Theory to Practice: Predictability and
Performance in Embedded Systems, pages 11–20, 2011.

[6] R. Heckmann and C. Ferdinand. Worst-case execution
time prediction by static program analysis. Technical
report. Online at http://www.absint.de/aiT WCET.pdf.

[7] E. Kasapaki et al. Argo: A real-time network-on-chip
architecture with an efficient GALS implementation.
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 2015. Accepted for pubblication.
Online at http://www.jopdesign.com/doc/argo-jnl.pdf.

[8] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder -
a novel tool and technique to build statically and
dynamically reconfigurable systems for FPGAs. In
Proc. of International Conference on Field
Programmable Logic and Applications, pages 4629918,
119–124. Inst. of Elec. and Elec. Eng. Computer
Society, 2008.

[9] XILINX. DS586: LogiCORE IP XPS HWICAP
(v5.00a) product specifications. Technical report, 2010.
Online.


