
Microprocessors and Microsystems 37 (2013) 472–481
Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Hardware support for CSP on a Java chip multiprocessor

Flavius Gruian a,⇑, Martin Schoeberl b

a Dept. of Computer Science, Lund University, 22100 Lund, Sweden
b Dept. of Informatics and Mathematical Modeling, Technical University of Denmark, 2800 Lyngby, Denmark

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 30 August 2012

Keywords:
Java
Embedded systems
Network-on-chip
Communicating sequential processes
0141-9331/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.micpro.2012.08.004

⇑ Corresponding author.
E-mail addresses: flavius.gruian@cs.lth.se (F. Gru

Schoeberl).
Due to memory bandwidth limitations, chip multiprocessors (CMPs) adopting the convenient shared
memory model for their main memory architecture scale poorly. On-chip core-to-core communication
is a solution to this problem, that can lead to further performance increase for a number of multithreaded
applications. Programmatically, the Communicating Sequential Processes (CSPs) paradigm provides a
sound computational model for such an architecture with message based communication. In this paper
we explore hardware support for CSP in the context of an embedded Java CMP. The hardware support for
CSP are on-chip communication channels, implemented by a ring-based network-on-chip (NoC), to
reduce the memory bandwidth pressure on the shared memory.

The presented solution is scalable and also specific for our limited resources and real-time predictabil-
ity requirements. CMP architectures of three to eight processors were implemented and tested on both
Altera (EP1C12, EP2C70) and Xilinx (XC3S1200e) FPGAs, showing that the NoC accounts for under 9%
of the total device area used by the system. Compared to shared memory-based communication, our
NoC-based solution is between 1.7 and 9.3 times faster for raw data transfer, depending on the commu-
nication and memory configuration. Application speed-up, on the other hand, is highly dependent on the
type of processing, as our measurements show.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Chip multiprocessors (CMPs) are gradually replacing single core
processors in all kinds of systems, as technology can no longer keep
pace with the requirements of today’s applications in terms of per-
formance and power consumption. Chip manufacturers are hopeful
that more cores automatically means higher performance, as more
threads can execute in parallel. Traditionally, the programming
model for threads executing on single core is usually based on
shared memory, which imposes relatively few problems on such
architectures. Nevertheless, the shared memory model runs into
problems as the number of cores increases, since memory band-
width and cache coherence issues become limiting factors.
Although considerable effort is spent on providing a cache-coherent
view of shared memory, also with non-uniform memory access
time (ccNUMA), we consider that (additional) message passing is
the path to further multi-core performance increase. To overcome
the shared memory issues and provide further performance
increase as systems scale up, two important changes must be
adopted: better core-to-core communication mechanisms, e.g., net-
ll rights reserved.

ian), masca@imm.dtu.dk (M.
works-on-chip (NoC), and suitable programming models, based on
message passing, e.g., Communicating Sequential Processes (CSPs).

Attempts to exploit thread-level parallelism through both
architecture and programming model are not new, and had been
tentatively investigated in the past, such as the Transputer/Occam
approach [1,2]. Nevertheless, at the time when Transputers were
introduced, single core performance started to increase about 52%
per year [3]. Conventional CPU designs were offering enough per-
formance and therefore little incentive to rewrite code to expose
parallelism, rendering the Transputer approach unsuccessful at
the time.

Recently, as single cores cannot offer enough performance,
Transputer-like architectures are again coming into focus in the
form of massively parallel processing arrays (MPPAs). These are
offering both a high degree of parallelism and a scalable communi-
cation structure [4–6]. Naturally, the computational models used
for programming such architectures are Kahn process networks
(KPNs [7]) or communicating sequential processes (CSPs [8]).

In this paper we present an approach for relaxing the memory
bandwidth pressure in a embedded Java CMP [9], by means of
hardware communication channels and a CSP programming model
for Java similar to [10–12]. The initial system, containing a shared
memory, is augmented with a network-on-chip (NoC), intended to
provide a direct way of exchanging data between processors.
Shared memory is still used to store the code, as many of the Java

http://dx.doi.org/10.1016/j.micpro.2012.08.004
mailto:flavius.gruian@cs.lth.se
mailto:masca@imm.dtu.dk
http://dx.doi.org/10.1016/j.micpro.2012.08.004
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481 473
classes must usually be available to the majority of tasks running
on different cores. Furthermore, shared memory may be used
and is the default mechanism for storing data and exchanging data
between processors. The new addition is a ring network-on-chip,
designed for predictability and minimal device utilization. The net-
work is accessible from each core via custom routers that have an
easy-to-use interface. Scratch-pad memories are employed to store
network-passed data, in order to avoid the need to use shared
memory, which would negate our initial intention. A specific appli-
cation programming interface (API), in the form of Java classes, has
been written to allow CSP-like programming to take advantage of
underlaying architecture.

This paper is an extension of [13]. The current version contains
a number of additions, improvements and updates. It introduces a
novel multi-ring network architecture, where several rings may be
connected through switches, in order to accommodate large net-
works, without the risk of excessive delays between selected
nodes. We also describe experiments carried out on larger systems,
of up to eight cores, on yet another FPGA platform (Altera DE2).
Additionally, we give performance measurements for some more
realistic applications, in addition to the simple inter-processor data
transfer via shared memory and NoC. Finally, we rerun the exper-
iments to use the latest version of hardware, core updates, and
tools. The contributions of this paper are as follows:

1. Hardware support for CSP channels with a network-on-chip
2. A time-predictable network-on-chip
3. Java based API for CSP communications
4. Multi-ring architecture for larger systems

The remainder of the paper is organized as follows. Section 2
describes related work. Section 3 describes the driving require-
ments for our system. The hardware solution is described in detail
in Section 4 while the software architecture is addressed in Sec-
tion 5. Evaluation results of our design are presented in Section 6
and conclusions are drawn in Section 7.
2. Related work

The Communicating sequential processes (CSPs [8]) model was
first introduced by C.A.R. Hoare in 1978 and has since seen a few
changes and many successful applications, influencing a number
of related models of computation. At the basis of CSP are processes
(fundamental behaviors) operating independently and interacting
with each other only through events (messages). The ways these
processes may be composed (sequential, parallel, alternative,
etc.) and how they communicate with each other or the environ-
ment are precisely defined through algebraic operators. This for-
mal basis made CSP appealing to a wide range of domains,
including specification, modeling, verification and analysis of vari-
ous complex systems (hardware, dependable and safety–critical
systems, protocols, etc.).

Occam [14] as a programing and specification language and the
Transputer [1,2] designed to run Occam programs are among the
most famous applications of CSP. A Transputer is a fairly conven-
tional microprocessor, with some hardware support for the Oc-
cam/CSP model of concurrency that would reside on the same
chip with its required RAM memory. A number of Occam processes
could share the same Transputer using a microcoded scheduler and
employ local channels (memory) to exchange messages. Several
Transputers would form a Transputer system by connecting to-
gether via four serial links, which correspond to Occam channels,
used to send data in one direction and receive an acknowledge-
ment back. These design features were dictated by the cost of
integrated circuits and the interconnect between them. The same
concept is found in MPPAs, with variation in the complexity of
the processors and the type of the interconnect [4–6].

Ambric AM2045 [4], for instance, contains 336 32-bit proces-
sors, organized in 5 � 9 brics, and offers three levels of communica-
tion. Along with the intra-bric communication (level 1) including
crossbars between the bric’s four CPUs, there are also bric-to-bric
channels (level 2) that map one-to-one to channels, as well as a glo-
bal mesh interconnect (level 3) that can be shared by several chan-
nels. As in the Transputer, Ambric processors execute a single object
(written in a subset of Java), and block whenever a channel send/re-
ceive cannot proceed. Ultimately, the intention is to achieve a high
degree of parallelism at thread level and a scalable architecture.

From the architectural point of view, using networks on-chip
(NoC) has become the answer to many of the scalability problems
of shared memory [15,16]. Hybrid approaches, that efficiently sup-
port both shared-memory and message-passing programming par-
adigms, have recently been revived to fit systems on-chip [17,18].
The majority of NoC research focuses on mesh networks, due to
their flexibility and regularity.

For instance, the Single-chip Cloud Computer (SCC [18]) is a re-
cent experimental platform from Intel, comprising 24 tiles of two
P54C cores, connected through a mesh network and capable of man-
aging 16 GB of off-chip memory through four shared DDR ports.
Core-to-core communication may occur either through the off-chip
memory, or on-chip via message passing through the mesh network,
that supports eight virtual channels. A similar approach is taken by
Tilera’s Tile64 processor [19], which is a 8 � 8 array of VLIW proces-
sors, connected through five independent mesh networks. Off-chip
connections include four DDR ports, accessible to all cores. Both of
these architectures are supported by C/C++ compilers and can run
fully-fledged operating systems, such as Linux. Whereas the previ-
ous approaches avoid handling cache coherency issues and employ
NoCs to directly exchange data between nodes, the newer TilePro64
architecture from Tilera as well as the work in [20] have dedicated
mesh networks for supporting cache coherency.

In this paper, in contrast to the aforementioned work, we will
adopt ring networks as on-chip interconnect, because of their pre-
dictability and simplicity required by our intended area of applica-
tion, namely embedded real-time systems. In this sense, the
communication infrastructure we adopt is perhaps most similar
to the mesh network in [21], yet less complex and therefore using
fewer resources. Furthermore, our architecture supports direct Java
bytecode execution, offering a Java virtual machine view to the
programmer.

With the advent of Java as a programming environment and
building upon the success of the CSP formalism, a number of Java
libraries supporting the CSP semantics have been developed.
Among these, Communicating Sequential Processes for Java (JCSP,
[11]) and Communicating Threads in Java (CTJ, [12]) appear to be
the most mature. JCSP and CTJ co-evolved and have many similari-
ties, providing a full range of CSP constructs, with JCSP focusing on
general concurrent programming and CTJ offering support for real-
time systems [22]. In both approaches channels are supported on
shared memory or by explicitly extending classes for embedded
to communication hardware. JCSP does provide a networking pack-
age (JCSP.net), intended for communication between different
JVMs, but this seems to have a rather high communication over-
head in terms of number of threads and delay [23]. Our intention
is to learn from all these approaches, instead of competing with
them, and gather the best features for our system, as we detail next.
3. CSP for a Java CMP

The Java chip multiprocessor [24,9] we focus our attention on is
designed for embedded systems, contains a number of processors



474 F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481
sharing a global memory, and is intended for FPGA platforms. The
processors are Java processors, named JOP, which are an imple-
mentation of the Java virtual machine in hardware [25]. The main
design constraint of JOP is time-predictable execution of Java byte-
code. Therefore, it is an easy target for worst-case execution time
analysis [26,27]. We use a Java processor, as this is the only solu-
tion we are aware of, where WCET analysis for Java is possible.

JOP supports real-time multitasking, using a preemptive and
strictly priority based scheduler. The real-time Java version that
JOP supports is aiming towards the upcoming specification of
safety–critical Java [28]. On a CMP system, threads are pinned to
individual processor cores; threads do not migrate between cores.
That means, that each core executes a preemptive, priority based
scheduler.

To keep this CMP system time-predictable, the access to the
shared main memory is controlled by a TDMA-based arbiter. The
static schedule of the TDMA arbiter has been integrated into the
low-level timing model of JOP in the WCET analysis tool WCA
[26], thus WCET analysis is possible even for a JOP-based CMP sys-
tem. Fig. 1 shows a JOP CMP system with TDMA based access to the
shared memory. Each processor core also contains local memories:
M$ is a method cache for instruction caching, S$ is a stack cache for
stack allocated data, and SPM stands for a scratchpad memory.
These three local memories contain only thread local data and
need no cache coherence protocol. JOP may also be configured with
an object cache [29], which supports cache coherent sharing of
data. However, as we want to explore CSP based communication,
we have disabled the object cache in our experiments. Neverthe-
less, the communication between threads is carried out through
the shared memory. Naturally, for systems with more than two
processors, the arbitration for shared memory accesses is increas-
ing, and leads to a bottleneck in execution. In the evaluation we
employ the scratchpad memory for local operations.

Our solution is to employ a dedicated communication structure
between processors, along with fast local memories, and a CSP pro-
gramming approach in order to relax the memory bandwidth pres-
sure. A number of restrictions and limitations made us to adopt our
own communication hardware and software solutions instead of
using existing ones.
JOP chip-multiprocessor

JOP pipeline

M$ SPMS$

JOP pipe

M$ S$

TDMA arb

Memor
controll

Main mem

Fig. 1. CMP system
First, non-local CSP channels should map to dedicated hard-
ware, as in Transputers, instead of shared memory as in JCSP and
CTJ. These hardware links should be efficient, parallel rather than
serial, and at the same time-shared between different CSP chan-
nels. The structure should be scalable and easily accommodate a
larger number (tens) of processors, with minimal overhead due
to limited resources available in embedded systems. Second, the
software support should also be efficient, keeping the threads
and context switches to a minimum. Furthermore, the processors
uses Java, thus approaches that compile Java to native calls to spe-
cific kernels (i.e. [30]) are not applicable. Also, using channels
should be transparent, regardless of where the communication
processes are located (same processor, different processors on
the same chip or different chips). Third, maintaining the real-time
characteristics of the system is an important aspect, calling for pre-
dictable hardware and software behavior.
4. Hardware support for CSP

It is possible to implement CSP channels via shared memory,
but that would undermine our primary goal of relaxing the mem-
ory bandwidth pressure in our CMP system. Avoiding shared mem-
ory entirely; Transputers and MPPAs employ mainly point-to-point
links to exchange data between neighbor processors, comple-
mented by a global network. Typically in such architectures
point-to-point links map one-to-one to CSP channels, thus links
are exclusively used by single processes. This limits the mapping
of processes to processors and may lead to underutilized hardware
resources, making such approaches desirable mainly for streaming
applications, with regular flow of data. For embedded systems with
limited resources and lower requirements in performance, a bal-
anced solution is possible.
4.1. A basic TDMA network

In our case, we decided to adopt a ring network-on-chip (NoC)
that can accommodate several virtual CSP channels on a single
physical connection, in a Time Division Multiple Access (TDMA)
line

SPM

JOP pipeline

M$ SPMS$

iter

y
er

ory

based on JOP.



JOP

JOP0 1

23

TDMA packet

Slot (*) Dst (*) Type (2) Load (32)

Si
m

pC
on

 IF

JOP

JOP

Fig. 2. A ring NoC with four simple routers.

out
Reg

OUT
Ack?

IN

a = node 
address

rcv

SND
FIFO

SimpCon IF

RCV
FIFO

slot
?

new
packet

snd(a+a+2+32)

dstsrc

Ack

snd
rdy

Fig. 3. A simplified block diagram of our NoC router.

0

0

JOP

1

1

JOP

7

7

JOP

6

6

JOP

2

2

JOP

3

3

JOP

5

5

JOP

4

4

JOP

Fig. 4. A NoC of two overlapped rings. The numbers in the boxes are node
addresses.

F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481 475
manner. This concept is similar to the proposed time-triggered NoC
[31], the Æthereal mesh NoC [21], or the static scheduled real-time
NoC [32]. Compared to the aforementioned approaches, we have
further simplified the scheduling of packets. Each sender has pre-
assigned a unique send slot, thus no scheduling tables are needed.
While this pure TDMA approach is wasting link bandwidth, it re-
sults in a very simple router design. Therefore, the savings in chip
area due to the simple router design, avoidance of buffers and flow
control at the routers, may lead to a better bandwidth/cost tradeoff
than trying to add best effort routing on top of a time-predictable
NoC.

The network itself is composed of a ring of N registers for N
nodes. An example of such a simple NoC for four JOP nodes is
shown in Fig. 2. The registers shift every clock cycle.1 Every Nth
clock cycle, the information repeats – unless modified by the nodes.
Each node has allocated a single slot (clock) where it can send data to
any of the other nodes. Note that when a processor does not use its
slot, no other processor can use that slot, i.e. there is no dynamic
bandwidth allocation. Each slot (phit in our case) carries its own
identifier, the destination identifier, a type (NIL, DATA, EOD, Ack),
and a load of one word. Slot identifiers are constant and cannot be
overwritten, while the rest of the contents vary. Note that this is also
the flit unit for our network.

Packets can be composed of an unlimited number of flits, each
flit being acknowledged on individual basis. Thus, there are never
more than one flit en route from a source to a destination, and
no re-ordering of flits or packets is needed. Messages, for our pur-
pose may extend over several packets or be exactly one packet,
containing one flit only.2

As an example of how this setup works, suppose node P needs
to send M words to node R. P will be able to send DATA flit every
Nth clock, once its slot comes around. When P realizes that itself
is the destination from slot P, R starts receiving information (pay-
ing attention only to P slots) until a special EOD – end of data –
word is received. EOD type flits may contain data (in case M = 1).
For every received word, R alters the content of slot P to an ACK. No-
tice that R can write in slot P, but only acknowledgement flits (ACK).
When the ACK reaches back to P (P listens to P slots when sending
data), P is ready to send the next word in the packet. If P detects
that the flit is not an ACK, it simply lets it spin. If P detects an ACK

to its last flit, it fills frame P with a NIL flit. Whenever a node has
nothing to send, it fills its own slot with a NIL flit. If a receiving R
detects an ACK flit in the P slot, it simply lets it spin. In fact, in all
other situations than acknowledging a new flit, R leaves it go
through unmodified.

Note that each node can use only its own slot to send data (DATA,
EOD). Destination nodes use the source node slot to send the ACK. As
the mapping of slots to nodes is one-to-one, and each flit needs an
ACK, there is no need for sequence numbers.

A block diagram of a simple router implementing this protocol
is depicted in Fig. 3. Routers can handle the network communica-
tion independently, exchanging data with a JOP processor when-
ever needed, through a SimpCon interface [33]. If buffers are full/
empty in the destination/source, the flits spin around unmodified
until buffer space/data becomes available.

Multiple clock domains and support for dynamic voltage and
frequency scaling may be introduced by using asynchronous FIFOs
in the router and synchronizers for the registers read/written
1 Naturally always shifting the data in the ring consumes power. Some power-
aware techniques we experimented with are: (a) using gray code node addresses, (b
avoiding shifting the load for non-data flits, (c) stalling the ring when no progress has
been made for N clocks. The results and discussions related to these techniques are
out of the scope of this paper.

2 To summarize, the ring network has a phit size of 32 + a + a + 2 bits (a being the
address field size), a flit size of one phit, while packets and messages may be
arbitrarily long.
)

through SimpConIF, similar to the approach in [31]. The actual ring
would thus function in one clock domain, while all the nodes in
their own clock domain.
4.2. More complex networks

The routers presented above were designed for simplicity and
speed, to allow fast message exchange between processors, while
at the same time being highly predictable. Taking into account only
performance and scalability, ring networks are fare worse than
mesh networks [34]. For N nodes, the diameter and bisection width
in a 2D mesh are 2ð

ffiffiffiffi

N
p
� 1Þ and N, while in a uni-directional ring

these are N � 1 and 1. Nevertheless, in a mesh, even with a number
of virtual channels, packet latency is sensitive to cross traffic due to



0

0

JOP 1

1

JOP

4

4

JOP 5

5

JOP

2

2

JOP 3

3

JOP

6

6

JOP 7

7

JOP

8

8

JOP 9

9

JOP

12

12

JOP 13

13

JOP

10

10

JOP 11

11

JOP

14

14

JOP 15

15

JOP

Fig. 5. A NoC of multiple rings connecting a 2D array of processors.

A: 3 slots B: 5 slots

JOP

2

JOP

1
B

JOP

5

JOP

4

JOP

6

JOP

7
ASwitch

100

1xx 0xx

RingMask = 100

Fig. 6. A NoC of two rings connected through a switch.

out
Reg

OUTBINB
slot
?

slot
?

INA

out
Reg

OUTA

A2B

replyA2B

B2A

replyB2A

state
?

state
?

Sr
c 

= 
N

oC
A

Sr
c 

= 
N

oC
B

D
st

 =
 N

oC
B

D
st

 =
 N

oC
A

Fig. 7. Block diagram of the NoC switch between rings.

A

B3:100xx

B2:010xx

B1:001xx
54

6 7
ASwitch

00100
B

98

10 11
ASwitch

01000
B

1716

18 19
ASwitch

10000
B

xx1xx xx0xx

x0xxxx1xxx

0xxxx1xxxx

Fig. 8. A NoC of three rings connected through another ring and three switches. The
processors are omitted for clarity.

476 F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481
route contention [35] unless special measures are taken to control
or even avoid contention [21]. The TDMA ring we adopt herein is
less sensitive to such traffic, and therefore more predictable, thus
suitable to the type of systems we target. In the worst case, when
all nodes decide to send packets to the same destination, one node
must wait for at most N � 2 packets to arrive at the destination, be-
fore sending its packet. Reducing the packet size decreases this
worst-case latency.

Nevertheless, if network performance becomes a problem for a
single ring, more complex configurations can be formed, either
using several rings, if predictability remains an issue, or combining
rings with a mesh or other structures. We present solutions that
remain highly predictable in the following.

One possibility is for every JOP node to use two or more routers,
in order to connect to several rings at the same time. For example,
a multiple rings architecture similar to the CELL processor [36]
would be possible (see Fig. 4). Another option is a 2D ring-mesh
(similar to a Torus), as shown in Fig. 5. Packet routing and switch-
ing between the different rings must be, in this case, handled in
software. This results in more complex software in addition to
the two routers per node cost in hardware.

To overcome the increase in complexity introduced by the
multiple routers per node, we propose another network architec-
ture, based on multiple rings interconnected through hardware
switches. Furthermore, the rings may be of different size, and the
node assignment such that the communication delay is minimized.
This allows building hierarchical systems where local networks
provide high bandwidth and short latency and the next level con-
nects those local networks. An example of such a network is de-
picted in Fig. 6, which contains two rings, A and B, connected
through a hardware switch. The nodes are still using a single rou-
ter, and are unaware of the fact that they are possibly located on
different rings. The switch introduces its own slot in both rings;
slots that play the roles of gateways from ring A to B and B to A
respectively. The slot identifiers and node addresses are initialized
in such a way that nodes on ring A will use the slot of the switch to
receive data from (and acknowledgements to) B. When sending
data from an A node, the switch picks up on the destination ad-
dress being from B, and forwards this data in its own slot from
the B ring. Additional simultaneous requests will continue to cycle
the sending ring until the current send is acknowledged and the
switch is able to handle the next pending request.

Unlike the local nodes’ slots, the switch slots source address
may change at runtime, according to which remote node is using
the switch at that time. For example, in Fig. 6, if node 1 sends a
package to node 5, the slot corresponding to the switch in ring B
will have its identifier set to 1. Likewise, if node 2 now sends a
package to node 7, the same slot will change its identifier to 2. Nev-
ertheless, the switch will always be identified through its 0 left-
most bit, which does not appear in the addresses of the local
nodes. All of the local slots in ring B will always keep their identi-
fiers as 4, 5, 6, and 7. The switch is built such that it allows each of
the nodes from A, in a round robin fashion, extend their slots
through B as well, allowing nodes from B to receive and acknowl-
edge flits from A. The behavior is similar when sending flits from B
to A. The switch implementation was kept simple, comprising two
frame registers and a four states FSM for either of the A-to-B and B-
to-A loops, as depicted in the block diagram from Fig. 7.

The main advantage of a multi-ring network architecture is the
ability of reducing the communication time between certain nodes
at the expense of the communication time between other nodes. In
particular, nodes that exchange large amounts of data should be
placed on the same (preferably small) ring, allowing for occasional
exchanges with remote nodes via switches. Another example of a
multi-ring network is depicted in Fig. 8, where three different rings
of four nodes are connected via a fourth ring of switches only.



NoC 
Listener

send M

NoC 
Listener

send Ack M
store Ack M

rcv Ack?
false

rcv M?

false

true

Message 
List

store M

Receiver 
Process

rcv M?

rcv Ack?
true

Message 
List

Sender 
Process 

Fig. 9. Sequence diagram for rendezvous with an explicit ACK message.

Process 
C

DataStreamch4

5,6
7

Process 
D

8

Process A

Process 
B

ch1

ch3

ch2

1

3

2

4

k

m

NoC
slots

node k node m

Fig. 10. An example of four CSP processes running on three processors, commu-
nicating through four channels of various types. The dashed lines represent the Ack
message path.

Table 1
Configurations used in the experiments. ⁄ Marks the maximum for that FPGA.

ID Board FPGA JOP
cores

Clock
(MHz)

Off-chip
RAM (KB)

SPM
(KB)

3ne2 Digilent
Nexys2

XC3S1200e 3⁄ 50 4096 1

3cyc Jopdesign
Cycore

EP1C12 3⁄ 40 1024 1

8de2 Altera
DE2-70

EP2C70 8 50 2048 1

4de2 Altera
DE2-70

EP2C70 4 50 2048 1

Table 2
Resource usage for two CMP systems with the proposed NoC on Altera DE2-70.

Modules 4de2 8de2

Logic Memory Logic Memory

All processor cores 14427 LC 38 KB 39000 LC 76 KB
All I/O modules 1236 LC 0 KB 2268 LC 0 KB
Memory arbiter 705 LC 0 KB 1381 LC 0 KB
TDMA NoC 2008 LC 0 KB 4168 LC 0 KB

Total 22975 LC 38 KB 46560 LC 76 KB

Fig. 11. Transfer time in clock cycles for 100 words via NoC and shared memory.

3 This can be combined with the worst case scenario that each node in A may wish
to send a package at the same time, leading to a worst case delay of NA � 2 � (NA + NB).

4 For rings operating in different clock domains this analysis would be even more
complex, since it needs to account for additional synchronization overhead.

F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481 477
Multiple clock domains would be more naturally introduced at
the ring-switch level, where different rings would operate in their
own clock domains, and the ring-switch takes care of the clock do-
main crossing.

Computing the communication latency in a multi-ring network
is more complex than in a single ring, from several reasons, as fol-
lows. Packages circulate with different rates in different rings,
depending on the number of nodes in each ring. For example, in
Fig. 6, the switch can send data in ring A every 3rd clock cycle,
while in ring B only every 5th cycle. Another issue results from
the switch being shared between all the nodes in a ring, and in
the worst case a node may have to wait for all the other nodes to
carry out their round through the switch. In this context, taking
again Fig. 6 as example, if one A node (and no other) needs to send
a package to a B node, the round trip (required for the acknowl-
edgement) will take 2 � (NA + NB) clock cycles in the worst case,
where NA and NB are the number of nodes (slots) in each ring.3 This
accounts for the switch delay (one clock cycle in each direction) and
the possibility that the package just missed its slot when switching
rings (due to rate difference). For a single ring configuration of the
same nodes, minus the switches, the delay would amount to
NA + NB � 2. However this will be between any two nodes, while
for the dual-ring network, the intra-network delays are only NA

and NB respectively.4

This speaks for the need of a proper partitioning of the function-
ality between nodes, such that tasks exchanging a lot of data often
should be mapped to the nodes within the same ring.



0

2000000

4000000

6000000

8000000

3cyc (60 #) 8de2 (160 #) 3ne2 (60 #) 3ne2 (160 #)

3879579

1471602
1968384

1037780

7799649

1607364
2508600

758717

SPM + sh mem SPM + NoC
cl

oc
k 

cy
cl

es

Fig. 12. Computing primes using Eratosthenes’ sieve for various CMP
configurations.

478 F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481
4.3. Core local private memory

To avoid traffic on the shared memory it is of utmost impor-
tance to use core local, on-chip memory. The common solution is
caching. However, caches with their cache coherence protocol
are also a scalability issue. A scalable solution is to use explicit local
memories, called scratch-pad memories (SPMs). As the CSP based
communication uses channels instead of cache coherent memory,
the SPM fit very well to the hardware based CSP implementation.
To avoid invalid sharing of objects allocated in core local memories
the SPM is mapped to private memory, which is an instance of a
RTSJ style scoped memory [37]. The private memory is used for
buffers to receive and send channel messages and store the data
for processing. In the current implementation the processor trans-
fers the data between the NoC and the private memory. In a future
implementation one might use an additional read/write port,
which is available in modern FPGAs, to allow a DMA based transfer
of the NoC data directly to the private memory.

4.4. Network software interface

A NoC router is connected to a JOP node through a SimpCon
interface [33], thus its registers are memory mapped. Communica-
tion with the router is achieved through four addresses that can be
read or written. Read addresses have the following meaning:

00 StatusReg: Uses the lower 16 bits. The lower byte is the node
address (set at synthesis). The upper byte contains flags
describing the busy state of the router, EOD seen flag, and
the send/receive FIFOs full/empty status. These depend only
on the FIFO size, not the packet size. Default FIFOs are of size
two.

01 not in use5

10 RcvSourceReg: The source address for this packet.
11 RcvDataReg: Next word from the packet. Blocks if the receive

FIFO is empty. To check the status use the StatusReg, for
nonblocking operations.

Write addresses have the following meaning:

00 RcvReset: Resets EoD and the receive FIFO, allowing new
incoming messages to be received.

01 SndCntReg: Use to specify the number of words in the packet.
Clears the send FIFO. Sending starts automatically after this.

10 SndDestReg: Use to specify destination node address.
5 In fact deprecated, since in early versions it was used to signal which slots contain
data that can be received. Along with a slot mask, this was initially intended for
implementing Occam-like ALT and PRI ALT, but this functionally is better handled in
software when multiple threads may share the same physical resources.
11 SndDataReg: Use to send the next word in the packet. Blocks
if send FIFO is full. For non-blocking operations check the
StatusReg.

Typically a reception can start at any time from any non-
masked source. Once the reception started, that source is followed
until the EOD is received. The software has to keep reading data
from the receive buffer until empty and the end of packet flag is
set. No new receptions may start unless the end of packet flag is
reset explicitly through software. To send a packet, the destination
must be provided first, followed by the number of words in the
packet and then the content of the packet. The software should
monitor the send and receive buffer flags, to avoid attempts to
write in a full send buffer or read from an empty receive buffer,
both of which block until the operation can be carried out.
5. Software architecture

In hardware, sending a message between two nodes is acknowl-
edged on word basis. This means that the sender and the receiver
nodes do have a rendezvous in the CSP sense. Transputers and
MPPAs in general require a rather restrictive mapping of processes
and channels to processors and links. Among other restrictions,
each link (often four for each node) is dedicated to one channel
only. Using the same restriction for our architecture, a basic hard-
ware network operation (one send or one receive) is enough to
achieve the rendezvous behavior required by CSP. In fact, the sen-
der and the receiver will be slightly out of phase (the receiver con-
tinues after an EOD flit, while the sender continues after the ACK to
its EOD flit), by exactly K clock cycles, if there are K hops in between
the receiver and sender (network distance).

5.1. Sharing processors and channels

Our intention is to allow both several processes to share the
same processor and several channels to share the same slot. This
allows more flexibility in mapping applications to our architecture.
The real complications appear from channels in between different
processes sharing the same slot. One idea would be to block any
other outgoing communications as soon as a task needs to send
(receive), until the other end is ready to receive (send), so as to
achieve a true CSP rendezvous. It is essential to realize that the sen-
der and receiver of the same channel must be selected for execu-
tion on the communicating nodes. Note that it is very possible
that the sender (receiver) may block other processes from using
the NoC for an indeterminate amount of time. This may lead to
deadlocks or inefficient execution at best.

Another way, which we adopt herein, is to receive any incoming
messages in a system task, but have the individual receiver
acknowledge them explicitly through a message back to the sender
(as depicted in Fig. 9). Senders in their turn, must await and receive
this acknowledge. The physical medium is in this case not occupied
waiting for a receiver to start receiving, allowing several virtual
channels to communicate at the same time, in any order. The
drawback is the need for the additional acknowledgement at mes-
sage level. The rendezvous behavior is kept, while also allowing for
better concurrency.

5.2. Implementation details

We have written a CSP Java library (11 classes currently) that
implements channel communication as described above. It allows
for different types of channels (local, NoC, and stream), and pro-
vides the same interface to all. Local channels are supposed to be
used by processes running on the same processor. NoC channels



F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481 479
are supported through the NoC hardware, as a means of communi-
cation between processors on the same chip. Stream channels use
the standard Java DataStream classes to implement CSP channels
and are intended for off chip communication, such as TCP/IP or
RS232. Regardless of the type, all the received messages are han-
dled by the same message queue, which is a shared resource be-
tween all the processes and the system tasks listening to
communication media (i.e. the NoC Listener in Fig. 9).

Since channels are now bi-directional (the ACK message needs to
get back to the sender6), we assign a unique identifier to each chan-
nel end. Messages going through the channels are carrying the des-
tination end identifier with them, so that they can be found in the
common message queue. Setting up a channel requires creating
two ends, one used to send (receive) the actual message and the
other used to receive (send) the acknowledgement. Ends must be
of appropriate type, depending on where the processes are located
relative to each other.

An illustrative example of four processes executing on three
processors, communicating through four channels of various types
is shown in Fig. 10. Channel 1 is a local channel, channels 2 and 3
are NoC mapped channels, while channel 4 is a stream channel.
The red numbers represent the channel end identifiers.

Using Java threads as CSP processes is an obvious choice that we
also adopt at this stage in our approach. In particular, on each pro-
cessor in a CSP system, there is one Java thread per CSP process
along with one listener thread for each shared communication
media (one NoC listener, plus one listener per stream). Local chan-
nels do not require listeners. Compare this to JCSP networking,
which requires more than six processes/threads [23] per channel.
5.3. Further development

The CSP library developed for JOP CMP is rather limited at this
point, focusing on providing basic functionality. The intention is
to make this more complete, to offer more support to the program-
mer. Typed channels are easy to introduce, by employing Java seri-
alization or a JDO-like persistence [38], over the existing channels.
CSP constructs similar to the Occam ALT, PRI ALT, PAR, PRI PAR, although
possible through regular Java constructs, will be added for better
support.

Channel creation at this point requires exact knowledge of the
location and type of channels. Additionally, processes are explicitly
bound to processors by the programmer, just as in Transputer and
MPPA programming approaches. Our intention is to build a source
pre-processor that can merge processes, optimize the process to
processor mapping and channel assignment, generating code that
uses the CSP library.
7

6. Evaluation

The TDMA routers, switches, and NoC have been implemented
in VHDL and tested separately before integrating them with the
CMP. The critical path delay was kept under the delay in the JOP
critical path, and synthesis results for full systems show no perfor-
mance penalty in terms of clock speed.

Various JOP-based CMP systems were synthesized and tested on
three different FPGA platforms, 3-core versions on the Jopdesign
Cycore (Cyclone EP1C12, fast SRAM) and the Digilent Nexys2
boards, as well as up to 8-core versions on the Altera DE2-70 board.
A summary of configurations employed for the experiments de-
scribed in this paper is given in Table 1.
6 In fact the ACK message does not have to get back to the sender through the same
medium, but it makes sense to do so.
6.1. Resource consumption

Table 2 shows the resource consumption of the component
groups for a 4-core (4de2) and 8-core (8de2) versions on the Altera
DE2-70 board. Note that the TDMA-based NoC consumes less than
a single processor core, even for the 8-core system. Relative to the
whole design the resource consumption is between 8.7% and 8.9%,
for the 4-core and the 8-core systems respectively. Similar relative
device utilization figures were observed on the two other FPGA
platforms.

The resource usage is smaller than in typical mesh networks.
For instance, in Hermes [39], a wormhole/packet switching NoC
template, the switch uses 631 4LUTs and 200 FFs and the send/re-
ceive interface takes 193 LUTs and 233 FFs (4LUTs on Virtex2, buf-
fer size of eight) for 8-bit flits. Compare these figures to the data for
our router taking 450 LUTs and 176 FFs (4LUTs on Spartan3e) for
five times larger flits of 40-bits in our case.7

6.2. Raw performance

In order to compare the performance of the CSP exchange via
the NoC versus using the shared heap, we measured the time re-
quired to transfer data from one processor to another, using shared
memory, short NoC packets (1 word/packet) and long NoC packets
(100 words/packet) for a number of CMP configurations and FPGA
platforms. The shared memory communication is performed via
external, low latency SRAM and therefore not cached. The over-
head of the CMP SRAM access comes from the time-predictable
arbitration in a TDMA fashion. The same would be true if a shared
cache needs to be accessed time-predictable.

Fig. 11 shows the transfer time, in clock cycles, of 100 32-bit
words between processors for the different configurations. On all
of the boards used, the NoC-based communication is considerably
faster than the shared memory approach. For instance, on the 3cyc
configuration, communicating 100 words (1 word/packet) via NoC
is 1.7 times faster than using the on-board fast SRAM memory. For
the 8de2 configuration, due to the increase in number of cores that
need to share the main memory, the speed-up is larger at 2.9. For
the 3ne2 configuration, due to its slow pseudo SRAM-based main
memory, the speed-up of the CSP communication is 3.3 for the
3-core setup. These figures increase to 3.8, 7.7 and 9.3 respectively,
when long packets (100 words/packet) are used, since the header
overhead is reduced.

Additionally, we also observed that the communication delay
over the NoC scales linearly with the amount of data. Nevertheless,
the size of the NoC seems to have almost no effect on the commu-
nication delay. We observed a similar behavior when looking at
switched dual ring NoCs in 3-core CMP, where both intra-ring
and inter-ring communications are similar in performance to sin-
gle ring NoC.

In both cases, this effect comes from to the minimal increase (a
few clock cycles) in the network latency, which remains unnotice-
able due to buffering and relatively slow processors. For larger sys-
tems, the network latency may however increase to the point
where it may have a noticeable effect.

6.3. Application performance

To gather further insight into the performance impact of the on-
chip communication we have created a micro benchmark and
adapted an embedded benchmark.
Although a fair comparison is hard to make, we consider these setups to be
roughly equivalent, since a Hermes router has five 8-bit wide ports, while our
network has one 40-bit wide port for the ring plus another 32-bit wide por
connecting to the processor.
t



480 F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481
The micro benchmark calculates prime numbers with a distrib-
uted version of Eratosthenes’ sieve algorithm. One processor gen-
erates the input (increasing numbers), while the rest receive
numbers and forward them to the next processor only when they
are not multiples of a prime. Ideally each processor would wait for
numbers, and as soon as one receives the first number (which is
unfiltered by the previous processors, meaning it is prime) it starts
acting as a filter. Naturally, the number of processors is limited,
and therefore in our implementation each of the N processors
holds a list of every Nth prime, acting as an overlap of single filters
(one for each time a number comes around). Execution times
(clock cycles) for computing the first 60 and first 160 primes for
few configurations are depicted in Fig. 12. For these experiments
we used core local memory (SPM) for computations and shared
memory (sh mem) or NoC (NoC) to forward candidate numbers be-
tween processors. From the figures we observe that as the shared
memory latency and the amount of data increase, so does the
speed-up obtained from using the NoC versus shared memory.

As a more realistic benchmark we have looked at the AES
benchmark from the embedded Java benchmark suit JemBench
[40]. AES is a pipelined application that generates data, encrypts
the data, decrypts it again, and checks the output for correctness.
The original benchmark uses a non-blocking queue of buffers for
the exchange of data. In order to explore the full benefit from the
fast on-chip communication we adapted the benchmark to use
the core local memories. Additionally, to make a fair comparison,
we also adapted the original shared memory version to use core lo-
cal memories for the local computations. We carried out experi-
ments with AES on the 8-core 8de2 configuration, where each
stage runs on its own processor, and on a 3-core 3ne2 configura-
tion, where data generation and the check for correctness are
carried out together on one processor, while encryption and
decryption are separately assigned to the remaining processors.

The measurements on the 8de2 do not show any significant
speed-up, while the 3ne2 show a decrease in computational speed
for the NoC/CSP version. This is however not unexpected, as AES is
a benchmark that would benefit from executing computation and
communication in parallel, which is not the model of computation
of CSP. For this kind of pipelined computation CSP may in fact
introduce unwanted synchronization, leading to performance loss.
However, note that CSP is a cleaner abstraction for concurrent pro-
gramming and the performance is on par with the original more ad
hoc parallel implementation. From that experiment we conclude
that we shall explore additional models of computation, such as
synchronous data-flow (SDF), which need additional software
implementation. The hardware NoC implementation can be used
for SDF.
7. Conclusion

We have presented a hardware support for a CSP implementa-
tion on a embedded Java CMP. The on-chip communication chan-
nels are introduced in order to reduce the bandwidth pressure on
the shared memory. Our solution is specific for systems with lim-
ited resources and real-time requirements. Ring-based networks-
on-chip along with scratch-pad memories are used to implement
fast and time predictable communication between processors.
Both single and multi-ring networks are feasible using the routers
and switches introduced in this paper.

The concept was tested on CMP with different configurations,
from three to eight JOP processors, implemented on three different
prototyping boards, with both Altera (EP1C12, EP2C70) and Xilinx
(XC3S1200e) FPGAs. Synthesis results show that the device area
overhead for introducing a NoC is in the 9% range, without any per-
formance penalty. Measurements of the raw speed-up obtained
using the NoC versus shared memory to transfer data between pro-
cessors are between 1.7 and 9.3 depending on the packet size and
the shared memory latency. When it comes to application speed-
up, there is a large variation in behavior for different applications,
depending on the type of processing involved. In the worst case,
the tight synchronization required by the CSP programming model
may hurt applications that are better suited for SDF-like processing
(e.g., pipelined computations). To conclude, only certain applica-
tions can benefit from using the CSP approach from the perfor-
mance point of view.

In future work we intend to explore many-core systems in a
large FPGA with use the multi-ring architectures. We expect that
the main challenge is the partitioning of the application on this
system.

The whole design is provided under the GNU GPL open-source
license to support future research on the topic of hardware support
for CSP style on-chip communication.
8. Source access

The source files for the hardware and software used in this pa-
per can be found in the JOP archive. The download procedure is de-
scribed at http://www.jopwiki.com/Download. Follow the make

instructions to obtain the automatically generated vhdl modules
required. Relative to the archive root, the Altera top level VHDL mod-
ules for the Cycore board and the DE2-70 are located in vhdl/pa-

per/csp, while the Xilinx ISE 12.2 project for Digilent Nexys2
board is located in vhdl/paper/nexys2_csp. Synthesize and
download the hardware using the appropriate tools for your board.
The software support for CSP is located in the java/target/src/
paper/csp directory.
References

[1] C. Whitby-Strevens, The transputer, SIGARCH Comput. Archit. News 13 (3)
(1985) 292–300, http://dx.doi.org/10.1145/327070.327269.

[2] M. Homewood, D. May, D. Shepherd, R. Shepherd, The IMS t800 transputer,
IEEE Micro 7 (5) (1987) 10–26, http://dx.doi.org/10.1109/MM.1987.305012.

[3] J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach,
4th ed., Morgan Kaufman Publishers, 2006.

[4] M. Butts, Synchronization through communication in a massively parallel
processor array, IEEE Micro 27 (5) (2007) 32–40, http://dx.doi.org/10.1109/
MM.2007.92.

[5] Intellasys, SEAForth 40C18 DataSheet, 9th ed. <http://www.intellasys.net/>.
[6] H. Svensson, Reconfigurable Architectures for Embedded Systems, Lund

University, Lund, 2008 (diss. Lund: Lunds universitet, 2008).
[7] G. Kahn, The semantics of simple language for parallel programming, in: IFIP

Congress, 1974, pp. 471–475.
[8] C.A.R. Hoare, Communicating sequential processes, Commun. ACM 21 (8)

(1978) 666–677, http://dx.doi.org/10.1145/359576.359585.
[9] C. Pitter, M. Schoeberl, A real-time Java chip-multiprocessor, ACM Trans.

Embed. Comput. Syst. 10 (1) (2010) 9:1–9:34, http://dx.doi.org/10.1145/
1814539.1814548. <http://www.jopdesign.com/doc/jopcmp_tecs.pdf>.

[10] P.H. Welch, J.R. Aldous, J. Foster, CSP networking for java (JCSP.net), in: P.M.A.
Sloot, C.J.K. Tan, J. Dongarra, A.G. Hoekstra (Eds.), International Conference on
Computational Science, Lecture Notes in Computer Science, vol. 2330,
Springer, 2002, pp. 695–708. <http://link.springer.de/link/service/series/
0558/bibs/2330/23300695.htm>.

[11] P.H. Welch, N. Brown, J. Moores, K. Chalmers, B.H.C. Sputh, Integrating and
extending JCSP, in: A.A. McEwan, S.A. Schneider, W. Ifill, P.H. Welch (Eds.), The
30th Communicating Process Architectures Conference, CPA 2007, Organised
Under the Auspices of WoTUG and the University of Surrey, Guildford, Surrey,
UK, 8–11 July 2007, vol. 65 of Concurrent Systems Engineering Series, IOS
Press, 2007, pp. 349–370. <http://www.booksonline.iospress.nl/Content/
View.aspx?piid=5962>.

[12] G.H. Hilderink, J.F. Broenink, W.A. Vervoort, A.W.P. Bakkers, Communicating
Java threads, in: 20th World Occam and Transputer User Group Technical
Meeting, IOS Press, Amsterdam, Enschede The Netherlands, 1997, pp. 48–76.
<http://www.ce.utwente.nl/javapp/cjt/CJT-paper.PDF>.

[13] F. Gruian, M. Schoeberl, NoC-based CSP support for a Java chip multiprocessor,
in: Proceedings of the 28th Norchip Conference, IEEE Computer Society,
Tampere, Finland, 2010. <http://www.jopdesign.com/doc/csp_on_jop.pdf>.

[14] D. May, R. Shepherd, Occam and the transputer. In: Proc. of the IFIP WG 10.3
Workshop on Concurrent Languages in Distributed Systems: Hardware

http://www.jopwiki.com/Download
http://dx.doi.org/10.1145/327070.327269
http://dx.doi.org/10.1109/MM.1987.305012
http://dx.doi.org/10.1109/MM.2007.92
http://dx.doi.org/10.1109/MM.2007.92
http://www.intellasys.net/
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/1814539.1814548
http://www.jopdesign.com/doc/jopcmp_tecs.pdf
http://link.springer.de/link/service/series/0558/bibs/2330/23300695.htm
http://link.springer.de/link/service/series/0558/bibs/2330/23300695.htm
http://www.booksonline.iospress.nl/Content/View.aspx?piid=5962
http://www.booksonline.iospress.nl/Content/View.aspx?piid=5962
http://www.ce.utwente.nl/javapp/cjt/CJT-paper.PDF
http://www.jopdesign.com/doc/csp_on_jop.pdf


F. Gruian, M. Schoeberl / Microprocessors and Microsystems 37 (2013) 472–481 481
Supported Implementation, 1985, Elsevier North-Holland, Inc. New York, NY,
USA, pp. 19–33.

[15] X. Wang, G. Gan, J. Manzano, D. Fan, S. Guo, A quantitative study of the on-chip
network and memory hierarchy design for many-core processor, in:
Proceedings of the 2008 14th IEEE International Conference on Parallel and
Distributed Systems, IEEE Computer Society, Washington, DC, USA, 2008, pp.
689–696. http://dx.doi.org/10.1109/ICPADS.2008.18. <http://portal.acm.org/
citation.cfm?id=1491261.1491566>.

[16] M. Forsell, Performance comparison of some shared memory organizations for
2d mesh-like NoCs, Microprocess. Microsyst. 35 (2011) 274–284, http://
dx.doi.org/10.1016/j.micpro.2010.07.003.

[17] M.R. Casu, M.R. Roch, S.V. Tota, M. Zamboni, A NoC-based hybrid message-
passing/shared-memory approach to CMP design, Microprocess. Microsyst. 35
(2011) 261–273, http://dx.doi.org/10.1016/j.micpro.2010.09.006.

[18] Intel Labs, Intel Corporation, SCC External Architecture Specification (EAS),
Revision 0.94 Edition, May 2010.

[19] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L.
Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E.
Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, J. Zook, Tile64 –
processor: a 64-core soc with mesh interconnect, in: I. International (Ed.),
Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers,
2008, pp. 88–89.

[20] P. Sam, Investigating the Scalability of tiled Chip Multiprocessors Using
Multiple Networks, Ph.D. Thesis, University of Manchester, 2009.

[21] K. Goossens, J. Dielissen, A. Radulescu, A ethereal network on chip: concepts,
architectures, and implementations, Design Test Comput. IEEE 22 (5) (2005)
414–421, http://dx.doi.org/10.1109/MDT.2005.99.

[22] P.H. Welch, A.W.P. Bakkers, N.C. Schaller, Using java for parallel computing –
JCSP versus CTJ, in: Communicating Process Architectures 2000, 2000, pp. 205–
226.

[23] K. Chalmers, J.M. Kerridge, I. Romdhani, A Critique of JCSP Networking, in:
F.R.M. Barnes, J.F. Broenink, A.A. McEwan, A. Sampson, G.S. Stiles, P.H. Welch
(Eds.), Communicating Process Architectures 2008, 2008.

[24] C. Pitter, Time-Predictable Java Chip-Multiprocessor, Ph.D. Thesis, Vienna
University of Technology, Austria, 2009. <http://www.vmars.tuwien.ac.at/
php/pserver/extern/download.php?fileid=1659>.

[25] M. Schoeberl, A Java processor architecture for embedded real-time systems, J.
Syst. Archit. 54 (1–2) (2008) 265–286, http://dx.doi.org/10.1016/
j.sysarc.2007.06.001. <http://www.jopdesign.com/doc/rtarch.pdf>.

[26] M. Schoeberl, W. Puffitsch, R.U. Pedersen, B. Huber, Worst-case execution time
analysis for a Java processor, Software: Practice Exp. 40/6 (2010) 507–542,
http://dx.doi.org/10.1002/spe.968. <http://www.jopdesign.com/doc/wcetana.
pdf>.

[27] T. Harmon, Interactive Worst-Case Execution Time Analysis of Hard Real-Time
Systems, Ph.D. Thesis, University of California, Irvine, 2009. <http://
vocaro.com/trevor/files/Dissertation.pdf>.

[28] D. Locke, B.S. Andersen, B. Brosgol, M. Fulton, T. Henties, J.J. Hunt, J.O. Nielsen,
K. Nilsen, M. Schoeberl, J. Tokar, J. Vitek, A. Wellings, Safety–critical Java
technology specification, Public Draft (2011). <http://www.jcp.org/en/jsr/
detail?id=302>.

[29] M. Schoeberl, A time-predictable object cache, in: Proceedings of the 14th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC 2011), IEEE Computer Society, Newport Beach,
CA, USA, 2011, pp. 99–105. <http://www.jopdesign.com/doc/ocache.pdf>.

[30] J. Moores, Native JCSP: the CSP-for-Java library with a low-overhead CPS
Kernel, in: P.H. Welch, A.W.P. Bakkers (Eds.), Communicating Process
Architectures 2000, Concurrent Systems Engineering, WoTUG, IOS Press,
Amsterdam, 2000, pp. 263–273. <http://www.cs.kent.ac.uk/pubs/2000/1146>.

[31] M. Schoeberl, A time-triggered network-on-chip, in: International Conference
on Field-Programmable Logic and its Applications (FPL 2007), IEEE,
Amsterdam, Netherlands, 2007, pp. 377–382. http://dx.doi.org/10.1109/
FPL.2007.4380675. <http://www.jopdesign.com/doc/ttnoc_fpl2007.pdf>.

[32] M. Schoeberl, F. Brandner, J. Sparsø, E. Kasapaki, A statically scheduled time-
division-multiplexed network-on-chip for real-time systems, in: Proceedings
of the 6th International Symposium on Networks-on-Chip (NOCS), IEEE,
Lyngby, Denmark, 2012. <http://www.jopdesign.com/doc/s4noc.pdf>.

[33] M. Schoeberl, SimpCon – a simple and efficient SoC interconnect, in:
Proceedings of the 15th Austrian Workshop on Microelectronics, Austrochip
2007, Graz, Austria 2007. <http://www.jopdesign.com/doc/simpcon_
austrochip2007.pdf>.

[34] L. Benini, G. Micheli, Networks on chips: technology and tools, The Morgan
Kaufmann Series in Systems on Silicon, Elsevier, Morgan Kaufmann Publishers,
2006. <http://books.google.com/books?id=IHHTmSBcoGIC>.

[35] L. Tedesco, A. Mello, D. Garibotti, N. Calazans, F. Moraes, Traffic generation and
performance evaluation for mesh-based NOCs, in: 18th Symposium on
Integrated Circuits and Systems Design, 2005, pp. 184–189. http://dx.doi.
org/10.1109/SBCCI.2005.4286854.

[36] M. Kistler, M. Perrone, F. Petrini, Cell multiprocessor communication network:
built for speed, Micro IEEE 26 (2006) 10–25. <http://ieeexplore.ieee.org/iel5/
40/34602/01650177.pdf>.

[37] A. Wellings, M. Schoeberl, Thread-local scope caching for real-time Java, in:
Proceedings of the 12th IEEE International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing (ISORC 2009), IEEE
Computer Society, Tokyo, Japan, 2009, pp. 275–282. http://dx.doi.org/
10.1109/ISORC.2009.13. <http://www.jopdesign.com/doc/local_scopes.pdf>.

[38] Oracle, Java Data Objects. <http://java.sun.com/jdo/>.
[39] F.G. Moraes, N.L.V. Calazans, A.V. de Mello, L.H. Moller, L.C. Ost, HERMES: An

Infrastructure for Low Area Overhead Packet-Switching Networks on Chip,
Technical Report 034, PUCRS – Brazil (October 2003).

[40] M. Schoeberl, T.B. Preusser, S. Uhrig, The embedded Java benchmark suite
JemBench, in: Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES 2010), ACM, New
York, NY, USA, 2010, pp. 120–127. http://dx.doi.org/10.1145/1850771.
1850789. <http://www.jopdesign.com/doc/jembench.pdf>.

Flavius Gruian is Assistant Professor at the Department
of Computer Science of Lund University, Sweden, where
he also received his PhD degree from. His research
interest is in resource-limited embedded systems, Java
processors, and energy-efficient scheduling. Flavius
Gruian has published more than 15 refereed conference
and journal papers.
Martin Schoeberl is Associate Professor at the Depart-
ment of Informatics and Mathematical Modeling of the
Technical University of Denmark. Before joining DTU he
was Assistant Professor at the Institute of Computer
Engineering of the Vienna University of Technology. His
research interest is in timepredictable computer archi-
tecture and real-time Java. He is member of the expert
group for the Safety–Critical Java Specification. Martin
Schoeberl has published more than 70 refereed confer-
ence and journal papers.

http://dx.doi.org/10.1109/ICPADS.2008.18
http://portal.acm.org/citation.cfm?id=1491261.1491566
http://portal.acm.org/citation.cfm?id=1491261.1491566
http://dx.doi.org/10.1016/j.micpro.2010.07.003
http://dx.doi.org/10.1016/j.micpro.2010.09.006
http://dx.doi.org/10.1109/MDT.2005.99
http://www.vmars.tuwien.ac.at/php/pserver/extern/download.php?fileid=1659
http://www.vmars.tuwien.ac.at/php/pserver/extern/download.php?fileid=1659
http://dx.doi.org/10.1016/j.sysarc.2007.06.001
http://www.jopdesign.com/doc/rtarch.pdf
http://www.jopdesign.com/doc/wcetana.pdf
http://www.jopdesign.com/doc/wcetana.pdf
http://vocaro.com/trevor/files/Dissertation.pdf
http://vocaro.com/trevor/files/Dissertation.pdf
http://www.jcp.org/en/jsr/detail?id=302
http://www.jcp.org/en/jsr/detail?id=302
http://www.jopdesign.com/doc/ocache.pdf
http://www.cs.kent.ac.uk/pubs/2000/1146
http://dx.doi.org/10.1109/FPL.2007.4380675
http://dx.doi.org/10.1109/FPL.2007.4380675
http://www.jopdesign.com/doc/ttnoc_fpl2007.pdf
http://www.jopdesign.com/doc/s4noc.pdf
http://www.jopdesign.com/doc/simpcon_austrochip2007.pdf
http://www.jopdesign.com/doc/simpcon_austrochip2007.pdf
http://books.google.com/books?id=IHHTmSBcoGIC
http://dx.doi.org/10.1109/SBCCI.2005.4286854
http://dx.doi.org/10.1109/SBCCI.2005.4286854
http://ieeexplore.ieee.org/iel5/40/34602/01650177.pdf
http://ieeexplore.ieee.org/iel5/40/34602/01650177.pdf
http://dx.doi.org/10.1109/ISORC.2009.13
http://dx.doi.org/10.1109/ISORC.2009.13
http://www.jopdesign.com/doc/local_scopes.pdf
http://java.sun.com/jdo/
http://dx.doi.org/10.1145/1850771.1850789
http://dx.doi.org/10.1145/1850771.1850789
http://www.jopdesign.com/doc/jembench.pdf

	Hardware support for CSP on a Java chip multiprocessor
	1 Introduction
	2 Related work
	3 CSP for a Java CMP
	4 Hardware support for CSP
	4.1 A basic TDMA network
	4.2 More complex networks
	4.3 Core local private memory
	4.4 Network software interface

	5 Software architecture
	5.1 Sharing processors and channels
	5.2 Implementation details
	5.3 Further development

	6 Evaluation
	6.1 Resource consumption
	6.2 Raw performance
	6.3 Application performance

	7 Conclusion
	8 Source access
	References


