
Towards Time-predictable Data Caches for
Chip-Multiprocessors

Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber

Institute of Computer Engineering
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at, wpuffits@mail.tuwien.ac.at,
benedikt@vmars.tuwien.ac.at

Abstract. Future embedded systems are expected to use chip-multiprocessors
to provide the execution power for increasingly demanding applications. Multi-
processors increase the pressure on the memory bandwidth and processor local
caching is mandatory. However, data caches are known to be very hard to inte-
grate into the worst-case execution time (WCET) analysis. We tackle this issue
from the computer architecture side: provide a data cache organization that en-
ables tight WCET analysis. Similar to the cache splitting between instruction and
data, we argue to split the data cache for different data areas. In this paper we
show cache simulation results for the split-cache organization, propose the mod-
ularization of the data cache analysis for the different data areas, and evaluate the
implementation costs in a prototype chip-multiprocessor system.

1 Introduction

With respect to caching, memory is usually divided into instruction memory and data
memory. This cache architecture was proposed in the first RISC architectures [1] to
resolve the structural hazard of a pipelined machine where an instruction has to be
fetched concurrently to a memory access. The independent caching of instructions and
data has also enabled the integration of cache hit classification of instruction caches into
the worst-case execution time analysis (WCET) [2]. While analysis of the instruction
cache is a mature research topic, data cache analysis is still an open problem. After n
accesses with unknown address to a n-way set associative cache, the abstract cache state
is lost.

In previous work we have argued about cache splitting in general [3]. We have ar-
gued that caches for data with statically unknown addresses shall be fully associative.
In this paper we evaluate time-predictable data cache solutions in the context of the
Java virtual machine (JVM). We provide simulation results for different cache orga-
nizations and sketch the resulting modular analysis. Furthermore, an implementation
in the context of a Java processor shows the resource consumptions and limitations of
highly associative cache organizations.

Access type examples are taken from the JVM implemented on the Java processor
JOP [4]. Implementation details of other JVMs may vary, but the general classification
of the data areas remains valid. Part of the proposed solution can be adapted to other
object-oriented languages, such as C++ and C#, as well.



2 Data Areas and Access Instructions

The memory areas used by the JVM can be classified into five categories:

Method area The instruction memory that contains the bytecodes for the execution.
On compiled Java systems this is the native code area

Stack Thread local stack used for stack frames, arguments, and local variables
Class information A data structure representing the different types. Contains the type

description, the method dispatch table, and the constant pool.
Heap Garbage collected heap of class instances. The object header, which contains

auxiliary information, is stored on the heap or in a distinct handle area.
Class variables Shared memory area for static variables.

Caching of the method area and the stack area have been covered in [5] and [6]. In
this paper we are interested in a data cache solution for the remaining data areas. On
standard cache architectures these memory areas and the stack memory share the same
data cache.

2.1 Data Access Types

Data memory accesses (except stack accesses) can be classified as follows:

CLINFO Type information, method dispatch table, and interface dispatch table. The
method dispatch table is read on virtual and static method invocation and on the
return from a method. The method dispatch table contains two words per method.
Bytecodes: new, anewarray, multianewarray, newarray, checkcast, instanceof, invokestatic,
invokevirtual, invokespecial, invokeinterface, *return.

CONST Constant pool access. Is part of the class information. Bytecodes: ldc, ldc w,
ldc2 w, invokeinterface, invokespecial, invokestatic, invokevirtual.

STATIC Access to static fields. Is the class variables area. Bytecodes: getstatic, putstatic.
HEADER Dynamic type, array length, and fields for garbage collection. The type in-

formation on JOP is a pointer to the method dispatch table within CLINFO. On
JOP each reference is accessed via one indirection, called the handle, to simplify
the compacting garbage collection. The header information is part of the handle
area. Bytecodes: getfield, putfield, *aload, *astore, arraylength, *aload, *astore, invokevir-
tual, invokeinterface.

FIELD Object field access. Is part of the heap. Bytecodes: getfield, putfield.
ARRAY Array access. Is part of the heap. Bytecodes: *aload, *astore.

2.2 Cache Access Types

The different types of data cache accesses can be classified into four classes w.r.t. the
cache analysis:

– The address is always known statically. This is the case for static variables
(STATIC), which are resolved at link time, and for the constant pool (CONST),
which only depends on the currently executed method.



– The address depends on the dynamic type of the operand, but not on its value.
Therefore, the set of possible addresses is restricted by the receiver types deter-
mined for the call site. The class info table, the interface table and the method table
are in this category (CLINFO).

– The address depends on the value of the reference. The exact address is unknown,
as some value on the managed heap is accessed, but in addition to the symbolic
address a relative offset is known. Instance fields and array fields, both showing
some degree of spatial locality, belong to this category (FIELD, ARRAY).

– The last category contains handles, references to the method dispatch table, and
array lengths (HEADER). They reside on the heap as well, but we only know the
symbolic address.

2.3 Cache Coherence

For a chip-multiprocessor system the cache coherence protocol is the major limiting
factor on the scalability. Splitting data caches also simplifies the cache coherence pro-
tocol. Most data areas are actually constant (CLINFO, CPOOL). Access into the handle
area (HEADER) is pseudo-constant. The data written into the header area during ob-
ject creation and can not be changed by a thread. However, the garbage collector can
modify this area. To provide a coherent view of the handle area between the garbage
collector and the mutators, a cache for the handle area has to be updated or invalidated
appropriately.

Data on the heap (FIELD, ARRAY) and in the static area (STATIC) is shared by all
threads. With a write-through cache the cache coherence can be enforced by invalidating
the cache on monitorenter and before reads from volatile fields.

3 Cache Benchmarks

Before developing a new cache organization we run benchmarks to evaluate memory
access patterns and possible cache solutions. Our assumption is that the hit rate on the
average case correlates with the hit classification in the WCET analysis, when different
access types are cached independently. Therefore, we can reason about useful cache
sizes from the benchmark results.

For the benchmarks we use two real-world embedded applications [7]: Kfl is one
node of a distributed control application and Lift is a lift controller deployed in indus-
trial automation. The Kfl example is a very static application, written in conservative,
procedural style. The application Lift was written in a more object-oriented style. Fur-
thermore, two benchmarks from an embedded TCP/IP stack (UdpIp and Ejip) are used
to collect performance data. Figure 1 shows the access frequencies for the different
memory areas for all benchmarks.

There are no write accesses to the constant data areas and also no write access
to the pseudo-constant area (HEADER). As we measure applications without object
allocation at runtime, the data in the HEADER area is not mutated. The general trend
is that load instructions dominate the memory traffic (between 89% and 93%).



Table 1. Data memory traffic to different memory areas (in % of all data memory accesses)

Kfl Lift UdpIp Ejip

load store load store load store load store

CLINFO 31.2 0.0 7.4 0.0 14.4 0.0 10.7 0.0
CONST 11.4 0.0 2.6 0.0 13.8 0.0 12.3 0.0
STATIC 28.3 7.6 2.6 0.6 8.8 1.1 12.3 3.4
HEADER 14.3 0.0 50.5 0.0 39.1 0.0 39.4 0.0
FIELD 0.0 0.0 24.9 0.8 6.3 1.8 6.4 1.0
ARRAY 3.9 3.2 4.7 5.7 10.7 4.0 10.6 4.0

For the Kfl application there are no field accesses (FIELD). Dominating accesses are
to static fields (STATIC), static method invocation (CLINFO), and access to the con-
stant pool (CONST). The rest of the accesses are related to array accesses (HEADER,
ARRAY). The Lift application has a quite different access pattern: instance field ac-
cesses dominate all reads (FIELD and HEADER). There are less methods invoked than
in the Kfl application and less static fields accessed. The array access frequency of both
applications is similar (4%–5%), for the TCP/IP benchmark, due to many buffer ma-
nipulations, considerable higher (11% loads).

3.1 Cache Simulations

As first step we simulate different cache configurations with a software simulation of
JOP (JopSim) and evaluate the average case hit count.

Handle Cache As all operations on objects and arrays need an indirection through the
handle we first simulate a cache for the handle. The address of the handle is not known
statically, therefore we assume a small fully-associative cache with LRU replacement
policy. The results of the cache is shown in Table 2 for different sizes. The size is in
single words. Quite interesting to note is that even a single entry cache provides a hit
rate for the handle indirection access of up to 72%. Caching a single handle should be so
simple, so a single cycle hit detection including a memory read start in the same cycle
should be possible. In that case, even a uniprocessor JOP with a two cycle memory read
will gain some speedup. A size of just 8 entries results in a reasonable hit rate between
84% and 95%.

Constants and the Method Table Mixing access to the method table and access to the
constant pool in one direct mapped cache is an option when the receiver types can be
determined precisely. However, if the set of possible receiver types is large, the analysis
becomes less precise. Therefore, we evaluate individual caches for the constant pool
access (CPOOL) and the access to the method table (CLINFO).

Table 3 shows that a small direct-mapped cache of 512 words (2 KB) gives a hit
rate of 100%. Keeping the cache sizes small is important for our intended system. We



Table 2. Hit rate of a handle cache, fully associative, LRU replacement

Hit rate (%)

Size Kfl Lift UdpIp Ejip

1 72 15 43 69
2 82 20 80 78
4 84 94 87 82
8 88 95 91 84

16 92 95 94 84
32 95 95 96 86

Table 3. Hit rate of a constant pool cache, direct mapped

Hit rate (%)

Size Kfl Lift UdpIp Ejip

32 68 69 77 82
64 96 69 79 95

128 98 69 88 95
256 100 100 100 95
512 100 100 100 100

are targeting chip-multiprocessor systems with private caches, even for accesses to con-
stants, to keep the individual tasks time-predictable. A shared cache would not allow to
perform any cache analysis of individual tasks.

The hit rate of a direct-mapped cache for the method table (MTAB) shows a similar
behavior as the constant pool caching, as shown in Table 4. A size of 256 words gives a
hit rate between 95% and 100%. It has to be noted that the method table is accessed by
static and virtual methods. While the MTAB entry is known statically for static methods,
the MTAB entry for virtual methods depends on the receiver type. If data-flow analysis
can determine most of the receiver types the combination of a single cache for the
constant pool and the method table is an option further to explore.

Static Fields Table 5 shows the results for a direct mapped cache for static fields. For
object-oriented programs (represented by Lift), this cache can be kept very small. Al-
though the addresses are statically known as the addresses for the constants, a combina-
tion of these two caches is not useful. Static fields need to be kept cache coherent, con-
stant pools entries are implicitly cache coherent. Cache coherence enforcement, with
cache invalidation at synchronized blocks, limits the hit rate in UdpIp and Ejip.

Object Fields Addresses of object fields are unknown for the analysis. Therefore, we
can only attack the analysis problem via a high associativity. Table 6 shows hit rates
of fully-associative caches with LRU replacement policy. For the Lift benchmark we



Table 4. Hit rate of a method table cache, direct mapped

Hit rate (%)

Size Kfl Lift UdpIp Ejip

32 64 83 62 49
64 85 83 77 74

128 91 100 85 93
256 100 100 97 95

Table 5. Hit rate of a static field cache, direct mapped

Hit rate (%)

Size Kfl Lift UdpIp Ejip

32 76 100 33 77
64 85 100 33 77

128 99 100 33 77
256 100 100 33 77

observe a moderate hit rate of 88% for a very small cache of just 8 entries. UdpIp and
Ejip saturate at 8 entries due to cache invalidation during synchronized blocks of code.

3.2 Summary

From the experiments with simulation of different caches for different memory areas we
see that quite small caches can provide a reasonable hit rate. However, as the memory
access latency for a CMP system with time-sliced memory arbitration can be quite
high,1 even moderate cache hit rates are a reasonable improvement.

4 Cache Analysis

In the following section we sketch cache analysis as it will be performed in a future
version of our WCET analysis tool [8]. We leverage the cache splitting of the data areas
for a modular analysis, e.g., analysis of heap allocated objects is independent from
analysis of the cache for constants or cache for static fields.

In multithreaded programs, it is necessary to invalidate the cache when entering
a synchronized block or reading from volatile variables.2 We require that accesses to
shared data are properly synchronized, which is the correct way to access shared data
in Java. In this case it is safe to assume that object references on the heap are not

1 Our 8 core CMP prototype with a time slot of 6 cycles per core has a worst-case latency of 48
cycles.

2 The semantics of volatile variables in the Java memory model is similar to synchronized
blocks: the complete global state has to be locally visible before the read access. Simply by-
passing the cache for volatile accesses is not sufficient.



Table 6. Hit rate of an instance field cache, fully associative, LRU replacement

Hit rate (%)

Size Kfl Lift UdpIp Ejip

1 84 17 47 9
2 84 75 59 13
4 84 86 65 18
8 84 88 67 20

16 84 88 67 20
32 84 88 67 20

changed by another thread at arbitrary points in the program, resulting in a significantly
more precise analysis. The effect of synchronization, namely invalidating some of the
caches, has to be taken into account though.

The running example is illustrated in Figure 1 and was taken from the Lift appli-
cation. The figure comprises the source code of the method checkLevel and the corre-
sponding control flow graph in static single assignment (SSA) form. Each basic block
is annotated with the cache accesses it triggers.

4.1 Static and Type-Dependent Addresses

If we only deal with statically known addresses in a data cache, the standard cache
hit/miss classification (CHMC) for instruction caches delivers precise results and is
therefore a good choice [9]. In the example, there is only one static variable, LEVEL POS.
If we assume a direct-mapped cache for static variables, and a separate one for values
on the heap, all but the first access to the field will be a cache hit every time checkLevel
is executed.

When the address depends on the type of the operand, we have to deal with a set
of possible addresses. The straight forward extension of CHMC to sets of memory
addresses is to update the abstract cache state for each possible address, and then join the
resulting states. This leads to a very pessimistic classification when dynamic dispatch is
used, however, and therefore is only acceptable if the exact address is known for most
references.

4.2 Persistence Analysis

If dynamic types are more common, a more promising approach is to classify program
fragments, or partitions, where it is known that one or all memory addresses are locally
persistent. If this is the case, they will be missed at most once during one execution of
the program fragment.

For both direct-mapped and N-way set associative caches with LRU replacement, a
dataflow analysis for persistence analysis has been introduced in [10]. For FIFO caches,
the concept of persistence is useful as well, but it is not safe anymore to assume that a
persistent address will be loaded at the first access.



Block 3
v17 = φ v16 1

branch if v17 >= 14

Block 5
v16 = v17 + 1

Block 7
return

Method
turnOffLeds

HEADER v2
FIELD v2[3]
HEADER v18
ARRAY v18[?]

checkLevel
v1 ~ this

v2 ~ TalIo io

Scope checkLevel.1

Block 6
v18 = getfield v2.led

v19 = v17 - 1
v18[v19] = 1

putfield v1.level v17

HEADER v2
FIELD v2[3]
HEADER v18

ARRAY v18[v19]
HEADER v1
FIELD v1[2]

Block 4
v13 = getstatic LEVEL_POS

v14 = v13[v17]
v15 = v14 - v9

branch if v10 >= v15

STATIC 208
HEADER v13

ARRAY v13[v17]

Block 2
v7 = getstatic ONE_LEVEL

v9 = v7 >> 2
v10 = getfield v1.cnt

STATIC 34
HEADER v1
FIELD v1[1]

Scope checkLevel.2

io.turnOffLeds()

public void checkLevel(TalIo io) {

this.level = 0;
if(! cntValid) return;

int middle = one_level>>2;
int cnt = this.cnt;

Scope turnOffLeds

Scope checkLevel.2.Loop

for(int i = 0; i < 14; i++) {

int p = LEVEL_POS[i];
if(cnt < p - middle)

{
io.led[i-1] = true;
this.level = i;
return;
}

checkLevel

checkLevel.1
v1, v2

checkLevel.2
v1, v2, v18

turnOffLeds
v2, v18

checkLevel.2.Loop
v13

Scope graph and object use

}

}

Block 1
putfield v1.level 0

v6 =getfield v1.cntValid
branch if ! v6

HEADER v1
FIELD v1[2]
HEADER v1
FIELD v1[0]

Block 0
invokevirtual v2 turnOfLeds

CONST 10302
HEADER v2

CLINFO 12965

Fig. 1. Cache Analysis Example

Most work on persistence analysis focusses on dataflow equations and global per-
sistence, leaving out some aspects which deserve more attention. Persistence for the
whole program is rare and only of theoretical interest. We therefore identify a set of
nested scopes [11], and identify for each scope which cache lines or cache sets are lo-
cally persistent. A scope is a subgraph of the control flow graph which represents a
set of execution sequences. Methods, loops and loop bodies are typical examples of
scopes, but partitions of less regular shape are possible as well. To reduce the amount
of analysis work, persistence is checked in a bottom-up manner, starting at the leaves of
the scope nesting graph. In the example we partitioned the flow graph of checkLevel into
two scopes, the first of which contains the method turnOffLeds, while checkLevel.2.Loop
is a subscope of the second one.



4.3 Object Header and Fields

As the address of the object header and the object fields depends on the instance and
is not known at compile time, we use small, fully associative caches to track the cache
state. There is usually a high number of handle accesses in object-oriented programs,
but many of them do not change often. In our architecture, the object header is fully
transparent at the bytecode level, and is managed by the runtime system. Caching is
hence expected to gain a substantial benefit. On other platforms, which compile the
bytecode and hold handles and array length values in registers, caching those values is
probably less beneficial.

To calculate the symbolic addresses of object headers and fields used in some scope,
the data dependencies of the control flow graphs in SSA form are analyzed. In SSA
form, each variable is only defined once. If the definition is of the form v = φ(v1,v2),
the definition is called a φ node, and the value of v is either that of v1 or v2.

For each object header used, those data depenencies which are defined in the same
scope, and might be executed more than once within the scope, are identified. If all of
those definitions are neither φ nodes nor depend on an indeterministic instruction, the
variable representing the object corresponds to a unique symbolic address.

Finally, if all references used within a scope correspond to a unique symbolic ad-
dress, we are able to perform a local persistence analysis. Additionally, using a variant
of the global value numbering technique used in optimizing compilers [12], the qual-
ity of the analysis is further improved by identifying variables mapping to the same
symbolic address.

In the running example, no handle has a data dependency on a φ node, and therefore
persistence analysis is relatively simple. If a fully associative cache with four cache
lines is used, all object headers of scope checkLevel are locally persistent. If the object
header cache only has two entries, at least those headers used in scope turnOffLeds and
checkLevel.2.loop are locally persistent.

5 Cache Implementation

We have implemented various forms of caches in the context of the Java processor
JOP [4]: (1) a small fully associative cache with LRU replacement, (2) a fully associa-
tive cache with FIFO replacement, and (3) a direct mapped cache. We have combined
the different caches to distinguish between different data areas.

5.1 LRU and FIFO Caches

The crucial component of an LRU cache is the tag memory. In our implementation
it is organized as a shift register structure to implement the aging of the entries (see
Figure 2). The tag memory that represents the youngest cache entry (cache line 0) is fed
by a multiplexer from all other tag entries and the address from the memory load. This
multiplexer is the critical path in the design and limits the maximum associativity.

Table 7 shows the resource consumption and maximum frequency of the LRU and
FIFO cache. The resource consumption is given in logic cells (LC) and in memory



din
ta

g
v

id
x

R

=

dout

ena[0]

hit[0]

dout[0]

din

ta
g

v
id

x

R

=

dout

ena[1]

hit[1]

dout[1]

din

ta
g

v
id

x

R

=

dout

ena[2]

hit[2]

dout[2]

din

ta
g

v
id

x

R

=

dout

ena[3]

hit[3]

dout[3]

cache line 0 cache line 1 cache line 2 cache line 3

ena[0..3]
clk

reset
addr

dout[0..3]

hit[0..3]

din

address

Fig. 2. LRU tag memory implementation

bits. As a reference, a single core of JOP consumes around 3500 LCs and the maximum
frequency in the Cyclone-I device without data caches is 88 MHz. We can see the impact
on the maximum frequency of the large multiplexer in the LRU cache on configurations
with a high associativity.

Table 7. Implementation results for LRU and FIFO based data caches

LRU Cache FIFO Cache

Associativity LC Memory Fmax LC Memory Fmax

16-way 783 0.5 KBit 102 MHz 633 0.5 KBit 119 MHz
32-way 1315 1 KBit 81 MHz 1044 1 KBit 107 MHz
64-way 2553 2 KBit 57 MHz 1872 2 KBit 94 MHz

128-way 4989 4 KBit 36 MHz 3538 4 KBit 89 MHz
256-way 10256 8 KBit 20 MHz 9762 8 KBit 84 MHz

The implementation of a FIFO replacement strategy avoids the change of all tag
memories on each read. Therefore, the resource consumption is less than for an LRU
cache and the maximum frequency is higher. However, hit detection still has to be ap-
plied on all tag memories in parallel and one needs to be selected.

5.2 Split Cache Implementation

We have combined a direct mapped cache and an LRU cache with one JOP core. The
LRU cache stores the object header and the object fields; the direct mapped cache stores
class info, constants, and static fields; array data is not cached.

Table 8 shows the resources and the maximum system frequency of different cache
configurations. The first line gives the base numbers without any data cache. From the
resource consumptions we can see that a direct mapped cache is cheap to implement.
Furthermore, the maximum clock frequency is independent of the direct mapped cache



Table 8. Implementation results for a split cache design

Cache size DM Cache LRU Cache System

DM LRU LC Memory LC Memory LC Memory Fmax

0 KB 0 0 0 KBit 0 0 KBit 3530 61 KBit 88 MHz
1 KB 8 199 12 KBit 515 0.25 KBit 4731 73 KBit 85 MHz
2 KB 16 199 23.5 KBit 1045 0.5 KBit 5142 85 KBit 85 MHz
4 KB 32 172 46 KBit 1369 1 KBit 5344 108 KBit 81 MHz
8 KB 64 171 90 KBit 3235 2 KBit 7257 153 KBit 79 MHz

size. A highly associative LRU cache (i.e., 32-way and more) dominates the maximum
clock frequency and consumes considerable logic resources.

6 Related Work

Early work on data cache access classification by White et al. focusses on computing
addresses and analyzing array access patterns [13]. It is assumed, however, that the
exact memory accesses can be resolved. Ferdinand et al. [10] discuss the use of dataflow
analysis for data cache analysis. They suggest to use persistence analysis to deal with
memory accesses which reference one out of a set of possible addresses.

To overcome the problems with unknown memory addresses, Lundquist et al. [14]
suggest to distinguish unpredictable and predictable memory accesses to improve the
analysis of data caches. If an address cannot be resolved at compile time, accesses to
that address are considered as unpredictable. Those data structures which might be ac-
cessed by unpredictable memory accesses are marked for being moved into an uncached
memory area. Vera et al. [15] lock the cache during accesses to unpredictable data . The
locking proposed there affects all kinds of memory accesses though, and therefore is
necessarily coarse grained.

7 Conclusion

Chip-multiprocessor systems increase the pressure on the memory bandwidth and cach-
ing of instructions and data is mandatory. In order to estimate tight WCET values, we
propose to split data caches for different data areas. Benchmarking of embedded ap-
plications show possible tradeoffs between achievable hit rates and sizes of the differ-
ent caches. Splitting the data cache for different access types (e.g., constant pool and
heap) allows to modularize the cache analysis. Furthermore, unknown addresses of one
data type access have no impact on data accesses of a different type. Caches for data
where the address is not known statically (e.g., heap allocated data), can only be ana-
lyzed when the cache has a very high associativity. From our prototype implementation
within an FPGA we conclude that LRU caches scale up to an associativity of 16 and
FIFO caches up to an associativity of 64.



Acknowledgements

The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement number
216682 (JEOPARD).

References

1. Patterson, D.A.: Reduced instruction set computers. Commun. ACM 28(1) (1985) 8–21
2. Arnold, R., Mueller, F., Whalley, D., Harmon, M.: Bounding worst-case instruction cache

performance. In: Proceedings of the Real-Time Systems Symposium 1994. (December 1994)
172–181

3. Schoeberl, M.: Time-predictable cache organization. In: Proceedings of the First Inter-
national Workshop on Software Technologies for Future Dependable Distributed Systems
(STFSSD 2009), Tokyo, Japan, IEEE Computer Society (March 2009)

4. Schoeberl, M.: A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture 54/1–2 (2008) 265–286

5. Schoeberl, M.: A time predictable instruction cache for a Java processor. In: On the Move
to Meaningful Internet Systems 2004: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2004). Volume 3292 of LNCS., Agia Napa, Cyprus, Springer
(October 2004) 371–382

6. Schoeberl, M.: Design and implementation of an efficient stack machine. In: Proceedings of
the 12th IEEE Reconfigurable Architecture Workshop (RAW2005), Denver, Colorado, USA,
IEEE (April 2005)

7. Schoeberl, M.: Application experiences with a real-time Java processor. In: Proceedings of
the 17th IFAC World Congress, Seoul, Korea (July 2008)

8. Huber, B.: Worst-case execution time analysis for real-time Java. Master’s thesis, Vienna
University of Technology, Austria (2009)

9. Theiling, H., Ferdinand, C., Wilhelm, R.: Fast and precise WCET prediction by separated
cache and path analyses. Real-Time Syst. 18(2/3) (2000) 157–179

10. Ferdinand, C., Wilhelm, R.: On predicting data cache behavior for real-time systems. In:
LCTES ’98: Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems, London, UK, Springer-Verlag (1998) 16–30

11. Engblom, J., Ermedahl, A.: Modeling complex flows for worst-case execution time analysis.
In: RTSS ’00: Proceedings of the 21st IEEE Real-Time Systems Symposium, Los Alamitos,
CA, USA, IEEE Computer Society (December 2000) 163–174

12. Click, C.: Global code motion/global value numbering. SIGPLAN Not. 30(6) (1995) 246–
257

13. White, R.T., Mueller, F., Healy, C., Whalley, D., Harmon, M.: Timing analysis for data and
wrap-around fill caches. Real-Time Syst. 17(2-3) (1999) 209–233

14. Lundqvist, T., Stenström, P.: A method to improve the estimated worst-case performance of
data caching. In: RTCSA ’99: Proceedings of the Sixth International Conference on Real-
Time Computing Systems and Applications, Washington, DC, USA, IEEE Computer Society
(1999) 255–262

15. Vera, X., Lisper, B., Xue, J.: Data caches in multitasking hard real-time systems. In: RTSS
’03: Proceedings of the 24th IEEE International Real-Time Systems Symposium, Washing-
ton, DC, USA, IEEE Computer Society (2003) 154–165


