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Abstract—In this paper we examine the idea of implementing
communicating sequential processes (CSP) constructs on a Java
embedded chip multiprocessor (CMP). The approach is intended
to reduce the memory bandwidth pressure on the shared memory,
by employing a dedicated network-on-chip (NoC). The presented
solution is scalable and also specific for our limited resources
and real-time predictability requirements. A CMP architecture of
three processors is implemented and tested on an FPGA, showing
a 15% increase in device area without performance penalties.
Compared to shared memory-based communication, our NoC-
based solution is between 2.3 and 11.5 times faster, depending
on the communication and memory configuration.

I. INTRODUCTION

Historically, the increase in complexity of computing ap-
plications has been tackled by increasing the performance of
processors and memories, while maintaining the single core
system architecture. The trend was to exploit the implicit
parallelism at instruction-level as opposed to explicit thread-
level parallelism, such as in transputers [7], [24]. At the time
when transputers were introduced, single core performance
started to increase about 52% per year [4]. Conventional CPU
designs were offering enough performance and therefore little
incentive to rewrite code to expose parallelism, rendering the
transputer approach unsuccessful at the time.

As limits in technology and energy consumption make it
increasingly harder to meet the performance requirements,
chip manufacturers gradually turned their attention towards
architectures that again attempt to exploit thread level paral-
lelism. Particularly popular are today multiple cores on a single
chip, sharing the main memory (chip multiprocessors, CMP).
However, with the increase in number of cores, memory
bandwidth and cache-coherence issues are becoming limiting
factors for CMP systems, requiring other forms of on-chip
communications for further performance scaling. Transputer-
like architectures are again coming into focus in the form of
massively parallel processing arrays (MPPA), offering both
a high degree of parallelism and a scalable communication
structure [1], [8], [19]. Naturally, the computational models
used for programming such architectures are Kahn process
networks (KPN [9]) or communicating sequential processes
(CSP [6]).

In this paper we present an approach for relaxing the
memory bandwidth pressure in a embedded Java CMP [14],

by means of hardware communication channels and a CSP
programming model for Java similar to [5], [21], [22].

The remainder of the paper is organized as follows. Sec-
tion II briefly mentions some of the related work. Section
III describes the driving requirements for our system. The
hardware solution is described in detail in section IV while
the software architecture is addressed in section V. Results
from a preliminary evaluation of our design are presented in
section VI and conclusions are drawn in section VII.

II. RELATED WORK

The Communicating Sequential Processes (CSP [6]) model
was first introduced by C.A.R. Hoare in 1978 and has since
seen a few changes and many successful applications, in-
fluencing a number of related models of computation. At
the basis of CSP are processes (fundamental behaviors) op-
erating independently and interacting with each other only
through events (messages). The ways these processes may
be composed (sequential, parallel, alternative, etc.) and how
they communicate with each other or the environment are
precisely defined through algebraic operators. This formal
basis made CSP appealing to a wide range of domains,
including specification, modeling, verification and analysis of
various complex systems (hardware, dependable and safety-
critical systems, protocols, etc.)

Occam [10] as a programing and specification language and
the transputer [7], [24] designed to run Occam programs are
among the most famous applications of CSP. A transputer
is a fairly conventional microprocessor, with some hardware
support for the Occam/CSP model of concurrency, that would
reside on the same chip with its required RAM memory. A
number of Occam processes could share the same transputer
using a microcoded scheduler and employ local channels
(memory) to exchange messages. Several transputers would
form a transputer system by connecting together via (four)
serial links (corresponding to Occam channels), used to send
data in one direction and receive an acknowledgement back.
These design features were dictated by the cost of IC devices
and interconnect between them. The same concept is found in
MPPAs, with variation in the complexity of the processors and
the width and type of the interconnect [1], [8], [19]. Ultimately,



the intention is to achieve a high degree of parallelism at thread
level and a scalable architecture.

With the advent of Java as a programming environment
and building upon the success of the CSP formalism, a
number of Java libraries supporting the CSP semantics have
been developed. Among these, Communicating Sequential
Processes for Java (JCSP, [22]) and Communicating Threads
in Java (CTJ, [5]) appear to be the most mature. JCSP and
CTJ co-evolved and have many similarities, providing a full
range of CSP constructs, with JCSP focusing on general
concurrent programming and CTJ offering support for real-
time systems [20]. In both approaches channels are supported
on shared memory or by explicitly extending classes for
embedded to communication hardware. JCSP does provide a
networking package (JCSP.net), intended for communication
between different JVMs, but this seems to have a rather high
communication overhead in terms of number of threads and
delay [2]. Our intention is to learn from all these approaches,
instead of competing with them, and gather the best features
for our system, as we detail next.

III. CSP FOR A JAVA CMP

The Java chip multiprocessor [13], [14] we focus our
attention on is designed for embedded systems, contains a
number of processors sharing a global memory, and is in-
tended for FPGA platforms. The processors are of JOP type,
which is an implementation of the Java virtual machine in
hardware [17]. The main design constraint of JOP is time-
predictable execution of Java bytecode. Therefore, it is an easy
target for worst-case execution time analysis [3], [18].

To keep this CMP system time-predictable, the access to the
shared main memory is controlled by a TDMA-based arbiter.
The static schedule of the TDMA arbiter has been integrated
into the low-level timing model of JOP in the WCET analysis
tool WCA [18], thus WCET analysis is possible even for
a JOP-based CMP system. Nevertheless, the communication
between threads is carried out through the shared memory.
Naturally, for systems with more than two processors, the
arbitration for shared memory accesses is increasing, and leads
to a bottleneck in execution.

Our solution is to employ a dedicated communication struc-
ture between processors, along with fast local memories, and
a CSP programming approach in order to relax the memory
bandwidth pressure. A number of restrictions and limitations
made us to adopt our own communication hardware and
software solutions instead of using existing ones.

First, non-local CSP channels should map to dedicated
hardware, as in transputers, instead of shared memory as
in JCSP and CTJ. These hardware links should be efficient,
parallel rather than serial, and at the same time shared between
different CSP channels. The structure should be scalable and
easily accommodate a larger number (tens) of processors,
with minimal overhead due to limited resources available
in embedded systems. Second, the software support should
also be efficient, keeping the threads and context switches
to a minimum. Furthermore, the processors use Java, thus

approaches that compile Java to native calls to specific kernels
(i.e. [11]) are not applicable. Also, using channels should be
transparent, regardless of where the communication processes
are located (same processor, different processors on the same
chip or different chips). Third, maintaining the real-time
characteristics of the system is an important aspect, calling
for predictable hardware and software behavior.

IV. HARDWARE SUPPORT FOR CSP

It is of course possible to implement CSP channels via
shared memory, but that would undermine our primary goal of
relaxing the memory bandwidth pressure in our CMP system.
Avoiding shared memory entirely, transputers and MPPAs
employ mainly point-to-point links to exchange data between
neighbor processors, complemented by a global network.
Typically in such architectures point-to-point links map one-to-
one to CSP channels, thus links are exclusively used by single
processes. This limits the mapping of processes to processors
and may lead to underutilized hardware resources, making
such approaches desirable mainly for streaming applications,
with regular flow of data. For embedded systems with limited
resources and lower requirements in performance, a balanced
solution is possible.

A. A TDMA network

In our case, we decided adopt a ring network-on-chip
(NoC), that can accommodate several virtual CSP channels
on a single physical connection, in a Time Division Multi-
ple Access (TDMA) manner. This concept is similar to the
proposed time-triggered NoC [16]. Compared to the TT-NoC,
we have further simplified the scheduling of the packets. Each
sender has a unique send slot, thus no scheduling tables are
needed. A more detailed description follows.

The network itself is composed of a ring of N registers for N
nodes. An example of such a simple NoC for four JOP nodes
is shown in Figure 1. The registers shift every clock cycle.1

Every Nth clock, the information repeats – unless modified by
the nodes. Each node has allocated a single slot (clock) where
it can send data to any of the other nodes. Each slot carries its
own identifier and a packet with the destination identifier, a
packet type (NIL, DATA, EOD, ACK), and a load of one word.
Slot identifiers are constant and cannot be overwritten, while
the packet contents vary.

Messages can be composed of several packets, each packet
being acknowledged on individual basis. For example, suppose
node P needs to send M words to node R. P will be able
to send DATA packet every Nth clock, once its slot comes
around. When R realizes that itself is the destination from
slot P, R starts receiving information (paying attention only to
P slots) until a special EOD – end of data – word is received.
EOD type packets may contain data (in case M=1). For every
received word, R alters the content of slot P to an ACK. Notice
that R can write in slot P, but only acknowledgement packets
(ACK). When the ACK reaches back to P (P listens to P slots

1An efficient solution would be to shift only when communication needs
to be carried out, which is one of the planned future developments.
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Fig. 1. A ring NoC with four simple routers.

when sending data), P is ready to send the next word in the
message. If P detects that the packet is not an ACK, it simply
lets it spin. If P detects an ACK to its last packet, it fills frame
P with a NIL packet. Whenever a node has nothing to send, it
fills its own slot with a NIL packet. If a receiving R detects an
ACK packet in the P slot, it simply lets it spin. In fact, in all
other situations than acknowledging a new packet, R leaves
the packets go through unmodified.

Note that each node can use only its own slot to send data
(DATA, EOD). Destination nodes use the source node slot to
send the ACK. As the mapping of slots to nodes is one-to-one,
and each packet needs an ACK, there is no need for sequence
numbers.

A block diagram of a simple router implementing this
protocol is depicted in Figure 2. Routers can handle the
network communication independently, exchanging data with
a JOP processor whenever needed, through a SimpCon inter-
face [15]. If buffers are full/empty in the destination/source,
the packets spin around unmodified until buffer space/data
becomes available. In addition, sources can be selectively
listened to, by masking specific slots in a special bit map (rcv
mask), being transparent to all other nodes.

These routers were designed for simplicity and speed, to
allow fast message exchange between processors. Their in-
tended use is in a single ring configuration, but more complex
configurations can be formed. In particular, every JOP node
could use two routers, one for a horizontal and the other for
a vertical ring, forming a mesh configuration. More irregular
configurations are also possible, allowing rings of any number
of nodes. Nevertheless, for configurations with more than
one ring, some of the nodes may not be directly connected,
requiring more complex software or efficient mapping of
processes to nodes.

B. SPM for local buffers

Employing hardware channels to send messages between
processors would be useless if the messages end up in the
shared memory anyway. Our idea is to use fast scratch-pad
memories (SPM), local to each JOP and mapped to RTSJ
style scoped memories [23], to act as buffers for receiving
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Fig. 2. A simplified block diagram of our NoC router.

and sending channel messages. Future versions may include
the SPM directly inside the routers, and avoid the data going
through the FIFOs, but for now the processor is required
to transfer the data from/to the necessary SPM locations
into/from the routers.

C. Network software interface

A NoC router is connected to a JOP node through a
SimpCon interface [15], thus its registers are memory mapped.
Communication with the router is achieved through four
addresses that can be read or written. Read addresses have
the following meaning:

00 StatusReg: Uses the lower 16 bits. The lower byte is the
node address (set at synthesis). The upper byte contains
flags describing the busy state of the router, EOD seen
flag, and the send/receive FIFOs full/empty status. These
depend only on the FIFO size, not the message size.
Default FIFOs are of size two.

01 SndRdyReg: Describes the status of the slots. A ”1” in
position K means the slot used by node K contains data.
Through this, multiple channels can be monitored at once,
offering support for Occam-like ALT and PRI ALT.

10 RcvSourceReg: The source address for this message.
11 RcvDataReg: Next word from the message. Blocks if

the receive FIFO is empty. To check the status use the
StatusReg, for non blocking operations.

Write addresses have the following meaning:

00 RcvMaskReset: Resets EoD, the receive FIFO and speci-
fies the mask for the slots to receive from. The meaning
of this mask is similar to SndRdyReg. A ”0” on position
K allows messages from node K to be received, while a
”1” masks it.

01 SndCntReg: Use to specify the number of words in the
message. Clears the send FIFO. Sending starts automat-
ically after this.

10 SndDestReg: Use to specify destination node address.



11 SndDataReg: Use to send the next word in the message.
Blocks if send FIFO is full. For non-blocking operations
check the StatusReg.

Typically a reception can start at any time from any non-
masked source. Once the reception started, that source is
followed until the EOD is received. The software has to keep
reading data from the receive buffer until empty and the end of
message flag is set. No new receptions may start unless the end
of message flag is reset explicitly through software. To send a
message, the destination must be provided first followed by the
number of words in the message and then the content of the
message. The software should monitor the send and receive
buffer flags, to avoid attempts to write in a full send buffer or
read from an empty receive buffer.

V. SOFTWARE ARCHITECTURE

In hardware, sending a message between two nodes is
acknowledged on word basis. This means that the sender and
the receiver nodes do have a rendezvous in the CSP sense.
Transputers and MPPAs in general require a rather restrictive
mapping of processes and channels to processors and links.
Among other restrictions, each link (often four for each node)
are dedicated to one channel only. Using the same restriction
for our architecture, a basic hardware network operation (one
send or one receive) is enough to achieve the rendezvous
behavior required by CSP. In fact, the sender and the receiver
will be slightly out of phase (the receiver continues after an
EoD packet, while the sender continues after the Ack to its
EoD packet), by exactly K clock cycles, if there are K hops
in between the receiver and sender (network distance).

A. Sharing processors and channels

Our intention is to allow both several processes to share the
same processor and several channels to share the same slot.
This would allow more flexibility in mapping applications to
our architecture. The real complications appear from channels
in between different processes sharing the same slot. One
idea would be to block any other outgoing communications
as soon as a task needs to send (receive), until the other
end is ready to receive (send), so as to achieve true CSP
rendezvous. It is essential to realize that the sender and
receiver of the same channel must be selected for execution
on the communicating nodes. Note that it is very possible that
the sender (receiver) may block other processes from using
the NoC for an indeterminate amount of time. This may lead
to deadlocks or inefficient execution at best.

Another way, which we adopt herein, is to receive any
incoming messages in a system task, but have the individual re-
ceiver acknowledge them explicitly through a message back to
the sender (as depicted in Figure 3). Senders in their turn, must
await and receive this acknowledge. The physical medium is in
this case not occupied waiting for a receiver to start receiving,
allowing several virtual channels to communicate at the same
time, in any order. The drawback is the need for the additional
acknowledgement at message level. The rendezvous behavior
is kept, while also allowing for better concurrency.

B. Implementation details

We have written a CSP Java library that implements channel
communication as described above. It allows for different
types of channels (local, NoC, and stream), and provides the
same interface to all. Local channels are supposed to be used
by processes running on the same processor. NoC channels are
supported through the NoC hardware, as a means of communi-
cation between processors on the same chip. Stream channels
use the standard Java DataStream classes to implement CSP
channels and is intended for off chip communication, such
as TCP/IP or RS232. Regardless of the type, all the received
messages are handled by the same message queue, which is
a shared resource between all the processes and the system
tasks listening to communication media (i.e. the NoC Listener
in Figure 3).

Since channels are now bi-directional (the ACK message
needs to get back to the sender2), we assign a unique identifier
to each channel end. Messages going through the channels
are carrying the destination end identifier with them, so that
they can be found in the common message queue. Setting
up a channel requires creating two ends, one used to send
(receive) the actual message and the other used to receive
(send) the acknowledgement. Ends must be of appropriate
type, depending on where the processes are located relative
to each other.

An illustrative example of four processes executing on three
processors, communicating through four channels of various
types is shown in Figure 4. Channel 1 is a local channel,
channels 2 and 3 are NoC mapped channels, while channel 4
is a stream channel. The red numbers represent the channel
end identifiers.

Using Java threads as CSP processes is an obvious choice
that we also adopt at this stage in our approach. In particular,
on each processor in a CSP system, there is one Java thread
per CSP process along with one listener thread for each
shared communication media (one NoC listener, plus one
listener per stream). Local channels do not require listeners.
Compare this to JCSP networking, which requires more than
six processes/threads [2] per channel.

C. Further development

The CSP library developed for JOP CMP is rather limited
at this point, focusing on providing basic functionality. The
intention is to make this more complete, to offer more support
to the programmer. Typed channels are easy to introduce,
by employing Java serialisation or a JDO-like persistence
[12], over the existing channels. CSP constructs similar to the
Occam ALT, PRI ALT, PAR, PRI PAR, although possible through
regular Java constructs, will be added for better support.

Channel creation at this point requires exact knowledge
of the location and type of channels. Additionally, processes
are explicitly bound to processors by the programmer, just
as in transputer and MPPA programming approaches. Our

2In fact the ACK message does not have to get back to the sender through
the same medium, but it makes sense to do so.
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intention is to build a source pre-processor, that can merge
processes, optimize the process to processor mapping and
channel assignment, generating code that uses the CSP library.

VI. EVALUATION

The TDMA routers and NoC have been implemented in
VHDL and tested separately before integrating them with the
CMP. The critical path delay was kept under the delay in the
JOP critical path, and synthesis results for full systems show
no performance penalty in terms of clock speed.

A CMP version with three JOP cores was synthesized
and tested on Altera Cyclone (EP1C12) and Digilent Nexys2
(XC3S1200) FPGA boards. Table I shows the resource con-
sumption of the individual elements. The TDMA-based NoC
for three cores consumes less than a single processor core.
However, relative to the whole design the resource consump-
tion is a moderate 15%.

The performance of the CSP exchange via the NoC was
compared with data exchange via the shared heap on the three
JOP core configuration. On both of the boards used, the NoC-
based communication is considerably faster than the shared

TABLE I
RESOURCE CONSUMPTION OF A THREE CORE CMP SYSTEM WITH THE

PROPOSED NOC INTERCONNECT

Module Logic Memory

Core 0 2146 LC 49 KBit
I/O 0 375 LC 0 KBit

Core 1 2170 LC 49 KBit
I/O 1 354 LC 0 KBit

Core 2 2162 LC 49 KBit
I/O 2 412 LC 0 KBit

Arbiter 404 LC 0 KBit
Memory interface 101 LC 0 KBit

TDMA NoC 1413 LC 0 KBit

Total 9542 LC 147 KBit

memory approach. For instance, on the Altera Cyclone board,
communicating 100 words (1 word/packet) via NoC is 2.3
times faster than using the on-board fast SRAM memory. On
the Digilent Nexys2 (with a slow pseudo SRAM-based main
memory) the speed-up of the CSP communication is 3.8 for the
same setup. This increases to 5.1 and 11.5 respectively, when
long packets (100 words/packet) are used, since the header
overhead is reduced. We also observed that the communication
delay over the NoC scales linearly with the amount of data.
Nevertheless, the current design is not yet optimized for high
performance, and further improvements are expected.

High-level programming support is available through a Java
library for channel communication (11 classes) that currently
supports local, NoC, and stream type channels. The local and
stream channels have been tested on standard JRE while the
low level NoC operations were tested on the CMP system only.
We are currently conducting more extensive experiments on
CMPs of up to eight JOPs for determining the speed-up using
NoC channels versus typical shared memory communication.



VII. CONCLUSION

We have presented a CSP implementation for a Java embed-
ded CMP, adopted in order to release the bandwidth pressure
on the shared memory. Our solution is specific for systems
with limited resources and real-time requirements. A ring
TDMA NoC along with scratch-pad memories are used to
implement fast and time predictable communication between
processors. The concept was tested on a CMP of three JOP
processors, implemented on two different prototyping boards,
an Altera Cyclone and a Digilent Nexys2. Measurements show
that the device area overhead is in the 15% range, without any
performance penalty. The actual speed-up of NoC channels vs.
shared memory communication was observed to be as high as
11.5 for long packets and slow memories.

APPENDIX

The source files for the hardware and software used in
this paper can be found in the JOP archive, accessed as
described at http://www.jopwiki.com/Download. Follow the
make instructions to obtain the automatically generated vhdl
modules required. Relative to the archive root, the Altera
Cyclone top VHDL module is located in vhdl/paper/csp
while the Xilinx ISE 12.2 project for Digilent Nexys2 board
is located in vhdl/paper/nexys2_csp. Synthesize and
download the hardware using the appropriate tools for your
board.

The software support for CSP is located in the
java/target/src/paper/csp directory.

To compile the application mentioned in the paper, use:
make japp P1=paper P2=csp P3=BenchCSP

in the archive root directory.
To download the application onto the configured board, use:

down -e java/target/dist/bin/BenchCsp.jop com6

in the archive root directory, with the appropriate com for your
desktop system.
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