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Abstract. Many of the benefits of Java, such as safe object references, notion
of concurrency as a first-class language construct and its portability have the
potential to make embedded systems much safer and simpler to program. How-
ever, Java technology is seldom used in embedded systems due to the lack of
acceptable real-time performance. This paper provides a short overview of the
issues with Java in real-time systems and the Real-Time Specification of Java
(RTSJ) that addresses most of these problems. A simple real-time profile is pre-
sented and the implementation of this profile on top of a Java processor, de-
signed for real-time systems, is described in detail. Performance comparison
between this solution and the reference implementation of RTSJ on top of
Linux show that a dedicated Java processor, without an underlying operating
system, is more time predictable than an adoption of a general purpose OS for
real-time systems.

1 Introduction

Java’s first use was in an embedded system. In the early 1990s Java, whose original
name was Oak, was created as programming tool for a wireless PDA. The device,
called *7, was a small SPARC based hardware with a tiny embedded OS. *7 was not
released as a product. Java however, was officially released 1995 as a new language
for the Internet (to be integrated in Netscape’s browser). Over the years, Java tech-
nology has become a programming tool for desktop applications and web services.
The library, defined as part of the language, grew with each new release of Java.

Java for embedded systems was clearly out of focus for Sun. With the arrival of
mobile phones, Sun again became interested in the embedded market. Sun defined
different subsets of Java, which are collectively called J2ME (Java Micro Edition).

As the language became more popular, with easier object oriented programming
than C++ and threads defined as part of the language, usage in real-time systems was
considered. Two competing groups started to define how to convert Java for these
systems.

Nilsen published the first paper on this topic in November of 1995 [1] and formed
the Real-Time Working Group. The other group, known as the Real-Time Expert
Group, which included Bollela and Gosling (the original designer of Java), published



the Real-Time Specification for Java (RTSJ) [2]. RTSJ was the first specification
request under Sun’s Java Community Process and received a great deal of attention
from academic and industrial researchers.

Real-time Java presents different challenges for the Java Virtual Machine (JVM).
Just-In-Time compilation is usually avoided and interpreting bytecodes leads to a
slow execution model. Running a JVM on top of a Real Time Operating System
(RTOS) adds extra overhead. JOP (Java Optimized Processor) [3] is the presented
solution in hardware to build a solid basis for a real-time aware JVM. Tight interac-
tion between the processor design and the design of the real-time language extensions
can result in a performant and Worst Case Execution Time (WCET) analyzable real-
time system.

This paper is organized as follows: Section 2 and Section 3 describe issues with
the definition of Java to support real-time systems, followed by an overview of the
Real-Time Specification for Java. Section 4 proposes a simple profile for real-time
Java. Section 5 provides an overview of JOP, a Java processor for real-time systems.
Design decisions and implementation details for a real-time enabled JVM are de-
scribed in Section 6. This implementation is compared with the reference implemen-
tation of the RTSJ in Section 7. Section 8 is the Conclusion. In this paper, the words
task and thread are interchangeable. Task is used when the context is more general
and thread for Java specific aspects.

2 Java for Real-Time Systems

Although Java has language features that simplify concurrent programming the defi-
nition of these features is too vague for real-time systems. In the following section,
some problematic aspects of Java for embedded real-time systems are described.

Threads and Synchronization: Java, as described in [4], defines a very loose behav-
ior of threads and scheduling. For example, the specification allows even low priority
threads to preempt high priority threads. This prevents threads from starvation in gen-
eral purpose applications, but is not acceptable in real-time programming. Even an
implementation without preemption is allowed. Wakeup of a single thread with no-
tify() is not exactly defined: The choice is arbitrary and occurs at the discretion of the
implementation. It is not mandatory for a JVM to deal with the priority inversion
problem.

Garbage Collector: Garbage collection greatly simplifies programming and helps to
avoid classic programming errors (e.g. memory leaks). Although real-time garbage
collectors evolve, they are usually avoided in hard real-time systems. A more conser-
vative approach to memory allocation is necessary.

WCET on Interfaces (OOP): Method overriding and Interfaces, the simplified con-
cept of multiple inheritance in Java, are the key concepts in Java to support object
oriented programming. Like function pointers in C, the dynamic selection of the ac-
tual function at runtime complicates WCET analysis. Implementation of interface



look up usually requires a search of the class hierarchy at runtime or very large dis-
patch tables.

Dynamic Class Loading: Dynamic class loading requires resolution and verification
of classes. A function that is usually too complex (and consumes too much memory)
for embedded devices. Upper bound of execution time for this function is almost im-
possible to predict (or too large).

Standard Library: For a Java conformant implementation, the full library (JDK) has
to be part of it. The JAR files for this library constitute about 15 MB (in JDK 1.3,
without native libraries), which is far too large for many embedded systems. Since
Java was designed to be a safe language with a safe execution environment, no
classes are defined for low-level access of hardware features. The standard library
was not defined and coded with real-time applications in mind.

Execution Model: The first execution model for the JVM was an interpreter. The
interpreter is now enhanced with Just-In-Time (JIT) compilation. Interpreting Java
bytecodes is too slow and JIT compilation is not applicable in real-time systems. The
time for the compilation process had to be included in the WCET, resulting in im-
practicable values.

Implementation Issues: The problems mentioned in this section are not absolute
problems for real-time systems. However, they result in a slower execution model
with a more pessimistic WCET.

According to [5] the static initializers of a class C are executed immediately before
one of the following occurs: (a) an instance of C is created; (b) a static method of C is
invoked or (c) a static field of C is used or assigned. Fig. 1 shows an example of this
problem:

public class Problem {

private static Abc a; ) o
public static int cnt; // implizit set O

static { o
// do some class initializaion
a = new Abc(); //even this 1is ok.

}

public Problem() {
++Cnt;

// anywhere in some_other class, without any
// instance of Problem this can lead to
// the execution of the initializer

int nrofProblems = Problem.cnt;
Fig. 1. Class initialization can occur very late
It follows that bytecodes getstatic, putstatic, invokestatic and new, can lead to class
initialization and possible high WCET values. In the implementation of a JVM, it is

necessary to check every execution of these bytecodes if the class is already initial-
ized. This leads to a performance loss and is violated in some existing implementa-



tions of the JVM. For example in CACAO [6] the static initializer is called at compi-
lation time.

Synchronization is possible with methods and on code blocks. Each object has a
monitor associated with it and there are two different ways to gain and release owner-
ship of a monitor. Bytecodes monitorenter and monitorexit explicitly handle synchro-
nization. Otherwise, synchronized methods are marked in the class file with access
flags to be synchronized. This means that all bytecodes for method invocation and
return must check this access flag. This results in an unnecessary overhead on meth-
ods without synchronization. A better way would be to encapsulate the bytecode of
synchronized methods with bytecodes monitorenter and monitorexit. This solution is
used in Suns picoJava-II [7]. The code is manipulated in the class loader. The two
different ways to express synchronization, in the bytecode stream and as access flags,
are inconsistent.

3 Real-Time Specification for Java

To overcome some of the issues mentioned, the Real-Time Specification for Java
(RTSJ) was created under the Sun Community Process. RTSJ defines a new API with
support from the JVM [2]. The following guiding principles led to the definition:

* No restriction of the Java runtime environment.

* Backward compatibility for non-real-time Java programs.

* No syntactic extension to the Java language or new keywords.

* Predictable execution.

* Current practice and allow future implementations to add advanced features.

A Reference Implementation (RI) of RTSJ forms part of the specification [9].
RTSJ shall be backward compatible with existing non-real-time Java programs,
which implies that RTSJ is intended to run on top of J2SE (and not on J2ME).

3.1 Threads and Scheduling

The behavior of the scheduler is clearer defined as in standard Java. A priority-based,
preemptive scheduler with at least 28 real-time priorities is defined as base scheduler.
Additional levels (ten) for the traditional Java threads need to be available. Threads
with the same priority are queued in FIFO order.

The RTSJ introduces the concept of schedulable objects. Any instances of classes
that implement the interface Schedulable, such as RealtimeThread, NoHeapRealtime-
Thread, and AsyncEventHandler, are managed by the scheduler. NoHeapRealtime-
Thread has, and AsyncEventHandler can have a higher priority than that of the gar-
bage collector. As the available release-parameters indicate, threads are either peri-
odic or asynchronous events.

The implementation of synchronized has to include an algorithm to prevent priority
inversion. Priority inheritance protocol is the default and priority ceiling emulation



can be used on request. Threads waiting to enter a synchronized block are priority
ordered and FIFO ordered within priority. Wait free queues are provided for commu-
nication between instances of java.lang.Thread and RealtimeThread.

3.2 Memory

As garbage collection is problematic in real-time applications, RTSJ defines addi-
tional memory areas:

Scoped memory is a memory area with bound lifetime similar to stack based mem-
ory. When a scope is entered (with a new thread or through enter()), all new objects
are allocated in this memory area. Scoped memory areas can be nested and shared
among threads. On exit of the last thread from a scope, all finalizers of the allocated
objects are invoked and the memory area is freed.

Physical memory is used to control allocation in memories with different access
time.

Raw memory allows byte-level access to physical memory or memory-mapped 1/O.

Immortal memory is a memory shared between all threads without a garbage collec-
tor. All objects created in this memory area have the same live time as the application
(a new definition of immortal).

3.3 Time and Timers

Classes to represent relative and absolute time with nanosecond accuracy are defined.
All time parameters are split to a long for milliseconds and an int for nanoseconds
within those milliseconds. A new type, rationale time, can be used to describe periods
with a requested resolution over a longer period (i.e. allowing release jitter between
the points of the outer period). Timer classes can generate time-triggered events (one
shot and periodic).

3.4 Asynchrony

Program logic representing external world events is scheduled and dispatched by the
scheduler. An AsyncEvent object represents an external event (such as a POSIX sig-
nal or a hardware interrupt) or an internal event (through call of fire()). Event handlers
are associated to these events and can be bound to a regular real-time thread or repre-
sent something similar to a thread. The relationship between events and handlers can
be many-to-many. Release of handlers can be restricted to a minimum interarrival
time.



4 A Profile for Real-Time Java

The RTSJ is a complex specification and provides features not necessary, or even
contradictory to high-integrity real-time systems [10]. To evaluate JOP as a real-time
processor, a simple specification, not compatible with the RTSJ, is proposed. It is
possible, and has been done, to implement a subset of the RTSJ, such as Ravenscar-
Java [11], on top of this specification. The guidelines of this specification are:

* High-integrity profile.

¢ Easy syntax, simplicity.

¢ FEasy to implement.

¢ Low runtime overhead.

* No syntactic extension of Java.

¢ Minimum change of Java semantics.

¢ Support for time measurement if WCET analysis tools are not available.

¢ Known overhead (Documentation of runtime behavior and memory requirement of
every JVM operation and all provided methods).

4.1 Application Structure

The application is divided in an initialization and a mission phase. All non time-
critical operations, such as creation of the real-time threads and allocation of objects
in the heap are performed during the initialization phase. In the mission phase, en-
tered by calling startMission(), all real-time threads are scheduled to perform the time-
critical operations.

For a simpler and faster scheduler, the number of threads has to be fixed at one
point of the execution. During the transition to the mission phase, all dynamic data
structures of the threads are moved to a fixed, priority ordered list for the scheduler.
The following restrictions apply to the application:

¢ Initialization and mission phase.

* Fixed number of threads.

¢ Threads are created at initialization phase.

* All shared objects are allocated at initialization.

¢ No garbage collection. The heap is implicit immortal memory.

4.2 Real-Time Threads

Threads and events are defined as schedulable objects similar to the RTSJ:

RtThread represents a periodic task. As usual, task work is coded in run() which gets
called on missionStart(). A scoped memory object can be attached to an RtThread at
creation. The thread is blocked with waitForNextPeriod() till the next period.



HwEvent represents an interrupt with a minimum interarrival time. If the hardware
generates more interrupts, they are delayed or lost.

SwEvent represents a software-generated event. It is triggered by fire() and needs to
override handle().

A Memory object represents scoped memory and can be used with enterMemory() and
exitMemory() when dynamic memory is needed in the mission phase. Scoped memory
is allocated in the initialization phase, attached to a schedulable object at creation and
cannot be shared between these objects. Fig. 2 shows the definition of the basic
classes. The time values for period, offset and minTime are in microseconds.
package joprt;
public class RtThread {

public RtThread(int priority, int period)

public RtThread(int priority, int period, int offset)

public RtThread(int priority, int period, Memory mem)

public RtThread(int priority, int period, int offset, Memory mem)

public void enterMemory()
public void exitMemory()

public void run()
public boolean waitForNextPeriod()

) public static void startMission()

public class HwEvent extends RtThread {

public HwEvent(int priority, int minTime, int number)
public HwEvent(int priority, int minTime, Memory mem, int number)

public void handle()

public class SwEvent extends RtThread {

public SwEvent(int priority, int minTime)
public Swevent(int priority, int minTime, Memory mem)

public final void fire(Q
public void handle()

Fig. 2. Schedulable objects

4.3 Scheduling

Threads and Events are scheduled with fixed priority. No real-time thread or event is
scheduled during the initialization phase. Threads with the same priority receive an
implicit priority order by their creation. To avoid confusion and since the number of
priority levels is not restricted, every real-time thread should get a unique priority
assigned.



Synchronized blocks are executed with priority ceiling emulation protocol. With
objects for which the priority is not set, a top priority is assumed. This avoids priority
inversions on objects that are not accessible from the application (e.g. objects inside a
library).

4.4 Restriction of Java

Some restrictions of language features for WCET analyzable real-time threads and
bound memory usage are listed below:

WCET: Only analyzable language constructs are allowed (i.e. no unbound loops or
recursions).

Static class initialization: This code has to be moved to a static method (e.g. init())
and called in the initialization phase.

String concatenation: In immortal memory scope only String concatenation with
string literals is allowed.

Finalization: finalize() has a weak definition in Java. Because real-time systems run
forever, objects in the heap, that is implicit immortal memory in this specification,
will never be finalized. Objects in scoped memory are released on exitMemory().
However, finalizations on these objects complicate WCET analysis of exitMemory().

Dynamic Class Loading: Due to the implementation and WCET analysis complexity
dynamic class loading is avoided.
A program analysis tool can help to enforce these restrictions.

5 Overview of JOP

JOP (Java Optimized Processor) [3] is the implementation of the JVM in hardware.
JOP is intended for applications in embedded real-time systems and the primary im-
plementation technology is in a Field Programmable Gate Array (FPGA), which re-
sults in the following design constraints:

* Every aspect of the architecture has to be time predictable for WCET (Worst Case
Execution Time) analysis and predictable execution of real-time tasks.

* Low worst-case execution time is favored over average execution speed.
* The processor has to be small enough to fit in a low cost FPGA device to compete
with traditional microcontrollers.

JOP is a full-pipelined architecture with single cycle execution of microcode in-
structions and a novel approach to map Java bytecode to these microcode instruc-
tions.



5.1 Architecture

Fig. 3 shows the datapath of JOP. In the first pipeline stage Java bytecodes, the in-
structions of the JVM, are fetched. These bytecodes are translated to addresses in the
microcode. Bytecode branches are also decoded and executed in this stage. A fetched
bytecode results in an absolute jump in the microcode (the second stage). The second
pipeline stage fetches JOP instructions from the internal microcode memory and exe-
cutes microcode branches.

The third pipeline stage performs, besides the usual decode function, address gen-
eration for the stack ram. Since every instruction of a stack machine has either pop or
push characteristics, it is possible to generate the address for fill or spill for the fol-
lowing instruction in this stage.

In the execution stage operations are performed with two discrete registers: TOS
and TOS-1. Data between stack ram and TOS-1 is also moved (fill or spill) in this
stage. A stack machine with two explicit registers for the two topmost stack elements
and automatic fill/spill does not need an extra write back stage, or any data forward-
ing.

A method cache, microcode ROM and stack RAM are implemented in internal
memories of the FPGA with single cycle access.

bytecode branch condition

next bytecode microcode branch condition
Bytecode Microcode Microcode Execute
fetch, trandate fetchand |— :]J > decode
and branch branch
A ‘
T branch
spill,
bytecode branch ’ ‘ fill
Stack Stack
;J > address —— RAM
generation

Fig. 3. Datapath of JOP

5.2 Microcode

There is a great variation of Java bytecodes. Simple instructions like arithmetic and
logic operations on the stack are easy to implement in hardware. However, the
semantic of bytecodes like new or invoke are too complex for hardware
implementation. These bytecodes have to be implemented in a subroutine. Suns



These bytecodes have to be implemented in a subroutine. Suns picoJava-II [7] solves
this problem by implementing only a subset of the bytecodes and generating a soft-
ware trap on the more complex. This solution results in a constant execution overhead
for the trap.

A different approach is used in JOP. JOP has its own instruction set (the so called
microcode). Every bytecode is translated to an address in the microcode that imple-
ments the JVM. If the bytecode has a 1 to 1 mapping with a JOP instruction, it is exe-
cuted in one cycle and the next bytecode is fetched and translated. For more complex
bytecodes, JOP just continues to execute microcode in the following cycles. At the
end of this instruction sequence the next bytecode is requested. This translation needs
an extra pipeline stage but has zero overheads for complex JVM instructions.

The example in Fig. 4 shows the implementation of single cycle bytecodes and a
bytecode as a sequence of JOP instructions. In this example, ineg takes 4 cycles to
execute and after the last add the first instruction for the next bytecode is executed.

iadd: add nxt // 1 to 1 mapping

isub: sub nxt

ineg: 1di -1 // there is no -val
xor // function in the
Tdi 1 // ALU

add nxt // fetch next bc

Fig. 4. Implementation of iadd, isub and ineg

The microcode is translated with an assembler to a memory initialization file,
which is downloaded during configuration. No further hardware is needed to imple-
ment loadable microcode.

JOP supports all bytecodes of the JVM specification in CLDC 1.0 [8] by Sun. A
special feature of JOP allows missing bytecodes to be implemented in Java itself. All
non-implemented bytecodes result in a jump to one microcode sequence. In this se-
quence, a static method (the method table is indexed by the bytecode value) from a
system class is invoked. If, for example, hardware resources are too constraint to in-
clude a floating-point unit, these functions can be implemented in Java.

6 Implementation Details

General-purpose processors are optimized for average throughput and non real-time
operating systems are responsible for fair and efficient scheduling of resources. Real-
time systems need a processor with low and known WCET of instructions. Real-time
operating systems have properties, such as fast interrupt time, rapid context switch,
short blocking times and a scheduler that implements a simple, in most cases strict
priority driven, scheduling algorithm. This section describes design decisions for JOP
to support such real-time systems.



6.1 Interrupts

Interrupts are usually associated with low-level programming of device drivers. In a
typical RTOS the priorities of interrupts and their handler functions are above task
priorities and yield to immediate context switch. In this form, interrupts cannot be
integrated in a schedule with normal tasks. The execution time of the interrupt han-
dler has to be integrated in the schedulability analysis as additional blocking time. A
better solution is to handle interrupts, that represent external events, as schedulable
objects with priority levels in the range of real-time tasks, as in the RTSJ suggested.

The Timer Interrupt: The timer or clock interrupt has a different semantic than
other interrupts. The main purpose of the timer interrupt is representation of time and
release of periodic or time triggered tasks. One common implementation is a clock
tick. The interrupt occurs at a regular interval (e.g. 10 ms) and a decision has to be
taken whether a task has to be released. This approach is simple to implement, but
there are two major drawbacks: The resolution of timed events is bound by the
resolution of the clock tick and clock ticks without a task switch are a waste of
execution time.

A better approach, used in JOP, is to generate timer interrupts at the release times
of the tasks. Time is represented by a system counter. The timer interrupt can be pro-
grammed to occur at a specified value of this system counter. This allows generation
of jitter free events. The scheduler is now responsible to reprogram the timer after
each occurrence of a timer interrupt. The list of sleeping threads has to be searched to
find the nearest release time in the future of a higher priority thread than the one that
will be released now. This time is used for the next timer interrupt.

External Events: Hardware interrupts, other than the timer interrupt, are represented
as asynchronous events with an associated thread. This means that the event is a nor-
mal schedulable object under the control of the scheduler. With a minimum interarri-
val time, enforced by hardware, these events can be incorporated in the priority as-
signment and schedulability analysis like periodic tasks.

Software Interrupts: The common software generated interrupts, such as illegal
memory access or divide by zero, are represented by Java runtime exceptions and
need no special handler. They can be detected with a try-catch block. Care has to be
taken by the application to change to a safe state, as these exceptions are allocated in
immortal memory and result in a memory leak.

Asynchronous notification from the program is supported like an external event as
a schedulable object with an associated thread. The event is triggered through the call
of fire(). The thread with the handler is placed in the runnable state and scheduled
according to priority.

Hardware Failures: Serious hardware failures, such as illegal opcode or parity error
from the memory systems, lead to a shutdown of the system. However, a last try to



call a handler that changes the state of the system to a fail-safe state and signal an
upper level system, can improve the integrity of the overall system.

6.2 Scheduling

An important issue in real-time systems is the time for a task switch. A task switch
consists of two actions:

¢ Scheduling: Selection of the task order and timing.

* Dispatching: Context switch between tasks.

Scheduling: Most real-time systems use a fixed-priority preemptive scheduler. Tasks
with the same priority are usually scheduled in a FIFO order. Two common ways to
assign priorities are rate monotonic or, in a more general form, deadline monotonic
assignment. When two tasks get the same priority, we can choose one of them and
assign a higher priority to that task and the task set is still schedulable. We get a
strictly monotonic priority order and do not have to deal with FIFO order. This elimi-
nates queues for each priority level and results in a single, priority ordered task list.

Strictly fixed priority schedulers suffer from a problem called priority inversion
[12]. The problem where a low priority task blocks a high priority task on a shared
resource is solved by raising the priority of the low priority task. Two standard prior-
ity inversion avoidance protocols are common:

Priority Inheritance Protocol: A lock assigns the priority of the highest-priority wait-
ing task to the task holding the lock until that task releases the resource.

Priority Ceiling Emulation Protocol: A lock gets a priority assigned above the prior-
ity of the highest-priority task that will ever acquire the lock. Every task will be im-
mediately assigned the priority of that lock when acquiring it.

Priority inheritance protocol is more complex to implement and the time when the
priority of a task is raised is not so obvious. It is not raised because the task does any-
thing, but because another task reaches some point in its execution path.

Using priority ceiling emulation with unique priorities, different from task priori-
ties, the priority order is still strict monotonic. The priority ordered task list is ex-
panded with slots for each lock. If a task acquires a lock, it is placed in the corre-
sponding slot. With this extension to the task list, scheduling is still simple and can be
efficiently implemented.

Dispatching: The time for a context switch depends on how /arge the state of a task
is. For a stack machine it is not so obvious what belongs to the state of a task. If the
stack resides in main memory, only a few registers (e.g. program counter and stack
pointer) have to be saved and restored. However, the stack is a frequently accessed
memory region of the JVM. The stack can be seen as data cache and should be placed
near the execution unit. This means that the stack is part of the execution context and
has to be saved and restored on a context switch.



In JOP the stack is placed in local memory with single cycle access time. With this
configuration, the next question is how much of the stack is placed there. The com-
plete stack of a thread can reside local or only the stack frame of the current method.
If the complete stack of a thread is stored in local memory invocation of methods and
returns are fast, but the context is large. For fast context switch, it would be prefer-
able to have only a short stack in local memory. This results in fewer data to be trans-
ferred to and from main memory but more memory transfers on method call and re-
turn. The local stack can further be divided to small pieces, each holding only one
stack frame of one thread. During the context switch only the stack pointer has to be
saved and restored. The outcome of this is a very fast context switch but the size of
the local memory limits the maximum number of threads.

Since JOP is a soft-core processor, these different solutions can be configured for
different application requirements. Even a mix of these policies is possible. A simple
way to allocate the stacks would be to dedicate one stack slot to each important
thread, with one stack slot shared by the remaining threads. Only a switch fo such a
less important thread requires save and restore of this stack slot with main memory.

6.3 Architectural Design Decisions

In hard real-time systems, meeting temporal requirements is of the same importance
as functional correctness. This results in different architectural constraints than a de-
sign for a non real-time system. Upper bound of execution time is of premium impor-
tance. Good average execution time is useless for a pure hard real-time system.

Common architectural components, found in general purpose processors to en-
hance average performance, are usually problematic for WCET analysis. A pragmatic
approach to this problem is to ignore these features for the analysis. With a processor
designed for real-time applications, these useless features have to be substituted by
predictable architecture enhancements.

Branch Prediction: As the pipelines of current general-purpose processors get
longer to support higher clock rates the penalty of branches get too high. This is com-
pensated by branch prediction logic with branch target buffers. However, the upper
bound of branch execution time is the same as without this feature. In JOP, branch
prediction is avoided. This results in pressure on the pipeline length. The core proces-
sor has a minimal pipeline length of three stages resulting in a branch delay of three
cycles in microcode. The two slots in the branch delay can be filled with instructions
or nop. With the additional bytecode fetch and translation stage, the overall pipeline
is four stages and results in a four cycle execution time for a bytecode branch.

Caches and Instruction Prefetch: To reduce the growing gap between clock fre-
quency of the processor and memory access times multi level cache architectures are
commonly used. Since even a single level cache is problematic for WCET analysis,
more levels in the memory architecture are almost not analyzable. The additional lev-
els also increase the latency of memory access on a cache miss.



In a stack machine, the stack is a frequently accessed memory area. This makes the
stack an ideal candidate to be placed near the execution unit in the memory hierarchy.
In JOP the stack is implemented as internal memory with the two top elements as
explicit registers. This single cycle memory can be seen as a data cache. However,
unlike in picoJava, this limited memory is not automatically spilled and filled to/from
main memory. Automatically spill and fill introduces unpredictable access to the main
memory. Data exchange between internal stack and main memory is under program
control and can be done on method call/return or on a thread switch.

The next most accessed memory area is the code area. A simple prefetch queue,
like in older processors, could increase instruction throughput after executing a multi
cycle bytecode. For a stream of single cycle bytecodes, prefetching is useless and the
frequent occurrence of branches and method invocations, about 20% [13] in typical
Java programs, reduce the performance gain. The prefetch queue also results in exe-
cution time dependencies over a stream of instructions, which complicates timing
analysis.

JOP has a method cache with a novel replace policy. Since typical methods in Java
programs are short and there are only relative branches in a method, a complete
method is loaded in the cache on invocation and on return. This cache fill strategy
lumps all cache misses together and is very simple to analyze. It also simplifies the
hardware of the cache since no tag memory or address translation is necessary. The
romizer tool JavaCodeCompact checks the maximum allowed method size.

Memory areas for the heap and class description with the constant pool are not
cached in JOP.

Superscalar Processors: A superscalar processor consists of several execution units
and tries to extract instruction level parallelism (ILP) with out of order execution.
Again, this is a nightmare for timing analysis. The code for a stack machine has less
implicit parallelism than a register machine.

One form of enhancement, usually implemented in stack machines, is instruction
folding. The instruction stream is scanned to find frequent patterns like load-load-
add-store and substitutes these four instructions with one RISC like operation. There
are two problems with instruction folding in JOP: The combined instruction needs
two read and one write access to the stack in a single cycle. This would result in dou-
bling of the internal memory usage in the FPGA. It also needs, at minimum, four
bytes read access to the method cache. To overcome word boundaries, prefetching
has to be introduced after the method cache. This results in an additional pipeline
stage, time dependency of instructions with a more complex analysis and much hard-
ware resources for the multiplexers.

Programs for embedded and real-time systems are usually multi threaded. In future
work, it will be investigated if the additional hardware resources needed for ILP can
be better used with additional processor cores utilizing this implicit parallelism.

Garbage Collection: As use of the heap is avoided in hard real-time systems, no
garbage collector is implemented. Without a garbage collector, the memory layout of
objects can be simplified. Every reference points direct to the object. No indirection



through a handle, which would simplify memory compaction in the garbage collector,
is needed. This reduces access time to object fields and methods.

Time Predictable Instructions: A good model of a processor with accurate timing
information is essential for a tight WCET analysis. The architecture of JOP and the
microcode are designed with this in mind. Execution time of bytecodes is known cy-
cle accurate. It is possible to analyze WCET on a bytecode level [14] without the un-
certainties of an interpreting JVM [15] or generated native code from ahead-of-time
compilers for Java.

7 Results

In this section, the implementation of the simple real-time profile with JOP is com-
pared with the RI of RTSJ on top of Linux. The RI is an interpreting implementation
of the JVM not optimized for performance. A commercial version of the RTSJ, JTime
by TimeSys, should perform better. However, it was not possible to get a license of
JTime for research purpose. JOP is implemented in a low cost FPGA (Cyclone
EP1C6) from Altera clocked with 100 MHz. The test results for the RI where ob-
tained on an Intel Pentium MMX 266 MHz, running Linux with two different ker-
nels: a generic kernel version 2.4.20 and the real-time kernel from TimeSys [16] as
recommended for the RI. For each test 500 measurements where made. Time was
measured with a hardware counter in JOP and the Time Stamp Counter of the Pen-
tium processor under Linux.

7.1 Periodic Threads

Many activities in real-time systems must be performed periodically. Low release
jitter is of major importance for tasks such as control loops. The test setting is similar
to the periodic thread test in [17]. A single real-time thread only calls waitForNextPe-
riod() in a loop and records the time between following calls. A second idle thread,
with lower priority, just consumes processing time. This test setting results in two
context switches per period. Table 1 shows average, standard deviation and extreme
values for different period times on JOP. The same values are shown in Table 2 for
the RI.

Usage of microsecond accurate timer interrupts, programmed by the scheduler, re-
sult in excellent performance of periodic threads in JOP. No jitter from the scheduler
can be seen with a single thread at periods above 80 us.

The measurement for the RI is without the first values. The first values are a little
bit misleading since the RI behaves unpredictable at starfup. The RI performs inaccu-
rate at periods below 20 ms. This effect has also been observed in [18]. Larger peri-
ods, that are multiples of 10 ms, have very low jitter. However, using a period such as
35 ms shows a standard deviation of five ms. A detailed look in the collected samples
shows only values of 30 and 40 ms. This implies a timer tick of 10 ms in the underly-



ing operating system. There is no real difference when running this test on the generic
Linux kernel and on the TimeSys kernel. Table 2 represents the measurements on the
generic kernel. This comparison shows the advantage of an adjustable timer interrupt
over a fixed timer tick.

Table 1. Jitter of Periodic Threads with JOP.

Avg.  Std. Dev.  Min. Manx.
T=80 us 80 us 28us  52us 115us
T=100 us 100 us Ous 100us 100 us
T=500 us 500 us Ous 500us 500 us
T=1 ms 1 ms 0 ms 1 ms 1 ms
T=5ms 5 ms 0 ms 5 ms 5 ms
T=10 ms 10 ms Oms 10ms 10ms

Table 2. Jitter of Periodic Threads with RI/RTSJ.

Avg.  Std. Dev.  Min. Max.

T=500 us 315us 93 us 18 us 569 us
T=1 ms 1.00ms 0.0l ms 0.946 ms 1.055 ms
T=5 ms 400ms 792ms 0.017ms 19.90 ms
T=10 ms 6.64ms 934ms 0.019ms 19.94ms
T=20 ms 20.0ms 0.015ms 19.87ms 20.14 ms
T=30 ms 30.0ms 0.031ms 29.69ms 30.31 ms
T=35 ms 350ms 5.00l ms 29.75ms 40.25 ms
T=50 ms 50.0ms 0.018 ms 49.95ms 50.06 ms
T=100ms | 100ms 0.002ms 99.94ms 100.1 ms

7.2 Context Switch

The test setting consists of two threads. A low priority thread continuously stores the
current time in a shared variable. A high priority, periodic thread measures the time
difference between this value and the time immediately after waitForNextPeriod().
Table 3 reports the time for the context switch in processor clock cycles.



Table 3. Time for a Thread Switch in Clock Cycles.

Avg.  Std. Dev. Min.  Max.

JOP 4088 10.29 4083 4116
RI Linux 4253 1239 3232 19628
RITS Linux | 12923 1145 11529 21090

This test did not produce the expected behavior on the RI on the generic Linux ker-
nel. The high priority thread was not scheduled, when the low priority thread runs in
this tight loop. After inserting a Thread.yield() and an operating system call, such as
System.out.print(), in this loop, the test performed as expected. This indicates a major
problem in the RI or the scheduler in the operating system. This problem disappeared
with the RI on the TimeSys Linux kernel. However, the context switch time is three
times longer than on the standard kernel.

7.3 Asynchronous Event Handler

In this test setting, a high priority event handler is triggered by a low priority periodic
thread. As AsynchEventHandler performs poor [18], a BoundAsynchEventHandler is
used for the RI test program. Time is measured between the invocation of fire() and
the first statement of the event handler. Table 4 shows the elapsed time in clock cy-
cles for JOP and the RTSJ RI.

Table 4. Dispatch Latency of Event Handlers.

Avg.  Std. Dev.  Min. Max.

JOP 4283 3.0 4283 4350
RI Linux 53685 7014 47400 87196
RITS Linux [ 69273 7832 63060 101292

The time to dispatch an asynchronous event is similar to the context switch time in
JOP. The maximum value occurred only on the first event, all following events where
dispatched with the minimum time.

In the RI the dispatch time is about 12 times larger than a context switch with a
significant variation in time. This indicates that the implementation of fire() and the
communication of the event to the underlying operating system is not optimal. The
time factor between a context switch and event handling on the TimeSys kernel is
lower than on the standard kernel, but still significant.



8 Conclusion

Java possesses language features as safety and object orientation that can greatly im-
prove development of embedded systems. However, most embedded systems impose
timing constraints that are contradictory to the unpredictable performance of standard
Java. The RTSJ is a specification that addresses this problem. However, the RTSJ is a
specification to large and complex to be implemented in small embedded systems. A
simpler profile for real-time Java is presented in this paper. This profile is imple-
mented on top of a hardware JVM, i.e. a Java processor, specially designed for real-
time systems. Although this profile restricts the Java programming model it has been
used with success to implement several commercial real-time applications. Tight in-
tegration of the real-time scheduler with the supporting processor result in an efficient
platform for Java in embedded real-time systems. Performance comparison between
this implementation and the RTSJ on top of Linux show that a dedicated Java proces-
sor without an underlying operating system is better predictable than trying to adopt a
general purpose OS for real-time systems. Time will show, if an implementation of
the RTSJ on a real RTOS will outperform the presented solution.
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