
Real-Time Systems manuscript No.
(will be inserted by the editor)

Data Cache Organization for Accurate Timing Analysis

Martin Schoeberl, Benedikt Huber,
Wolfgang Puffitsch

Received: 1 Mai 2010 / Accepted: 12 June 2012

Abstract Caches are essential to bridge the gap between the high latency
main memory and the fast processor pipeline. Standard processor architectures
implement two first-level caches to avoid a structural hazard in the pipeline:
an instruction cache and a data cache. For tight worst-case execution times it
is important to classify memory accesses as either cache hit or cache miss. The
addresses of instruction fetches are known statically and static cache hit/miss
classification is possible for the instruction cache. The access to data that is
cached in the data cache is harder to predict statically. Several different data
areas, such as stack, global data, and heap allocated data, share the same
cache. Some addresses are known statically, other addresses are only known
at runtime. With a standard cache organization all those different data areas
must be considered by worst-case execution time analysis. In this paper we
propose to split the data cache for the different data areas. Data cache analysis
can be performed individually for the different areas. Access to an unknown
address in the heap does not destroy the abstract cache state for other data
areas. Furthermore, we propose to use a small, highly associative cache for the
heap area. We designed and implemented a static analysis for this cache, and
integrated it into a worst-case execution time analysis tool.

Martin Schoeberl
Department of Informatics and Mathematical Modeling
Technical University of Denmark
E-mail: masca@imm.dtu.dk
Benedikt Huber, Wolfgang Puffitsch
Institute of Computer Engineering
Vienna University of Technology, Austria
E-mail: benedikt@vmars.tuwien.ac.at, E-mail: wpuffits@mail.tuwien.ac.at



2

1 Introduction

With respect to caching, memory is usually divided into instruction memory
and data memory. This cache architecture was proposed in the first RISC archi-
tectures [28] to resolve the structural hazard of a pipelined machine where an
instruction has to be fetched concurrently to a memory access. This partition-
ing into instruction and data memory is also known as Harvard architecture,
in contrast to the von Neumann architecture with unified memory, relating
the cache splitting to an early computer architecture with separate storages
for instructions and data.

The independent caching of instructions and data has enabled the inte-
gration of cache hit classification of instruction caches into the worst-case
execution time (WCET) analysis [2] long before data caches. While analysis
of the instruction cache is a mature research topic, data cache analysis for
heap allocated data is still an open problem. After N accesses with unknown
addresses to a N -way set associative cache, the complete abstract cache state
is lost.

In previous work we have argued about cache splitting in general [36] and
provided average case simulation results of hit rates for split caches [42]. Sim-
ulation showed that small, individual caches for constants, object handles,
method lookup tables, and static fields lead to good hit rates for embedded
benchmarks. For the caching of object fields in a fully associative cache, the
hit rate saturated at an associativity of 8.

The proposed splitting of caches is intended to lower the WCET bound –
a design decision for time-predictable processors. Optimizing the WCET per-
formance hurts the average case performance [37]. A data cache for all data
areas is, in the average case, as shown by current main-stream processor archi-
tectures, more efficient than splitting the same amount of on-chip memory for
different data types. Therefore, the presented solution is intended for systems
where the WCET performance is of primary importance.

Chip-multiprocessor (CMP) systems share the memory bandwidth between
the on-chip processors and the pressure to avoid memory accesses is increased.
Therefore, these systems call for large, processor local caches. Furthermore,
some data needs to be held consistent between the processor local caches.
Cache coherence and consistence protocols are expensive to implement and
limit the number of cores in a multiprocessor system. However, not all data
needs to be held coherent. Thread local data, such as stack allocated data,
constant data, and instructions can be cached processor local without such a
protocol. This simplification is another argument for splitting the cache for
different memory areas.

The organization of the proposed highly associative cache for heap allo-
cated data fits very well as a buffer for hardware transactional memory [16].
Transactional memory as an alternative to cache coherency protocols for CMP
systems under real-time constraint is explored in [40].

The proposed split cache is an approach to increase the time predictability
of a system and to decrease the WCET. For hard real-time systems the possible



3

increase of the average case execution time is not relevant, as the overall system
has to be dimensioned for the WCET of tasks. However, an average case
comparison shows that a split cache configuration performs similar to a unified
cache for data accesses [19].

In this paper we focus on L1 caches for data accesses. However, the same
principle of cache splitting can be applied to L2 caches. The extension of the
WCET analysis to consider timing models for a cache hierarchy is straight
forward. The timing model of the main memory is configurable with access
latency and bandwidth. Therefore, it can be used for SRAM as well DRAM.

In this paper we evaluate time-predictable data cache solutions in the con-
text of the Java virtual machine (JVM). Implementation results for different
cache organizations show the resource consumptions and limitations of highly
associative cache organizations.

Access type examples are taken from the JVM implemented on the Java
processor JOP [35]. Implementation details of other JVMs may vary, but the
general classification of the data areas remains valid. The concepts presented
in this paper are language agnostic. However, the discussion of virtual method
dispatch tables is biased towards object-oriented languages, such as C++ and
Java.

This paper is an extension of [36] and [42]. The contribution of the pa-
per is the proposal of individual caches for different data areas. For global,
stack allocated, and constant data standard WCET analysis methods can be
used. For heap allocated objects we present the results of a scope based persis-
tence analysis [19], which tracks symbolic object references instead of memory
addresses.

The paper is organized as follows: In the following section the mechanics of
caches are summarized. Section 3 presents related work on data cache analysis
and scratchpad memories. The different types of data areas for the common
languages C/C++ and Java are presented in Section 4. Section 5 describes
our cache analysis for heap-allocated data. Implementation details and the
evaluation of the proposed caching solution are covered in Section 6. Section 7
concludes our findings.

2 Caches

Between the middle of the 1980s and 2002, CPU performance increased by
around 52% per year, but memory latency decreased only by 9% [15]. To bridge
this growing gap between CPU and main memory performance, a memory hi-
erarchy is used. Several layers with different tradeoffs between size, speed, and
cost form that memory hierarchy. A typical hierarchy consists of the register
file, first level instruction and data caches, one or two layers of shared caches,
the main memory, and the hard disc for virtual memory.

The only memory layer that is under direct control of the compiler is the
register file. Other levels of the memory hierarchy are usually not visible –
they are not part of the instruction set architecture abstraction. The place-



4

ment of data in the different layers is performed automatically. While caches
are managed by the hardware, virtual memory is managed by the operating
system. The access time for a word that is in a memory block paged out by
the OS is several orders of magnitude higher than a first level cache hit. Even
the difference between a first level cache access and a main memory access is
in the order of two magnitudes.

2.1 Why Caches Work

Caches exploit the principle of locality. An accessed data word is likely to be
accessed again in the near future (temporal locality), and it is likely that words
that are located close to that word are accessed (spatial locality). Typical
caches in general-purpose processors exploit both types of locality. Temporal
locality is exploited by keeping data in the fast memory of the cache. Spatial
locality is exploited by fetching several words from main memory into a cache
line. For dynamic RAM, accessing consecutive addresses is cheap compared
to accessing random addresses. Fetching a whole cache line requires only little
more latency than accessing a single word, but turns out beneficial if accesses
exhibit spatial locality.

Programs that mainly iterate through arrays show a high degree of spa-
tial locality. Other programs however will not gain as much from large cache
lines. Caches in general-purpose processors must find a compromise such that
the cache configuration fits the temporal and spatial locality of “average” pro-
grams. It has been proposed to split the data cache to exploit different types of
locality [11,26] and use the chip area budget more efficiently. Despite promis-
ing initial performance results, the concept of split caches has not prevailed in
mainstream architectures.

2.2 WCET Analysis

Cache memories for instructions and data are classic examples of the make
the common case fast paradigm. Avoiding or ignoring this feature in real-
time systems, due to its unpredictable behavior, results in a very pessimistic
WCET bound. Plenty of research effort has been expended to integrate the
instruction cache into the timing analysis of tasks [2,13], the influence of the
task preemption on the cache [4], and the integration of the cache analysis
with the pipeline analysis [12].

A unified cache for data and instructions can easily destroy all the infor-
mation on abstract cache states. Access to N unknown addresses in an N -way
set-associative cache results in the state not classified for all cache lines. Mod-
ern processors usually have separate instruction and data caches for the first
level cache. However, the second level cache is usually shared. Most chip-
multiprocessor (CMP) systems also share the second level cache between the
different cores. The possible interactions between concurrent threads running



5

on different cores are practically impossible to model. A second level cache can
be made predictable by partitioning the L2 cache for the different cores. The
concept of split caches can also be applied to L2 caches.

Caches in general, and particularly data caches, are hard to analyze stati-
cally. Therefore, we introduce caches that are organized to simplify the analy-
sis. Such caches do not only improve the average case performance (compared
to uncached data accesses), but also enable the computation of tight WCET
bounds.

3 Related Work

Most published papers on cache analysis consider the effects of the instruc-
tion cache on the WCET. Data cache analysis papers are rare. This can be
explained by two factors: (1) The influence of the instruction cache on the
WCET is considerably higher than the influence of the data cache. Each in-
struction includes one fetch and assuming misses slows down each instruction.
Data is accessed only every few instructions. (2) Instruction cache analysis
is easier than data cache analysis. Instruction addresses are known statically,
whereas the addresses of a data accesses depends on several factors. Some
addresses, e.g., access to heap allocated data, cannot be predicted statically.

Kim et al. extend Shaw’s timing schema [44] to support pipelined proces-
sors and data caches [22]. Load and store operations are categorized into static
and dynamic accesses. Static accesses are load/stores where the address does
not change (e.g., access to global data via the gp register and stack allocated
data via the sp register). Dynamic accesses are penalized by two cache misses:
one for the unknown access and a second for the evicted cache line that might
cache a static access. In the paper the classification of static load and stores,
which are not using the global or stack pointer register, but are in fact static,
is tightened. One example is an access to a local variable not addressable
through the stack pointer with an offset due to the restriction of the offset
field in the RISC processor. Furthermore, the conservative assumption of two
miss penalties for a dynamic access is reduced to one miss for cases where no
cache information is propagated in the path for the extended timing schema.
Or in other words, where the following accesses will be classified as misses
anyway.

White et al. present an analysis of data caches when the addresses can be
statically predicted [52]. The paper focuses on static, global data, and on stack
allocated data. Furthermore, for iterations through an array, spatial locality
(data that is prefetched due to loading of complete cache lines) is included
in the analysis. Heap allocated data is not considered in the analysis and the
example programs use static data only. The presented results (analyzed hit
ratio between 76% and 97%) are promising for caching static and stack allo-
cated data. With our proposed split cache architecture these analysis results
for static data will not be influenced by accesses to heap allocated data.



6

Ferdinand and Wilhelm propose abstract interpretation for instruction
cache analysis in the presence of set associative caches [10]. The main idea
is to provide three classifications: always hit, always miss, and not classified
for individual access points. Based on a least recently used (LRU) replace-
ment policy the update and merge functions for different control flow paths
are given. To benefit from hits in loop iterations the concept of splitting a loop
into the first iteration and following iterations is proposed.

Reineke et al. analyzed the predictability of different cache replacement
policies [33]. It is shown that the LRU policy performs best with respect to pre-
dictability. Pseudo-LRU and FIFO perform similarly, but considerably worse
than LRU.

Lundqvist and Stenström propose to analyze only predictable data struc-
tures and bypass the cache for unpredictable data structures [24]. Memory
loads and stores are unpredictable due to following reasons: the address de-
pends on unknown input data or the WCET analysis itself introduces uncer-
tainties to the memory address, e.g., when execution paths are merged. The
mapping of unpredictable loads and stores to the unpredictable data struc-
tures needs compiler or user support. Those data structures are then located
by the linker into an uncached memory segment.

A common solution to avoid data caches is an on-chip memory, named
scratchpad memory (SPM), that is under program control. This program
managed memory implies a more complicated programming model. However,
scratchpad memory can be automatically partitioned [3,1,49]. A similar ap-
proach for time-predictable caching is to lock cache blocks. The control of the
cache locking [30] and the allocation of data in the scratchpad memory [50,
45,6] can be optimized for the WCET. A comparison between locked cache
blocks and a scratchpad memory with respect to the WCET can be found in
[31]. While former approaches rely on the compiler to allocated the data or
instructions in the scratchpad memory an algorithm for runtime allocation is
proposed in [25]. We consider SPM as a complimentary technology to data
caching to enable local memory usage for data structures with hard to predict
addresses. Within our evaluation platform (the Java processor JOP) we have
implemented a SPM. To allow programs to allocate objects in the SPM, the
SPM is mapped to RTSJ style scoped memory region [51].

Vera et al. lock the cache during accesses to unpredictable data [46]. The
locking proposed there affects all kinds of memory accesses though, and there-
fore is necessarily coarse grained. Cache locking can be combined with cache
partitioning for multiple tasks to achieve a time-predictable system in the case
of task preemption [47,48]. The idea of restricting caching of data to only pre-
dictable data structures is along the same line as our proposed cache splitting.
In contrast, we propose to adapt the cache structure to cache all data accesses,
but split the cache for accesses to different data areas.

Whitham and Audsley propose a special form of SPM, which includes
scratchpad memory management unit (SMMU) [53,55]. The SMMU is in
charge to redirect pointers into the SPM when data is moved into the SPM.
Therefore, the pointer aliasing issue is solved in hardware. The SPM with



7

the SMMU is somehow similar to our approach for caching of heap allocated
data. Individual objects and arrays are allocated at runtime in the SPM and
hardware supports the redirection of accesses into the SPM. Both proposals
can handle dynamic, heap allocated data structures. The difference between
the the SPM/SMMU and our heap cache is that data is moved into the SPM
under software control, whereas our heap cache performs data movement (and
caching decisions) in hardware. Similar to the heap cache, the SMMU needs
a fully associative tag memory for pointer lookup, which limits the maximum
number of objects that can be allocated in the SPM. However, similar to our
findings in [19], they show that a moderate associativity (simultaneous objects
in the SPM) of 8 is enough to cover most dynamically allocated data struc-
tures [55]. With an enhancement of the SMMU to support read-only objects
and tiling of larger data structures it is shown that the WCET with a SM-
MU/SPM is close to the average case execution time with a conventional data
cache [54].

Herter et al. [18,17] tackle the analysis of dynamically allocated memory
from the allocation side. One approach [18] is to guide malloc() to allocate
data such that it maps to a certain cache line. A second approach [17] is to
automatically convert dynamic allocations to static allocations. The conversion
takes into account the cache effects of memory mappings to find an optimal
mapping with regard to the WCET. Although these techniques look promising,
it remains to be evaluated whether they can be applied to real-world programs
effectively.

The most problematic processor features for WCET analysis are the re-
placement strategies for set-associative caches [14]. A pseudo-round-robin re-
placement strategy of the 4-way set-associative cache in the ColdFire MCF
5307 effectively renders the associativity useless for WCET analysis. The use
of a single 2-bit counter for the whole cache destroys age information within
the cache sets. Slightly more complex pipelines, with branch prediction and
out-of-order execution, need an integrated pipeline and cache analysis to pro-
vide useful WCET bounds. Such an integrated analysis is complex and also
demanding with respect to the computational effort. Consequently, Heckmann
et al. [14] suggest the following restrictions for time-predictable processors: (1)
separate data and instruction caches; (2) locally deterministic update strate-
gies for caches; (3) static branch prediction; and (4) limited out-of-order ex-
ecution. Further suggestions for time-predictable architectures and memory
hierarchies are given in [57]. Another project on time-predictable architectures
is the PRET project [7] where scratchpad memories are suggested instead of
caches.

An overview on WCET analysis in general and various WCET tools from
industry and academia is given in [56].



8

Area Address predictability Spacial locality Coherence

Constants + − No
Stack ◦ + No
Global and static + − Yes
Type dependent ◦ − No
Heap (headers) − ◦ Partial
Heap (objects) − − Yes
Heap (arrays) − + Yes

Table 1 Properties of Data Areas

4 Data Areas

In the following, we describe various data areas. Although we use Java ter-
minology, we also provide links to the respective memory areas in C/C++.
In these languages, memory areas are usually divided into the .text, .data and
.bss linker segments, heap data (allocated through malloc()) and the stack.

Table 1 summarizes key features of various memory areas. The details and
rationale for this classification is provided in the following sections.

4.1 Constants

In procedural languages, such as C, the constant area primarily contains string
constants and is small. For object oriented languages, such as C++ and Java,
the virtual methods tables and class related constants consume a considerable
amount of memory. The addresses of the constants are known after program
linking and are simple to handle in the WCET analysis.

On a uniprocessor system the constant area and the static data can share
the same cache. For CMP systems, splitting the static data cache and the
constant cache is a valuable option. In contrast to static data, constants are
per definition immutable. Therefore, cache coherence and consistence do not
need to be enforced and the resulting cache is simpler and can be made larger.

Another option for constants is to embed them into the code. Many in-
struction sets allow constructing large constants directly. For cases where this
is not possible, support for a PC relative addressing mode is needed. However,
this option is only practical for a few constants. Furthermore, if the address
range for the PC relative addressing is restricted, some tables would need to
be duplicated, increasing the code size.

In C/C++, constants are traditionally placed in the .data linker segment.
Some compilers (e.g., GCC) place constant data in the .rodata segment, indi-
cating that the data is read-only. Constants that are embedded into the code
are placed in the .text segment.



9

4.2 Stack

Local variables are allocated on a stack frame. As the access frequency of local
variables is very high, this data area benefits from caching. The addresses of
the local variables are easy to predict when the call tree is known [24]. A cache
that serves only stack allocated data can be optimized compared to a standard
data cache. In the following such a special stack cache is described.

A new stack frame for a function call does not need to be cache consistent
with the main memory. The cache blocks for the new stack frame can be allo-
cated without a cache fill from the main memory. On a return, the previously
used cache blocks can be marked invalid, as function local data is not accessi-
ble after the return. As a result, cache lines will never need to be written back
after returning from a function. The stack cache activity can be summarized:

– A cache miss can only occur at a function return. The first miss is at least
one cache size away from a leaf in the call tree

– Cache write back can only occur at a function call. The first write back is
one cache size away from the root of the call tree

The regular access pattern to the stack cache will not benefit from set asso-
ciativity. Therefore, the stack cache is a simple direct mapped cache. However,
the stack cache exhibits spatial locality. Even without large cache lines, this
can be taken advantage of when performing cache fills at function returns.
Stack data is thread local and needs no cache coherence protocol in a chip-
multiprocessor system.

In C it is possible to generate non-regular stack access patterns that violate
the described access rules, e.g., propagate stack allocated data to callees or
other threads. The compiler can detect these patterns by escape analysis and
can generate safe code, e.g. allocating this data on a second stack on the heap.
This analysis is also needed for the register allocation of local variables.

4.3 Global and Static Data

For conservatively written programs with statically allocated data, the address
of the data is known after program linking. The addresses are the input for the
cache analysis. In [9], control tasks from a real-time benchmark were analyzed.
For this benchmark 90% of the memory accesses were predicted precisely.

Therefore, we propose to implement an additional cache that covers the
address area of the static data, e.g., class fields in Java. The address range of
the cache needs to be configurable and is set after program loading. As static
data is shared between threads, a CMP must implement a cache coherence
protocol.

Global and static data is placed in the .data and .bss segments in C/C++.
Addresses for global data in C/C++ are easy to predict. In Java global data
is allocated on the heap, and large amounts of static fields are uncommon.
Therefore, the pressure to handle heap allocated data is higher in Java than
in C/C++ code.



10

4.4 Type Dependent Data

Virtual method and interface dispatch tables are constant, but their address
depends on the actual type of the object. Receiver type analysis, as imple-
mented in our program analysis tool, can narrow the possible types. Type
dependent data can be cached together with the constant area if the receiver
type analysis delivers reasonably precise type sets. Otherwise a distinct cache
for this area with moderate associativity decouples constant access analysis
from the type dependent access analysis.

4.5 Heap Allocated Objects

In object-oriented languages the objects are usually allocated in a data area
called the heap. The main issue for WCET analysis are statically unknown
object addresses. If the heap shares the data cache with other data areas, a
single access to a heap allocated data structure destroys the abstract cache
state for one way.

To avoid this coupling between heap allocated data structures and other
data areas in the WCET analysis, we propose to use a distinct cache for heap
data. This dedicated cache can be optimized for the heap data area.

Different objects can be tracked symbolically by the analysis, but the ad-
dress of an object is not known before runtime. A cache of l cache lines with an
associativity of n has a = l

n lines per way. Which of the a lines is used depends
on part of the address. As the address is not known statically, all a lines have
to be merged by the analysis. Therefore, a cache with an associativity of n is
needed to track n different objects. Nothing is gained by providing more than
n cache lines.

We propose to implement the cache architecture according to the possibili-
ties of the WCET analysis – a small, fully associative cache similar to a victim
cache [20].

A cache for the heap allocated objects can be implemented in (at least)
two organizations: (1) caching individual fields or (2) caching larger parts of
an object in a cache line. Which organization performs better, with respect to
the WCET, depends on the spatial locality of field accesses and the latency
and bandwidth of the main memory. In the analysis either individual fields or
whole objects need to be tracked. We have implemented the analysis for both
types of object caches and compare the hit rates in the evaluation section. It
has to be noted that we are not suggesting to adapt the cache structure for
an individual application, but find out which organization works best for the
domain of embedded real-time applications.

Depending on the concrete analysis, the replacement policy shall be either
LRU or FIFO. When LRU replacement is too expensive for high associativities,
replacement of the oldest block gives an approximation of LRU. The resulting
FIFO strategy can be used for larger caches. To offset the less predictable



11

behavior of the FIFO replacement [33], the cache has to be larger than an
LRU based cache.

4.5.1 Header Data and Handles

Additionally to the actual data, objects have meta-data associated with them.
This header data contains auxiliary information for the run-time system like
the type of an object and information for garbage collection. This header data
is usually only modified by the run-time system. For example, the type of
an object remains immutable during the lifetime of an object. As changes to
the header data occur in a controlled fashion, this data can be considered
pseudo-constant and does not require full cache coherence support.

On JOP, the header data is allocated in a handle area. Objects are accessed
through pointers (the handles), which simplifies garbage collection consider-
ably. As all field accesses must follow this indirection, the handles are obvious
candidates for caching.

This object layout also lends itself to a cache organization, where the handle
instead of the object address can be used to index into the cache. In that case
the indirection for the access is implicitly resolved on a cache hit.

Depending in the length of one cache line (either a single field, or part of
the object), the field index is either appended to the handle for the cache tag
memory comparison, or used to index into the cache line.

4.6 Heap Allocated Arrays

As access to arrays benefits mainly from spatial locality we propose prefetch
and write buffers for array accesses. For operations on two arrays (e.g., vector
operations) two prefetch buffers are needed. Each array shall continue to use
its own prefetch buffer. Which prefetch buffer will be used depends on the
base address of the array. In Java, array access bytecodes consist of a base
address and an index into the array. Therefore, the base address can be used
for the tag memory of the prefetch buffer. For C based languages on a standard
processor target, support from the compiler and the instruction set needs to
be added to distinguish between the two arrays and also between array access
and other memory operations.

For array operations, such as string copy, one prefetch buffer and one write
buffer is needed. However, a write buffer introduces timing dependencies be-
tween unrelated array write instructions. The write timing can be localized
with a write buffer flush instruction, inserted by the compiler at the end of
the write loop.

4.7 Memory Access Types

The different types of data cache accesses can be classified into three different
classes w.r.t. the cache analysis:



12

– The address is always known statically. This is the case for static variables,
where the address is resolved at link time, as well as for constants.

– The address depends on the dynamic type of the operand, but not on its
value. Therefore, the set of possible addresses is restricted by the receiver
types determined for the call site. The class meta-data and the virtual
method dispatch tables belong to this category.

– The address depends on the value of the object reference. The data resides
on the heap and the actual address is unknown. Object meta-data, instance
fields and arrays allocated at runtime belong to this category. For fields and
arrays, in addition to the symbolic address a relative offset is known.

4.8 Access Type Distinction

In order to benefit from different caches for different data areas the load and
store units need a mechanism to distinguish between the different memory
areas. One possibility is to use typed load/store instructions. For a RISC based
architecture the instruction set needs to be extended and the compiler has to
emit the typed load/store instructions. In Java bytecode, typed memory access
is already part of the instruction set. For example, object fields are accessed
with bytecode getfield and putfield. There are no general load/store instructions
availabel in Java bytecode. Therefore, we use typed memory accesses in the
Java processor JOP.

Another option is to use different memory segments for different data areas.
In that case, standard load/store instructions can be used and no changes in
the compiler are needed. The linker and program loader are responsible for
the correct placement. The memory management unit can be extended to
communicate the information about the typed memory pages to the cache
subsystem.

5 Heap Cache Analysis

The cache analysis of heap allocated data has to handle data with unknown
addresses. We therefore require a fully associative heap cache, whose replace-
ment behavior can be analyzed independently of the actual physical address of
the object. The basic idea of our analysis is to represent objects using access
paths [5], and find the set of objects each instruction might use.

A points-to analysis [8] associates each variable with a set of memory lo-
cations it might reference. As the set of objects used in a program usually
is of unbounded size, objects are grouped into equivalence classes. One class
consists, e.g., of all objects with the same type, or allocated at the same site.

We perform a local points-to analysis with respect to a program fragment,
or scope, maintaining a set of objects that variables defined outside the scope
may point to. The heap cache analysis, however, has to determine the exact
set of distinct objects accessed during the execution of the scope. Therefore,



13

each object in the analysis model must correspond to at most one concrete
object.

Objects are represented by one access path pointing to them at the begin-
ning of the scope. An access path consists of a root object defined outside the
currently analyzed scope, and a sequence of fields and array indices accessed.
Examples include global1.field1, arg1.field0.field1 or arg2[2].x[1].

Object allocations are only handled if they are executed at most once in
the program fragment (e.g., allocate at the beginning). In this case, a fresh
variable name is used for the object. For array accesses, the same strategy is
used if the instruction is executed only once. Otherwise, we use the results of
a preceding value analysis, assuming one access for each possible value of the
index.

Finally, the analysis maintains sets of objects a type may alias to, due to
heap modifications within the scope. The result of the analysis associates each
heap access instruction with the set of objects it may access.

5.1 Dataflow Analysis

The dataflow analysis is performed separately for each program fragment of
interest. The underlying lattice is a pair 〈P,A〉. P associates all static fields
and all variables defined in outer scopes with a set of access paths. A is used
to take heap modifications into account, mapping types (classes) to the set
of access paths that variables of this type may alias with. Both P and A are
finite maps, whose range type are sets with a maximal size k. All sets with
size greater than k are in one equivalence class (>).

Initialization At the entry edges of the scope analyzed, P maps all variables
v defined outside the scope to their name v and for all types τ , A(τ) = ∅.

Join The join 〈P,A〉 of two values 〈P1, A1〉 and 〈P2, A2〉 is defined as a
element-wise set union.

P (v) = P1(v) ∪ P2(v)

A(τ) = A1(τ) ∪A2(τ)

Transfer There are two different kind of transfer equations:[[
e1 := e2

]]
P

(v) = X[[
e1 := e2

]]
A

(τ) = Y

In the first kind of equation, the statement e1 := e2 changes the points-to
set P (v) to X. In the second one, the alias set A(τ) is changed to Y . The
equations for those entries of P or A that do not change are not further
considered during the analysis. The expression τ(v) denotes set of possible
runtime types of variable v, determined by a preceding type analysis.



14

Variables and Static Fields: If v1, v2 are local variables or static fields (global
variables) with reference type, we have[[

v1 := v2
]]
P

(v1) = P (v2)

Instance Fields Access: Consider the assignment v1 := v2.F , with F being an
instance field (member variable) with reference type. The objects v1 may
point to are obtained by appending F to all access paths v2 may point to,
and adding all possible aliases for τ(v1).[[

v1 := v2.F
]]
P

(v1) = Pf ∪A(τ(v1))

where Pf = { n.F | n ∈ P (v2) }

Array Access and Object Creation: Both when fetching an object from an ar-
ray and when creating a new object, we distinguish whether the instruction
is executed at most once in the analyzed scope (:=1) or not (:=∗). π(i) de-
notes the interval assigned to the index expression e by the preceding value
analysis. [[

v :=1 newT
]]
P

(v) = { nnew }[[
v :=∗ newT

]]
P

(v) = >[[
v1 :=1 v2[e]

]]
P

(v1) = { nnew }[[
v1 :=∗ v2[e]

]]
P

(v1) = Pa ∪A(τ(v1))

where Pa = { n[i] | n ∈ P (v2), i ∈ π(i) }

Heap Modifications: When writing to an instance field or an array of objects,
the alias information is updated.[[

v1.F := v2
]]
A

(T ∈ τ(v2)) = A(T ) ∪ P (v2)[[
v1[e] := v2

]]
A

(T ∈ τ(v2)) = A(T ) ∪ P (v2)

The dataflow analysis is run several times from the WCET tool, which uses
the results to add ILP constraints restricting the number of cache misses.

5.2 Heap Cache WCET Analysis

Most of the published techniques for instruction cache analysis try to classify
cache accesses as hit (the referenced value is always cached), or miss (the
referenced value is never cached). This also works for certain data cache areas,
when the accessed memory address is statically known. If a reference may point
to one out of several addresses, simply introducing a non-deterministic access
and performing a hit/miss classification will not lead to satisfying results. An
alternative analysis approach is to perform a persistence analysis. A persistent
reference is one which is missed the first time accessed, and then stays in the
cache during the execution of a program fragment.



15

Our cache analysis framework, which is also used for the method cache
analysis [43], tries to identify scopes where all object references are persistent.
For those scopes, ILP constraints stating that each object is missed at most
once per execution of the scope are added. Lexical scopes (methods, loops,
blocks) suggest themselves for such an analysis, though less regular shaped
subgraphs of the program’s control flow graph work as well.

In addition to its simplicity, this technique has the advantage that it works
for both LRU and FIFO caches. In order for this analysis to be sound, the
timing of the cache must not influence the timing of other components.

A scope graph is a graph whose vertices are scopes, and which has an edge
from scope S1 to scope S2 if the control flow graph nodes contained in S2 are
are subset of those in S1. We require that each basic block is in at least one
scope, and that S1 ∩ S2 = ∅ if neither S1 ⊆ S2 nor S2 ⊆ S1.

Let N be the associativity of the heap cache. The objects in a scope are
persistent, if at most N distinct objects are accessed during one execution of
that scope. This check is implemented using IPET, with a similar ILP model as
the one used in the actual WCET analysis. We add one binary variable for each
accessed address. With the objective function set to the sum of those binary
variables, we obtain a bound on the maximum number of distinct objects
accessed within the scope.

To include the heap cache in the IPET-based WCET analysis, the analysis
first identifies the set of relevant scopes R. A scope is relevant if all addresses
are persistent, but this is not the case in at least one parent scope. Then parts
of the control flow model are duplicated to ensure that no method is both
called from within and outside a relevant scope.

In a second step, ILP constraints restricting the number of cache misses in
each relevant scope S ∈ R are added. For each relevant scope S, we add two
integer variables aS,hit and aS,miss for each address a possibly accessed in S.

Let i ∈ Ia be the set of instruction accessing a in S. f(i) denotes the
linear expression for the execution frequency of i. Now the following facts are
modeled in the ILP:

– An access to an object field is either a hit or miss:

f(aS,miss) + f(aS,hit) =
∑
i∈Ia

f(i)

– If the scope is executed f(S) times, we have at most f(S) cache misses:

f(aS,miss) ≤ f(S)

– Each time an object field is accessed, time to access the cache has to be
added to the WCET. With c(ahit) and c(amiss) being the time needed for
a cache hit respectively miss, the following linear expression is added to
the objective function:

c(ahit)f(aS,hit) + c(amiss)f(aS,miss)



16

Not that c(amiss) is the worst-case miss time, which includes a possible L2
cache miss and memory bus arbitration times.

Together with the other parts of the IPET formulation, the solution of the
ILP gives us the worst-case execution time, including the cost for the object
cache. Analyzing the optimal solution, we find that∑

S∈S
aS,miss

corresponds to the number of times the address a has to be loaded into the
cache on the worst case path.

6 Evaluation

We have implemented various split cache configurations and an object cache
in the context of the Java processor JOP and the data cache analysis for the
heap cache.

For the benchmarks we use two benchmark collections: JemBench [41],
which is a collection of embedded Java programs, and GrinderBench, which
contains programs for mobile Java. Furthermore, jPapaBench is a Java port of
the real-time benchmark PapaBench [27]. JemBench includes two real-world
embedded applications [34]: Kfl is one node of a distributed control application
and Lift is a lift controller deployed in industrial automation. The Kfl exam-
ple is a very static application, written in conservative, procedural style. The
application Lift was written in a more object-oriented style.

6.1 Access Type Frequency

Before developing a new cache organization we run benchmarks to evaluate
memory access patterns. Figure 1 shows the access frequencies for the different
memory areas for all benchmarks. The different categories are:

ARRAY: heap allocated arrays
STATIC: static fields
FIELD: fields of heap allocated objects
INTERN: JVM internal memory access (e.g., garbage collection)
ALEN: array length
HANDLE: object header
CONST: constant data
CLINFO: class information

The benchmarks show a considerable different pattern on access type dis-
tribution. Common to all benchmarks is a very low write frequency. There-
fore, write-through caches are a good design choice for a Java processor. Most
benchmarks access the class information (e.g., method dispatch table) relative
frequently. Application that access array elements also access the array length



17

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

Kfl
	  

Li1
	  

Ud
pIp
	  

eji
p	  

M
atr
ix	  

Qu
ee
ns
	  

AE
S	  

Ra
ytr
ac
e	  

kx
ml
	  

pn
g	  

ch
es
s	  

cry
pt
o	  

jPa
pa
Be
nc
h	  

ARRAY	  write	  

STATIC	  write	  

FIELD	  write	  

INTERN	  rd/wr	  

ARRAY	  read	  

STATIC	  read	  

FIELD	  read	  

ALEN	  read	  

HANDLE	  read	  

CONST	  read	  

CLINFO	  read	  

Fig. 1 Data memory traffic to different memory areas (in % of all data memory accesses)

field, as bounds checks are mandatory in Java. Two benchmarks are consid-
erable different to the rest: Kfl and Raytrace. Kfl has a high access frequency
to static fields, but no object field accesses. Kfl was written in a very proce-
dural style and uses no object oriented features of Java. Raytrace is a number
crunching benchmark, which is dominated by floating point operations.

The benchmarks Matrix, crypto, and jPapaBench are dominated by a rela-
tive high array access frequency. Therefore, those applications will not benefit
from the object cache architecture.

In general, the different benchmarks show quite different distributions of
access types. Finding a good balance of resource distribution for the individual
cache areas is an interesting topic of future work.

6.2 Cache Implementation in JOP

The Java processor JOP [35] traditionally includes two caches: a method cache
and a stack cache. Our implementation adds two more caches: a direct-mapped
cache for data with predictable addresses, and a fully associative cache for
heap-allocated data. The fully associative cache is configurable for LRU and
FIFO replacement.

Accesses to constant and static data access the direct-mapped cache. In
multi-processors these accesses should be split further, because cache coherence
mechanisms can be omitted for constant data. The fully associative cache
handles accesses to handles and object fields. Accesses to array elements are
not cached. Full associativity is expensive in terms of hardware, and therefore
the size of this cache is limited to 16 or 32 cache lines.



18

din

ta
g

v
id

x
R

=

dout

ena[0]

hit[0]

dout[0]

din

ta
g

v
id

x

R

=

dout

ena[1]

hit[1]

dout[1]

din

ta
g

v
id

x

R

=

dout

ena[2]

hit[2]

dout[2]

din

ta
g

v
id

x

R

=

dout

ena[3]

hit[3]

dout[3]

cache line 0 cache line 1 cache line 2 cache line 3

ena[0..3]
clk

reset
addr

dout[0..3]

hit[0..3]

din

address

Fig. 2 LRU tag memory implementation

Table 2 Implementation results for LRU and FIFO based data caches

LRU cache FIFO cache

Associativity LC Memory Fmax LC Memory Fmax

16-way 783 0.5 KBit 102 MHz 633 0.5 KBit 119 MHz
32-way 1315 1 KBit 81 MHz 1044 1 KBit 107 MHz
64-way 2553 2 KBit 57 MHz 1872 2 KBit 94 MHz

128-way 4989 4 KBit 36 MHz 3538 4 KBit 89 MHz
256-way 10256 8 KBit 20 MHz 9762 8 KBit 84 MHz

6.3 LRU and FIFO Caches

The crucial component of an LRU cache is the tag memory. In our implemen-
tation it is organized as a shift register structure to implement the aging of
the entries (see Figure 2). The tag memory that represents the youngest cache
entry (cache line 0) is fed by a multiplexer from all other tag entries and the
address from the memory load. This multiplexer is the critical path in the
design and limits the maximum associativity.

Table 2 shows the resource consumption and maximum frequency of the
LRU and FIFO cache. The resource consumption is given in logic cells (LC)
and in memory bits. As a reference, a single core of JOP consumes around
3500 LCs and the maximum frequency in the Cyclone-I device without data
caches is 88 MHz. We can see the impact on the maximum frequency of the
large multiplexer in the LRU cache on configurations with a high associativity.

The implementation of a FIFO replacement strategy avoids the change of
all tag memories on each read. Therefore, the resource consumption is less
than for an LRU cache and the maximum frequency is higher. However, hit
detection still has to be applied on all tag memories in parallel and one needs
to be selected.

Although it is known that FIFO based caches are hard to analyze with com-
mon techniques, the simpler implementation (less hardware resources, higher
clock frequency) is an argument for a different analysis approach, such as the
analysis presented in Section 5. If, e.g., in the context of a loop, the maximum



19

read set on the heap fits into the FIFO cache, all accesses can be classified as
miss once.

6.4 Object Cache

Besides the fully associative single word cache we have implemented an ob-
ject cache, further optimized for the object layout of JOP [38]. The object
cache is organized to cache whole objects in a cache line. Each cache line can
only contain a single object. Objects cannot cross cache lines. If the object is
bigger than the cache line, the fields at higher indexes are not cached. Further-
more, the implementation in JOP is optimized for the object layout of JOP.
The objects are accessed via an indirection called the handle. This indirection
simplifies compaction during garbage collection.

The tag memory contains the pointer to the handle (the Java reference)
instead of the effective address of the object in the memory. If the access is
a hit, additional to the field access the cost for the indirection is zero – the
address translation has already been performed. The effective address of an
object can only be changed by the garbage collection. For a coherent view of
the object graph between the mutator and the garbage collector, the handle
cache needs to be updated or invalidated after the move. The object fields can
stay in the cache.

To enable static cache analysis the cache is organized as write through
cache. Write back is hard to analyze statically as on each possible miss another
write back needs to be accounted for. Furthermore, a write-through cache
simplifies the cache coherence protocol for a CMP system [32]. The cache line
is not allocated on a write.

6.4.1 Implementation

Figure 3 shows the design of the object cache. In this example figure the
associativity is two and each cache line is four fields long. All tag memories
are compared in parallel with the object reference. Therefore, the tag memory
uses dedicated registers and cannot be built from on-chip memory. Parallel to
the tag comparison, the valid bits for the individual fields are checked. The field
index performs the selection of the valid bit multiplexer. The output of the tag
comparisons and valid bit selection is fed into the encoder, which delivers the
selected cache line. The line index and the field index are concatenated and
build the address of the data cache. This cache is built from on-chip memory.
As current FPGAs do not contain asynchronous memories, the input of the
data memory contains a register. Therefore, the cache data is available one
cycle later. The hit is detected in the same cycle as reference and index are
available in the pipeline, the data is available one cycle later.

The actual execution time of a getfield in the implementation of JOP de-
pends on the main memory access time. For a memory access time of n cycles



20

Tag Valid

=

Tag Valid

=

Reference Index

Enc

Hit

Data

Data

Fig. 3 Object cache with associativity two and four fields per object

a getfield with a cache miss takes

tgetfield miss = 6 + 2n

cycles. Two memory access times are needed, as the handle indirection and
the actual field value have to be read. If the access is a cache hit, the execution
time of getfield is

tgetfield hit = 5

cycles. Besides not accessing the main memory at all, another cycle is saved
that is needed between the handle indirection and field read to move the
data from the memory read to the memory address. For a SRAM based main
memory with 2 cycles access time, as it is used in the evaluation, a missed
getfield consumes 10 cycles, double the time as in the hit case.

6.4.2 Resource Consumption

The object cache consumes considerable logic cells (LC) for the implementa-
tion of the tag memory and the parallel comparators. The data memory can
be implemented in on-chip memory. In the FPGA that was used for the eval-
uation the size of an on-chip memory block is 4 KBit. Depending on the size
of the data memory, the synthesize tool uses logic cells for small memories in-
stead of an on-chip memory block. Table 3 shows the resource consumption in
logic cells (LC) and memory bits for different cache configurations. The main
overhead, compared to a standard cache or a scratchpad memory, comes from
the tag memory, which consumes logic cells.



21

Table 3 Resource consumption of different configurations of the object cache

Configuration Resources

Ways Fields Logic (LC) Memory (Bit)

2 8 147 512
2 16 182 1024
4 8 218 1024
4 16 273 2048
8 8 390 2048
8 16 492 4096

16 8 745 4096
16 16 960 8192
32 8 1443 8192
32 16 1875 16384
64 8 2946 16384
64 16 3761 32768

Table 4 Implementation results for a split cache design

Cache size DM cache LRU cache System

DM LRU LC Memory LC Memory LC Memory Fmax

0 KB 0 0 0 KBit 0 0 KBit 3530 61 KBit 88 MHz
1 KB 8 199 12 KBit 515 0.25 KBit 4731 73 KBit 85 MHz
2 KB 16 199 23.5 KBit 1045 0.5 KBit 5142 85 KBit 85 MHz
4 KB 32 172 46 KBit 1369 1 KBit 5344 108 KBit 81 MHz

6.4.3 Adaption for Arrays

The object cache is only used for objects and not for arrays. The access be-
havior for array data is quite different as it explores more the spatial instead
of the temporal locality. A variation of the cache for arrays is currently being
implemented. The array cache loads full cache lines and has additional to the
array base address also the array index of the first element in the cache line
in the tag memory. Furthermore, the cache includes also the array length and
the mandatory array bounds check is performed in the array cache.

6.5 Split Cache Implementation

Table 4 shows the resources and the maximum system frequency of different
cache configurations. The first line gives the base numbers without any data
cache. From the resource consumptions we can see that a direct mapped cache
is cheap to implement. Furthermore, the maximum clock frequency is inde-
pendent of the direct mapped cache size. A highly associative LRU cache (i.e.,
32-way and more) dominates the maximum clock frequency and consumes
considerable logic resources.



22

6.6 Cache Analysis

We have implemented the proposed analysis of the heap cache in the dataflow
analysis and WCET framework for JOP [43]. The object reference analysis is
performed for each scope separately, and relies on a preceding type analysis to
deal with dynamic dispatch. The results are then used to add ILP constraints
to the WCET formulation. As we are interested in the performance of the
cache analysis, we present the analyzable hit rate of the cache instead of the
execution time of the application.

To evaluate the effectiveness of the heap cache analysis, we performed a
simplified WCET computation only considering the cost of object field misses.
We assume a fully associative cache with N ways. The two different heap
cache organizations are compared. The single word cache, caches individual
fields and on a miss only that field is loaded into the cache. The object cache,
caches complete objects (with up to 32 fields). On a miss the whole object
is loaded into the cache. Therefore, the second configuration will also benefit
from spatial locality. At the same associativity the object cache will result
in a higher hit rate. However, the miss penalty is higher as more words are
transferred into the cache.

Table 5 lists the result for our benchmark applications. The column N gives
the associativity, the value of 0 means no cache and serves as reference on the
maximum possible misses. The hit ratio is relative to this value.

In the Lift benchmark, a controller method is analyzed. With the single
word cache the hit ratio is at 85 % for 16 lines, indicating that between 9 and
16 different fields are accessed. The object cache indicates with a hit rate of
97 % at an associativity of 2 that only two different objects are read in the
controller method.

Both the UdpIp and Ejip benchmarks are network stack implementations.
UdpIp has a good analyzed hit rate with an object cache of four lines. The single
word cache results in about 2/3 of the hit rate. Therefore, this benchmark
benefits from spatial access locality in the object cache.

For the Ejip benchmark, the analysis is relatively imprecise, because some
objects which always alias at runtime are considered to be distinct in the
analysis. A global must-alias or shape information would significantly improve
the result.

Table 6 shows the heap cache measurement with the simulation of the
caches in JopSim. As we cannot trigger the worst-case path in the simulation
the number of heap accesses is lower than in the analysis table. However, the
trend in the measured values is similar to the analysis results. This indicates
that the scope based analysis is a reasonable approach to WCET analysis of
caches for heap allocated data.

Simulations with larger workloads (DaCapo benchmarks) show a hit rate
of 70% to 90% for small heap caches [39]. In this paper it is also shown that
most hits stem from temporal locality and not spatial locality. Due to the low
spatial locality it is more beneficial, at least for the average case, to update
single words in a cache line instead of filling the whole line on a miss. For the



23

Table 5 Evaluation of the heap cache analysis

Single word cache Object cache

Benchmark N Misses Hit ratio Misses Hit ratio

Lift 0 228 0.00 % 228 0.00 %
1 228 0.00 % 221 3.07 %
2 228 0.00 % 6 97.37 %
4 195 14.47 % 3 98.68 %
8 35 84.65 % 3 98.68 %

16 24 89.47 % 3 98.68 %
32+ 23 89.91 % 3 98.68 %

UdpIp 0 48 0.00 % 48 0.00 %
1 48 0.00 % 16 66.67 %
2 46 4.17 % 10 79.17 %
4 18 62.50 % 4 91.67 %
8 16 66.67 % 4 91.67 %

16 12 75.00 % 4 91.67 %

Ejip 0 103 0.00 % 103 0.00 %
1 103 0.00 % 71 31.07 %
2 97 5.83 % 72 31.07 %
4 87 15.53 % 57 44.66 %
8 81 21.36 % 38 63.11 %

16 68 33.98 % 38 63.11 %
32 68 33.98 % 38 63.11 %

64+ 68 33.98 % 34 66.99 %

fully associative organization this is even true for a main memory based on
SDRAM devices.

A small fully associative cache for the heap allocated data results in a
moderate hit rate. As we are interested in time-predictable CMP systems [29],
where the requirements on the memory bandwidth are quite hight, even the
moderate hit rates will give a considerable WCET performance increase.

6.7 WCET Based Evaluation

We have included the implemented object cache in the WCET analysis tool.
Besides the benchmarks from JemBench we have also included tasks from the
Java port of the PapaBench WCET benchmark [27,21].

Table 7 shows the WCET analysis results of tasks. The WCET is given in
clock cycles for different cache configurations. All object cache configurations
use a line size of 16 words. The analysis is configured to assume single word
loads on a miss, as it is implemented in the hardware. The table shows results
for different number of lines. The column with 0 lines is the reference where
all object accesses are served by the main memory. As we have seen from the
hit rate analysis and simulation, the efficiency of the object cache saturates at
4 to 16 lines. Therefore, we limit the analysis to up to 16 lines. That means
scopes with up to 16 different objects are tracked by the WCET analysis.



24

Table 6 Simulation of average case heap cache hits

Single word cache Object cache

Benchmark N Misses Hit ratio Misses Hit ratio

Lift 0 122 0.00 % 122 0.00 %
1 101 17.21 % 95 22.13 %
2 17 86.07 % 3 97.54 %
4 15 87.70 % 3 97.54 %
8 15 87.70 % 3 97.54 %

16+ 15 87.70 % 3 97.54 %

UdpIp 0 41 0.00 % 41 0.00 %
1 19 53.66 % 3 92.68 %
2 13 68.29 % 2 95.12 %
4 11 73.17 % 2 95.12 %
8 10 75.61 % 2 95.12 %

16+ 10 75.61 % 2 95.12 %

Ejip 0 73 0.00 % 73 0.00 %
1 57 21.91 % 27 63.01 %
2 52 28.77 % 22 69.68 %
4 47 35.62 % 17 75.34 %
8 45 38.36 % 15 79.45 %

16 41 43.84 % 12 83.56 %
32 34 53.42 % 12 83.56 %
64 34 53.42 % 12 83.56 %

Table 7 WCET analysis results in clock cycles, including the object cache

Object cache configuration (number of lines)

Benchmark 0 4 8 16

Lift 7619 6609 6609 6609
UdpIp 127318 127158 127168 127168
Ejip 38083 38023 37973 37973
CheckMega128Values 9144 9029 9144 9104
Navigation.courseComputation 242512 242512 242472 242472
Navigation.update 32465419 32470574 32465254 32465169
RadioControl 65203 65138 65253 65213
AltitudeControl 29060 29070 29030 29030
ClimbControl 138170 138235 138105 138105
Stabilization 165874 165769 165884 165879
SendDataToAutopilot 11504 11434 11859 11849
TestPPM 3470 3440 3380 3380
CheckFailsafe 72602227 72561317 72561317 72561227

Most benchmarks show only a very small improvement in the WCET. The
best result is shown with the Lift benchmark, where the WCET is reduced by
15% with a 4 line object cache. This result is in line with the analyzed hit
rate as shown in Table 5. Although the analyzed hit rate of UdpIp and Ejip are
reasonable, the effective reduction of the WCET is minimal. Looking at the
WCET path, as it is reported by the WCET tool, reveals that the WCET is
dominated by the checksum calculation of IP packets. The number of object



25

field accesses is quite low: as shown in Table 5, the worst-case object accesses
is 48 for UdpIp and 103 for Ejip. In the best case, when almost all accesses
could be classified as hit, the WCET could be reduced by about 250 and 500
clock cycles with our current memory subsystem.

From the jPapaBench tasks only a few have a noticeable reduction of their
WCET when an object cache is used. The WCET path is often dominated by
floating point operations, which are in the current version of JOP implemented
in software.

Some benchmarks actually increase the WCET with larger object caches.
This fact can be explained by the phenomena that larger scopes, which are
possible with more cache lines, can also introduce a higher uncertainty of
the receiver objects. However, the WCET of a smaller object cache is a safe
approximation of the larger object cache. The same effect can even happen
when comparing the non-cached WCET with the 4 line object cache, as seen
with benchmark ClimbControl.

The WCET reduction is less than what we expected from the first evalua-
tion with analyzable miss rates. Non object-oriented code still dominates the
execution time. The first three benchmarks are written in a relative conserva-
tive programming style and the original code of PapaBench is in C. Therefore,
they are not written in typical Java style. We hope that analyzable caching for
object-oriented programming will enable development of real-time applications
in a more object-oriented style. We also expect that the upcoming standard
for safety-critical Java [23] will increase usage of Java in real-time systems. In
that case caching of objects will become more important.

7 Conclusion

Caching accesses to different data areas complicate WCET analysis of the data
cache. Accesses to unknown addresses, e.g., for heap allocated data structures,
destroy information about the cache for other, simpler to predict, data areas.
We propose to change the data cache architecture to enable tighter data cache
analysis. The data cache is split for different data areas. Besides enabling a
more modular data cache analysis, those different data caches can be optimized
for their data area. A cache for the stack and for constants can be a simple
direct mapped cache, whereas the cache for heap allocated data has a high
associativity to track objects with statically unknown addresses.

For heap allocated objects we presented a scope-based local persistence
analysis. In the analysis we considered two different heap cache organizations: a
single word cache and an object cache. Both configurations result in a moderate
to good hit classification. The effect on the WCET of tasks has been evaluated
with real-time benchmarks. As those benchmarks are still written in a more
procedural style, the WCET is dominated by non object-oriented operations
and the effect of a object cache is minimal. However, a solution to predict heap
access cache hits can reduce the entry cost of using object-oriented languages
in real-time applications.



26

Acknowledgement

We would like to thank the anonymous reviewers for their detailed comments,
which helped to improve the paper. This research has received partial funding
from the European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement number 216682 (JEOPARD).

Source Access

The analysis tool, which includes the heap cache analysis, is part of the JOP
source distribution and available from http://www.jopdesign.com/. At the
time of this writing the cache analysis is not yet included in the master branch,
but in the remote branch splitcache analysis.

References

1. Federico Angiolini, Luca Benini, and Alberto Caprara. Polynomial-time algorithm for
on-chip scratchpad memory partitioning. In Proceedings of the International Conference
on Compilers, Architectures and Synthesis for Embedded Systems (CASES-03), pages
318–326, New York, October 30 November 01 2003. ACM Press.

2. Robert Arnold, Frank Mueller, David Whalley, and Marion Harmon. Bounding worst-
case instruction cache performance. In IEEE Real-Time Systems Symposium, pages
172–181, 1994.

3. Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation scheme
for scratch-pad-based embedded systems. Trans. on Embedded Computing Sys., 1(1):6–
26, 2002.

4. José V. Busquets-Mataix, Juan José Serrano, Rafael Ors, Pedro J. Gil, and Andy J.
Wellings. Adding instruction cache effect to schedulability analysis of preemptive real-
time systems. In IEEE Real-Time Technology and Applications Symposium (RTAS
’96), pages 204–213, Washington - Brussels - Tokyo, June 1996. IEEE Computer Society
Press.

5. A. Deutsch. A storeless model of aliasing and its abstractions using finite representations
of right-regular equivalence relations. In Computer Languages, 1992., Proceedings of
the 1992 International Conference on, pages 2–13, Apr 1992.

6. Jean-Francois Deverge and Isabelle Puaut. Wcet-directed dynamic scratchpad mem-
ory allocation of data. In ECRTS ’07: Proceedings of the 19th Euromicro Conference
on Real-Time Systems, pages 179–190, Washington, DC, USA, 2007. IEEE Computer
Society.

7. Stephen A. Edwards and Edward A. Lee. The case for the precision timed (PRET)
machine. In DAC ’07: Proceedings of the 44th annual conference on Design automation,
pages 264–265, New York, NY, USA, 2007. ACM.

8. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interproce-
dural points-to analysis in the presence of function pointers. pages 242–256, 1994.

9. Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael
Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and
precise WCET determination for a real-life processor. In Thomas A. Henzinger and
Christoph M. Kirsch, editors, EMSOFT, volume 2211 of Lecture Notes in Computer
Science, pages 469–485. Springer, 2001.

10. Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior pre-
diction for real-time systems. Real-Time Systems, 17(2-3):131–181, 1999.



27

11. Antonio González, Carlos Aliagas, and Mateo Valero. A data cache with multiple
caching strategies tuned to different types of locality. In ICS ’95: Proceedings of the
9th international conference on Supercomputing, pages 338–347, New York, NY, USA,
1995. ACM.

12. Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and Mar-
ion G. Harmon. Bounding pipeline and instruction cache performance. IEEE Trans.
Computers, 48(1):53–70, 1999.

13. Christopher A. Healy, David B. Whalley, and Marion G. Harmon. Integrating the timing
analysis of pipelining and instruction caching. In IEEE Real-Time Systems Symposium,
pages 288–297, 1995.

14. Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The
influence of processor architecture on the design and results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, Jul. 2003.

15. John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach,
4th ed. Morgan Kaufmann Publishers, 2006.

16. M. Herlihy, J. Eliot, and B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Computer Architecture, 1993. Proceedings of the 20th
Annual International Symposium on, pages 289–300, 1993.

17. Jörg Herter and Jan Reineke. Making dynamic memory allocation static to support
WCET analyses. In Proceedings of 9th International Workshop on Worst-Case Execu-
tion Time (WCET) Analysis, June 2009.

18. Jörg Herter, Jan Reineke, and Reinhard Wilhelm. CAMA: Cache-aware memory allo-
cation for WCET analysis. In Marco Caccamo, editor, Proceedings Work-In-Progress
Session of the 20th Euromicro Conference on Real-Time Systems, pages 24–27, July
2008.

19. Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl. Worst-case execution time
analysis driven object cache design. Concurrency and Computation: Practice and Ex-
perience, doi: 10.1002/cpe.1763, 2011.

20. Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 364–373, Seattle, WA, May
1990.

21. Tomas Kalibera, Pavel Parizek, Michal Malohlava, and Martin Schoeberl. Exhaustive
testing of safety critical Java. In Proceedings of the 8th International Workshop on Java
Technologies for Real-time and Embedded Systems (JTRES 2010), pages 164–174, New
York, NY, USA, 2010. ACM.

22. S.-K. Kim, S. L. Min, and R. Ha. Efficient worst case timing analysis of data caching. In
IEEE Real-Time Technology and Applications Symposium (RTAS ’96), pages 230–240,
Washington - Brussels - Tokyo, June 1996. IEEE Computer Society Press.

23. Doug Locke, B. Scott Andersen, Ben Brosgol, Mike Fulton, Thomas Henties, James J.
Hunt, Johan Olmütz Nielsen, Kelvin Nilsen, Martin Schoeberl, Joyce Tokar, Jan Vitek,
and Andy Wellings. Safety-critical Java technology specification, public draft, 2011.

24. Thomas Lundqvist and Per Stenström. A method to improve the estimated worst-
case performance of data caching. In Proc. 6th International Conference on Real-Time
Computing Systems and Applications, pages 255–262. IEEE Computer Society, 1999.

25. Ross McIlroy, Peter Dickman, and Joe Sventek. Efficient dynamic heap allocation of
scratch-pad memory. In ISMM ’08: Proceedings of the 7th international symposium on
Memory management, pages 31–40, New York, NY, USA, 2008. ACM.

26. V. Milutinovic, M. Tomasevic, B. Markovi, and M. Tremblay. A new cache architec-
ture concept: the split temporal/spatial cache. In Electrotechnical Conference, 1996.
MELECON ’96., 8th Mediterranean, volume 2, pages 1108–1111 vol.2, May 1996.

27. Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean Paul Bahsoun, and Marianne De
Michiel. Papabench: a free real-time benchmark. In Proceedings of 6th International
Workshop on Worst-Case Execution Time Analysis (WCET), 2006.

28. David A. Patterson. Reduced instruction set computers. Commun. ACM, 28(1):8–21,
1985.

29. Christof Pitter and Martin Schoeberl. A real-time Java chip-multiprocessor. ACM
Trans. Embed. Comput. Syst., 10(1):9:1–34, 2010.



28

30. Isabelle Puaut. WCET-centric software-controlled instruction caches for hard real-time
systems. In ECRTS ’06: Proceedings of the 18th Euromicro Conference on Real-Time
Systems, pages 217–226, Washington, DC, USA, 2006. IEEE Computer Society.

31. Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in hard real-
time systems: a quantitative comparison. In Proceedings of the conference on Design,
Automation and Test in Europe (DATE 2007), pages 1484–1489, San Jose, CA, USA,
2007. EDA Consortium.

32. Wolfgang Puffitsch. Data caching, garbage collection, and the Java memory model. In
Proceedings of the 7th International Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2009), pages 90–99, New York, NY, USA, 2009. ACM.

33. Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing predictabil-
ity of cache replacement policies. Journal of Real-Time Systems, 37(2):99–122, Nov.
2007.

34. Martin Schoeberl. Application experiences with a real-time Java processor. In Proceed-
ings of the 17th IFAC World Congress, pages 9320–9325, Seoul, Korea, July 2008.

35. Martin Schoeberl. A Java processor architecture for embedded real-time systems. Jour-
nal of Systems Architecture, 54/1–2:265–286, 2008.

36. Martin Schoeberl. Time-predictable cache organization. In Proceedings of the First
International Workshop on Software Technologies for Future Dependable Distributed
Systems (STFSSD 2009), pages 11–16, Tokyo, Japan, March 2009. IEEE Computer
Society.

37. Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal on
Embedded Systems, vol. 2009, Article ID 758480:17 pages, 2009.

38. Martin Schoeberl. A time-predictable object cache. In Proceedings of the 14th IEEE
International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC 2011), pages 99–105, Newport Beach, CA, USA, March 2011. IEEE
Computer Society.

39. Martin Schoeberl, Walter Binder, and Alex Villazon. Design space exploration of object
caches with cross-profiling. In Proceedings of the 14th IEEE International Symposium
on Object/component/service-oriented Real-time distributed Computing (ISORC 2011),
pages 213–221, Newport Beach, CA, USA, March 2011. IEEE Computer Society.

40. Martin Schoeberl, Florian Brandner, and Jan Vitek. RTTM: Real-time transactional
memory. In Proceedings of the 25th ACM Symposium on Applied Computing (SAC
2010), pages 326–333, Sierre, Switzerland, March 2010. ACM Press.

41. Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig. The embedded Java bench-
mark suite JemBench. In Proceedings of the 8th International Workshop on Java Tech-
nologies for Real-Time and Embedded Systems (JTRES 2010), pages 120–127, New
York, NY, USA, August 2010. ACM.

42. Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-predictable
data caches for chip-multiprocessors. In Proceedings of the Seventh IFIP Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS 2009),
number 5860 in LNCS, pages 180–191. Springer, November 2009.

43. Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and Benedikt Huber.
Worst-case execution time analysis for a Java processor. Software: Practice and Expe-
rience, 40/6:507–542, 2010.

44. Alan C. Shaw. Reasoning about time in higher-level language software. IEEE Trans.
Softw. Eng., 15(7):875–889, 1989.

45. Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET centric
data allocation to scratchpad memory. In Proceedings of the 26th IEEE International
Real-Time Systems Symposium (RTSS), pages 223–232. IEEE Computer Society, 2005.

46. Xavier Vera, Björn Lisper, and Jingling Xue. Data cache locking for higher program
predictability. In Proceedings of the 2003 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS-03), volume
31, 1 of Performance Evaluation Review, pages 272–282, New York, June 11–14 2003.
ACM Press.

47. Xavier Vera, Björn Lisper, and Jingling Xue. Data caches in multitasking hard real-
time systems. In IEEE Real-Time Systems Symposium, pages 154–165. IEEE Computer
Society, 2003.



29

48. Xavier Vera, Björn Lisper, and Jingling Xue. Data cache locking for tight timing cal-
culations. ACM Trans. Embed. Comput. Syst., 7:4:1–4:38, December 2007.

49. Manish Verma and Peter Marwedel. Overlay techniques for scratchpad memories in low
power embedded processors. IEEE Trans. VLSI Syst, 14(8):802–815, 2006.

50. Lars Wehmeyer and Peter Marwedel. Influence of memory hierarchies on predictability
for time constrained embedded software. In Proceedings of Design, Automation and
Test in Europe (DATE2005)., pages 600–605 Vol. 1, March 2005.

51. Andy Wellings and Martin Schoeberl. Thread-local scope caching for real-time Java. In
Proceedings of the 12th IEEE International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2009), pages 275–282, Tokyo, Japan,
March 2009. IEEE Computer Society.

52. Randall T. White, Frank Mueller, Christopher A. Healy, David B. Whalley, and Mar-
ion G. Harmon. Timing analysis for data and wrap-around fill caches. Real-Time
Systems, 17(2-3):209–233, 1999.

53. Jack Whitham and Neil Audsley. Implementing time-predictable load and store opera-
tions. In Proceedings of the International Conference on Embedded Software (EMSOFT
2009), 2009.

54. Jack Whitham and Neil Audsley. Investigating average versus worst-case timing behav-
ior of data caches and data scratchpads. In Proceedings of the 2010 22nd Euromicro
Conference on Real-Time Systems, ECRTS ’10, pages 165–174, Washington, DC, USA,
2010. IEEE Computer Society.

55. Jack Whitham and Neil Audsley. Studying the applicability of the scratchpad memory
management unit. In Proceedings of the 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS ’10, pages 205–214, Washington, DC,
USA, 2010. IEEE Computer Society.

56. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution time problem – overview of methods and survey of tools.
Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

57. Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and
Christian Ferdinand. Memory hierarchies, pipelines, and buses for future architectures
in time-critical embedded systems. IEEE Transactions on CAD of Integrated Circuits
and Systems, 28(7):966–978, 2009.



30

Martin Schoeberl has a PhD from the Vienna University of Technology.
Since 2005 he has been Assistant Professor at the Institute of Computer En-
gineering. 2010 he joined the Technical University of Denmark as Associate
Professor. His research interest is in time-predictable computer architecture
and real-time Java.

Benedikt Huber is a research and teaching assistant at the Institute of
Computer Engineering at the Vienna University of Technology. He received his
Computer Science Master’s degree from the Vienna University of Technology
in 2009. His current research focus is on time predictable systems, and on the
WCET analysis of object-oriented languages.



31

Wolfgang Puffitsch is a research and teaching assistant at the Insti-
tute of Computer Engineering at the Vienna University of Technology. He has
studied Computer Engineering at the Vienna University of Technology and
received his Dipl.-Ing. (Master’s) degree in 2008. Currently, he is working on
time-predictable computer architectures and on his PhD on real-time garbage
collection for multi-processor systems.


