
Cross-Profiling for Embedded Java Processors

Walter Binder
University of Lugano

Switzerland
walter.binder@unisi.ch

Martin Schoeberl
TU Vienna

Austria
mschoebe@mail.tuwien.ac.at

Philippe Moret Alex Villazón
University of Lugano

Switzerland
philippe.moret@lu.unisi.ch
alex.villazon@lu.unisi.ch

Abstract

Profiling is essential for finding execution time hot spots
in applications. However, in embedded systems resources
are usually scarce and profiling is not an option, although
the detection and optimization of hot spots is particularly
important in such resource-constrained systems. In this
paper we propose cross-profiling for embedded systems
equipped with a Java processor; the cross-profiles are
collected in any standard Java environment, but represent
the execution time metrics of the embedded target platform.
We present a novel cross-profiler that relies on Java
bytecode instrumentation and generates calling-context-
sensitive cross-profiles with CPU cycle estimations for each
calling context. Our cross-profiler reconciles platform-
independence, portability, compatibility with standard Java
runtime systems, complete bytecode coverage, moderate
profiling overhead, and high accuracy of the generated
cross-profiles.

Keywords: Cross-profiling, embedded Java processors,
bytecode instrumentation, platform-independent dynamic
metrics

1. Introduction

Java processors, such as the aJile processor [10] or
JOP [20], have become an attractive choice for building em-
bedded and real-time systems that are programmed in Java.
Java processors implement the Java Virtual Machine (JVM)
in hardware; their instruction sets correspond to the JVM
bytecodes.

Concomitant performance evaluation is crucial for the
development of embedded software that has to run on de-
vices with limited computing resources. Furthermore, per-
formance prediction based on existing benchmarks is es-
sential for determining the effect of hardware optimizations
before they are implemented.

However, today, profiling of embedded Java applications
is a tedious and time-consuming task, requiring either a sim-
ulator of the target platform or deployment of the embed-
ded application. Simulators can be extremely slow; e.g., the
simulator ModelSim [13] causes excessive overhead of up
to factor 33000. Hence, embedded Java applications are
rarely profiled in an early phase of development. More-
over, there is little support for simulating the effects of new
hardware optimizations or for predicting the performance
of large-scale applications.

While the Java 2 Platform Standard Edition offers a ded-
icated profiling interface, the JVM Tool Interface (JVMTI),
embedded Java systems often lack profiling support. Be-
cause of the resource constraints on embedded Java sys-
tems, CPU time and memory consuming profiling tech-
niques are usually not applicable. For instance, calling-
context-sensitive profiling [1] is an important technique for
detecting execution time hot spots, but the generated data
structure, the Calling Context Tree (CCT), can consume sig-
nificantly more memory than the application being profiled
itself.

To overcome these limitations, we introduce a novel
technique for platform-independent cross-profiling. The
cross-profiler is run in any standard Java environment (in-
dependently of hardware, operating system, and virtual ma-
chine), but generates profiles using the execution time met-
ric of the embedded system. We call the environment run-
ning the cross-profiler the host, and we refer to the embed-
ded system for which the profiles are collected as the target.
The cross-profiler is not connected in any way to the target
system.

The scientific contributions of this paper are our
portable cross-profiling techniques that yield calling-
context-sensitive profiles with CPU cycle estimations for an
embedded target system, as well as our implementation of
these techniques in the Java cross-profiler CProf, which tar-
gets the Java processor JOP [20]. Our cross-profiler is based
on a new instrumentation mechanism that ensures full byte-
code coverage, including the Java runtime system as well as

any dynamically loaded bytecode. CProf is implemented in
pure Java and compatible with standard Java runtime sys-
tems (JDK 1.5 or higher), and it supports customized dy-
namic processing of generated profiling data. Evaluation re-
sults confirm that our approach yields sufficiently accurate
CPU cyle estimations and causes only moderate overhead.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of Java processors and presents
some details of the JOP processor. Section 3 explains our
approach to platform-independent cross-profiling which is
based on Java bytecode instrumentation. Section 4 dis-
cusses some of the challenges we encountered in the imple-
mentation. In Section 5 we evaluate the accuracy of the gen-
erated cross-profiles for some embedded Java benchmarks,
compare our cross-profiler with simulators, and assess the
overhead due to cross-profiling with several standard bench-
mark suites. Section 7 discusses the benefits and limitations
of our approach and outlines some ideas for future work.
Finally, Section 8 concludes this paper.

2. Embedded Java Processors as Cross-
Profiling Target

In this Section we give an overview of Java processors
as target systems for cross-profiling. Then, we describe the
JOP processor that we have chosen to validate and evaluate
our approach.

2.1. Java Processors

A Java processor is an implementation of the JVM in
hardware. Java bytecode is therefore the native instruction
set for the processor. The first Java processor, picoJava [14],
was developed by Sun Microsystems. However, this pro-
cessor was not a commercial success. The design model
sources of picoJava are now open-source and are used as
basis for improving various aspects of Java processors. A
follow-up redesign, known as picoJava-II, is now freely
available.

Java processors are mainly used for embedded systems
where resources (memory and processing power) are lim-
ited. Unfortunately, profiling applications in such limited
environments is difficult, if not impossible. Java processors
are therefore ideal target systems for cross-profiling.

Several companies have built Java processors in an Ap-
plication Specific Integrated Circuit (ASIC). The most suc-
cessful one is the aJile processor [10] that was initially con-
ceived as a platform for the Java real-time specification [4].

At the time when the Field Programmable Gate Array
(FPGA) technology became large enough for the implemen-
tation of a processor, many projects in academia and indus-
try started to use this technology for Java processors. An
implementation of picoJava-II on a medium sized FPGA

is described in [16, 17]. Komodo [11] is a multithreaded
Java processor intended as a basis for research on real-time
scheduling on a multithreaded microcontroller.

2.2. The Java Processor JOP

JOP [20] started as a research project for real-time Java.
The main features of JOP are: (1) well known execution
time of Java bytecodes; (2) good execution performance for
embedded Java programs; (3) a design that can be imple-
mented in small low-cost FPGAs. JOP is also in use in sev-
eral commercial applications [19].

The main focus of the development of JOP is time-
predictable execution of Java bytecodes. This feature
simplifies the low-level part of worst-case execution time
(WCET) analysis, a mandatory analysis for hard real-time
systems. It also simplifies the timing model provided for
cross-profiling.

JOP dynamically translates the CISC Java bytecodes to
a RISC, stack based instruction set (the microcode) that can
be executed in a 3-stage pipeline. The translation takes
exactly one cycle per bytecode and is therefore pipelined
(adding a fourth pipeline stage).

JOP contains a simple execution stage with the two top-
most stack elements as discrete registers. No write back
stage or forwarding logic is needed. The short pipeline (4
stages) results in short conditional branch delays and there-
fore helps avoiding any hard-to-analyze branch prediction
logic or branch target buffer.

All microcode instructions have a constant execution
time of one cycle. No stalls are possible in the microcode
pipeline. Loads and stores of object fields are handled ex-
plicitly. The absence of time dependencies between byte-
codes results in a simple processor model for the low-level
WCET analysis [21, 18].

JOP has an optional instruction cache, the method cache,
which caches whole methods. Only invoke and return in-
structions can result in a cache miss. All other instructions
are guaranteed cache hits. In this paper, we do not consider
the presence of a method cache.

JOP also contains a time predictable data cache for local
variables and the operand stack. Access to local variables
is a guaranteed hit and no pipeline stall can happen. Stack
cache fill and spill is under microcode control and analyz-
able.

JOP has a good average case performance compared to
other non real-time Java processors. Avoidance of hard-to-
analyze architectural features results in a very small design.

3. Platform-independent Cross-profiling

In order to profile the CPU cycle consumption on the
embedded target system, we firstly focus on techniques

for collecting profiles on the host system using platform-
independent metrics [6], and secondly explain a mechanism
to map these platform-independent metrics to CPU cycle
estimations on the target system. This approach ensures a
maximum of profile independence from the host machine
such that software developers may employ their preferred
Java development environment for cross-profiling.

3.1. Collecting Platform-independent Pro-
files

Our profiling techniques are based on bytecode instru-
mentation. Every method that has a corresponding bytecode
representation, including JDK methods as well as methods
in dynamically loaded classes, is instrumented so as to gen-
erate profiling data at runtime.

Our profiling approach generates a Calling Context Tree
(CCT) [1] for each thread [2]. While the depth of a CCT
can be restricted, our CCTs are unlimited in depth; this is
appropriate, since very deep call stacks (such as in recur-
sions) are rare in embedded system software. We introduce
an extra method1 argument that represents the caller’s con-
text. Upon method entry, the callee looks up or creates its
own calling context as a child node of the caller’s context
in the CCT. A calling context object uniquely identifies the
callee method and stores the profiling data for the respective
calling context. For each Java method, our instrumentation
inserts a static final field to hold a method identifier object
that stores the class name, method name, and method signa-
ture of the corresponding method. Since each thread builds
its own CCT, there is no need for synchronizing each update
of a node in the CCT.

Each CCT node stores the dynamic metrics to be mea-
sured. We focus on platform-independent metrics in order
to avoid any dependencies on the specific platform used
for profiling. Concretely, we keep track of the number of
method invocations and the number of executed bytecodes.

While the method invocation counter is simply incre-
mented upon method entry, the bytecode counter needs to
be continuously increased as the bytecodes are being exe-
cuted. Hence, we instrument all Java methods to augment
the bytecode counter in the beginning of each basic block
of code (BBC) with the number of bytecodes in the BBC.
This approach is accurate if the execution of the first byte-
code in a BBC implies the execution of all bytecodes in it.
Exceptions can cause inaccuracies, if they are thrown by a
bytecode that is not the last one in its BBC. In that case,
we would count more bytecodes than are actually being
executed. To remove this potential source of imprecision,
our instrumentation algorithm offers an option to force all
exception-throwing bytecodes to end a BBC. Consequently,

1In this paper, “method” stands for “method or constructor”.

the resulting BBCs tend to be very short and incrementing a
bytecode counter in each BBC then causes higher overhead.

In order to regularly process the collected profiling data
in a customizable way, our instrumentation ensures that
each thread periodically invokes a user-defined profiler,
passing the thread’s CCT. A typical profiler may aggre-
gate (in a synchronized way) the CCTs of all threads in
a “global” CCT representing the activities of all threads.
The invocation of the custom profiler is triggered when a
dedicated, thread-local bytecode counter (which is not as-
sociated with any calling context) reaches a given thresh-
old. Our instrumentation inserts code for incrementing and
checking that counter in strategic locations in the program
(method entry/return, begin of loop, etc.) so as to limit the
number of bytecodes that can be executed between subse-
quent checks by a thread. This approach ensures the pe-
riodic activation of the profiler by each executing thread,
independently of the underlying JVM scheduling.

3.2. Estimating CPU Consumption on the
Target System

Our approach to cross-profiling for embedded Java pro-
cessors takes advantage of the fact that on such systems,
many bytecodes consume a well specified, constant number
of cycles. Hence, we replace the bytecode counter in each
calling context with a cycle counter, which we update in the
beginning of each BBC with the sum of the estimated cycle
consumption for the bytecodes in the BBC.

However, depending on the Java processor, certain byte-
codes need special consideration, as their cycle consump-
tion depends on concrete runtime parameters. For instance,
in the case of the JOP processor, some bytecodes (e.g.,
runtime type checks and casts, object and array allocation,
floating point arithmetic, division, etc.) are substituted by
invocations of routines. Our cross-profiler currently esti-
mates the cycle consumption of these bytecodes as con-
stants. Despite of these simplifications and approximations,
we will show in Section 5.2 that our cross-profiles are suffi-
ciently accurate in practice.

Method invocation and return bytecodes require special
treatment. Their cycle consumption may vary largely de-
pending on the size of the callee respectively caller method.
Because method invocation and return bytecodes are ex-
ecuted very frequently in typical object-oriented applica-
tions, any inaccuracy in the cycle calculation for these byte-
codes must be avoided.

On the JOP processor, the cycles consumed by a method
invocation depend on the size of the callee method (in bytes)
and on the type of invocation (invokestatic for static
methods; invokespecial for constructors, private meth-
ods, or methods in a superclass; invokeinterface for in-
vocations on a variable where the declared type is an in-

terface; invokevirtual for all other method calls). Simi-
larly, the cycle consumption for method return depends on
the size of the caller and on the return type. We store the
method size within the method identifier objects (which are
created by the instrumented static initializer in each class).

For JOP, the cycle estimates for invoke bytecodes are
computed as follows (f is the same function for all four
invoke bytecodes, while Kstatic, Kspecial , Kinter f ace, and
Kvirtual are four different constants).

cycles(invokestatic, calleesize) = Kstatic + f (calleesize)
cycles(invokespecial, calleesize) = Kspecial + f (calleesize)
cycles(invokeinterface, calleesize) = Kinter f ace + f (calleesize)
cycles(invokevirtual, calleesize) = Kvirtual + f (calleesize)

Because of polymorphic call sites, the callee of an
invocation is not always statically known, and therefore
f (calleesize) cannot be computed at instrumentation time.
Since computing f (calleesize) at runtime on each method
entry would cause high overhead, we follow a different ap-
proach. Upon instrumentation, we consider only the con-
stant part (Kstatic, Kspecial , Kinter f ace, respectively Kvirtual)
for calculating the cycle estimate of an invoke bytecode. In
order to compensate for this loss of information, we use a
dedicated profiler that computes the missing cycles before
emitting the final profile upon program termination. This is
possible because the CCT preserves the number of method
calls for each calling context.

While traversing the CCT, the profiler regards pairs of
caller and callee contexts. Each context contains a method
identifier which provides, amongst others, information on
the method size. The callee context stores the number of
invocations by the corresponding caller (#calls). Hence,
the cycle counter in the caller context is increased by
#calls∗ f (calleesize).

For return bytecodes, we follow a similar approach.
Upon instrumentation, we consider the cycle estimate
of all return bytecodes to be zero. The profiler then
augments the cycle counter in the callee context by
#calls∗ cycles(opcode, callersize), where opcode denotes
the return bytecode, which is uniquely determined by the
method signature of the callee.

Note that for method invocation, the profiler generally
could not uniquely reconstruct the concrete invoke byte-
code, since there are cases where the same method may
be invoked by invokevirtual, invokeinterface, or
invokespecial. In contrast to return bytecodes, our so-
lution exploits detailed knowledge of the JOP cycle estima-
tion function for invoke bytecodes.

Our treatment of method invocation and return bytecodes
is a simple solution that causes no extra runtime overhead.
However, it has three limitations: (1) it disregards abnormal
method completion (by throwing an exception), (2) it does
not consider the impact of a method cache, and (3) the as-
sumption that the differences in cycle consumption between

AppApp
CProf

Instrumenta�on
Agent

CProf
Instrumenta�on

Agent

CProf
Profiler
CProf

Profiler

Any standard JVM

CProf-instrumented JDK

CProf-
instrumented

App

CProf-
instrumented

App
AppApp

CProf
Instrumenta�on

Agent

CProf
Instrumenta�on

Agent

CProf
Profiler
CProf

Profiler

Any standard JVM

CProf-instrumented JDK

CProf-
instrumented

App

CProf-
instrumented

App

(a) Running application on the target processor JOP

(b) Cross-profiling in the host environment

AppApp

JOP
JVM classes

JOP
JVM classes

JOPizer

AppApp

JOP
JVM classes

JOP
JVM classes

JOPizer

Figure 1. Executing an embedded application
on the target system versus instrumentation-
based cross-profiling on any standard Java
runtime system.

the invoke bytecodes are constant may not hold for all Java
processors. Fortunately, for the JOP processor, these limi-
tations are not stringent; JOP currently does not support ex-
ception handling and the method cache is optional. There-
fore, if the method cache remains disabled, our approach
guarantees exact cycle counts for method call and return.
Nonetheless, as outlined in Section 7, we are working on
an extension for accurate method cache simulation that re-
quires profiling method invocation and return separately at
runtime; that approach will also handle abnormal method
completion.

4. Implementation Techniques

In the following we briefly discuss some of the chal-
lenges that we solved in our CProf implementation. In par-
ticular, we explain how we achieve full bytecode coverage
of the instrumentation and how we ensure that the instru-
mented code works together with native code of the host
JVM, which is not aware of the instrumentation.

4.1. Complete Bytecode Coverage

Figure 1 compares the execution of an embedded appli-
cation on the JOP target system with our cross-profiling ap-
proach explained in the previous section. Details on appli-
cation deployment for JOP (i.e., the JOPizer in Figure 1(a))
are not in the scope of this paper and can be found in [20].

Our instrumentation approach aims at complete byte-
code coverage, i.e., every method that has a corresponding
bytecode representation on the host JVM shall get instru-
mented. This requires that both the JDK classes as well as
any dynamically loaded bytecode is instrumented. The lat-
ter requirement implies that instrumentation also happens at
load-time, as some applications may dynamically generate
classes at runtime (though this is not the case for typical em-
bedded software). Load-time instrumentation has another
benefit; it ensures that all loaded classes are instrumented in
the same way and therefore helps avoiding a tedious, error-
prone static instrumentation process that would be neces-
sary after each compilation of the embedded application.

Following a fully portable approach, we avoid us-
ing the JVMTI because it requires writing platform-
dependent, native code. Instead, we rely on the package
java.lang.instrument that was introduced in JDK 1.5
and enables load-time instrumentation by a user-defined in-
strumentation agent written in Java. However, when the
instrumentation agent starts execution, the JVM has com-
pleted bootstrapping and many classes have been loaded
and linked. While these previously loaded classes can be
redefined and replaced with instrumented versions by the
agent, the java.lang.instrument API imposes strong
restrictions on class redefinition. E.g., fields or methods
cannot be added, method signatures cannot be modified,
etc. Since our instrumentation requires the modification of
method signatures (adding an extra argument to represent
the reified calling context) and the insertion of static fields,
and because we want to instrument all classes in a uniform
way, class redefinition is not suited for our purpose.

We resort to a combination of static instrumentation, ap-
plied only once to the JDK classes used on the host, and
load-time instrumentation for all other classes. In Fig-
ure 1(b), “CProf-instrumented JDK” refers to the statically
instrumented JDK class library and “CProf Instrumentation
Agent” denotes the agent that instruments all application
classes at load-time. “CProf Profiler” is our cross-profiler
that processes the calling-context-sensitive profiling data
produced by each thread. The profiler is invoked by the
instrumented code, both in JDK and in application classes.
“CProf Profiler” employs a JVM shutdown hook to emit the
cross-profile upon application termination [2].

Bootstrapping with an instrumented JDK, as well as
load-time instrumentation within the same JVM process
that runs the instrumented application are difficult prob-
lems [3]. We solved them by introducing “code-bypasses”
in each Java method that allow resorting to the original
method body. These code-bypasses, which can be con-
trolled separately for each thread, are activated for boot-
strapping, for load-time instrumentation, and for the exe-
cution of the profiler. Consequently, the JVM bootstrap-
ping phase is not disrupted, and load-time instrumentation

respectively profiler execution do not create artifacts in the
generated profiles.

4.2. Compatibility with Native Code

Our instrumentation introduces an extra method argu-
ment to represent the reified calling context. The extra ar-
gument is passed from the caller to the callee. In order
to ensure compatibility with Java method invocations by
reflection or by native code (both kinds of callers cannot
be changed by automated bytecode instrumentation tech-
niques), we create “nativecode-to-bytecode wrapper” meth-
ods with the original signature that obtain the root node of
the current thread’s CCT (from a thread-local variable) and
pass it to the corresponding instrumented method. Con-
versely, for each native method, we introduce a “bytecode-
to-nativecode wrapper” method that takes the extra argu-
ment and simply invokes the corresponding native method
without that argument. Bytecode-to-nativecode wrappers
facilitate native method invocation by instrumented Java
code.

A consequence of our treatment of native code issues is
that the reified calling context is lost upon native method in-
vocation. If native code calls back into Java code (through
JNI, the Java Native Interface), the callee appears as a child
of the root node in the thread’s CCT. I.e., all callees of native
code appear as siblings in the CCT. However, we found that
this issue is not a major problem in practice; callbacks from
native code to Java code are not frequent in the profiles we
analyzed. Furthermore, this possible inaccuracy regarding
the reified calling context does not affect the CPU cycle es-
timations. Although this limitation is of minor relevance in
practice, we are considering techniques to preserve the rei-
fied calling context during native code execution as future
work.

5. Evaluation

In this Section we evaluate our cross-profiling approach.
Firstly, we describe the benchmarks for embedded Java sys-
tems we used. Secondly, we assess the accuracy of CProf’s
CPU cycle estimations obtained in the host environment,
comparing the total cycle estimates in the cross-profiles
with the actual CPU cycle consumption on the target pro-
cessor JOP. Thirdly, we compare the benchmark execution
time using CProf with two different simulators run on the
same host environment. Fourthly, we evaluate the overhead
of CProf on the host environment with additional standard
benchmarks which cannot be executed on the embedded
Java processor.

5.1. Embedded System Benchmark

We evaluate our cross-profiling solution with three
benchmarks from the embedded benchmark suite Java-
BenchEmbedded2 (JBE). The original benchmark frame-
work increases the iteration count for the benchmark expo-
nentially until the program runs for at least one second. This
mechanism adapts the benchmark iteration count to the per-
formance of the target system and allows to benchmark very
different platforms in about the same amount of time. How-
ever, this approach does not work for evaluating the cross-
profiling accuracy, as we would measure different iteration
counts on the two platforms. Therefore, we run each appli-
cation benchmark with a constant iteration count of 10000.

The embedded benchmark suite contains several micro
benchmarks and three real world applications. We are fo-
cusing here on the application benchmarks. The first appli-
cation, Kfl, is taken from one of the nodes of a distributed
motor control system. A simulation of both the environment
(sensors and actors) and the communication system (com-
mands from the master station) forms part of the bench-
mark, so as to simulate the real-world workload. The sec-
ond application benchmark, UdpIp, is an adaptation of a
tiny TCP/IP stack for embedded Java. This benchmark con-
tains two UDP server/clients, exchanging messages via a
loopback device. The third application benchmark, Lift, is
a lift controller in an automation factory.

5.2. Accuracy of CProf Cycle Estimations

For a comparison of the accuracy of the proposed cross-
profiling techniques, we ran each benchmark on the real
hardware and used a clock cycle counter to measure the ex-
ecution time on the target. Exactly the same program (com-
piled with the same Java compiler) was then run on the host
environment with CProf.

Table 1 shows the execution time in clock cycles for JOP,
as well as the cycle estimation obtained with CProf. Be-
cause we cannot obtain calling-context-sensitive CPU cycle
consumption data from JOP, we summed up the cycle esti-
mations of all calling contexts in the cross-profile and com-
puted the percent error of the resulting total cycle estimate
and the real cycle consumption on JOP.

The profiling estimation is quite close to the real execu-
tion time. The maximum error observed is below 5%. This
accuracy is good enough for the purpose of cross-profiling:
finding hot spots in the application code and getting infor-
mation where the execution time is spent in the application.

The reasons for inaccuracies are (1) differences in the
Java class libraries used on JOP respectively in the cross-
profiling environment, and (2) a simplified execution time

2http://www.jopwiki.com/JavaBenchEmbedded.

Benchmark JOP CProf Error

Kfl 71.1×106 72.9×106 2.5%
UdpIp 137.8×106 139.0×106 0.8%
Lift 59.9×106 62.8×106 4.8%

Table 1. JOP cycle consumption versus CProf
cycle estimates; JOP method cache disabled.

Benchmark JOP CProf Error

Kfl 54.5×106 72.9×106 33.8%
UdpIp 117.0×106 139.0×106 18.8%
Lift 53.3×106 62.8×106 17.8%

Table 2. JOP cycle consumption versus CProf
cycle estimates; JOP method cache enabled.

model for some bytecodes that are not implemented in mi-
crocode, but provided as Java methods. CProf currently as-
sumes a constant execution time of 200 cycles for all of
these bytecodes.

JOP also contains a special form of instruction cache,
the method cache, where whole methods are cached. As
we have not yet implemented the simulation of the cache in
CProf, the former numbers in Table 1 are given with JOP
configured with a cache for only a single method. Effec-
tively, this corresponds to disabling the method cache.

The execution time for a configuration of JOP with a
4 KB method cache organized in 16 blocks is given in Ta-
ble 2. We can see the influence of this performance enhanc-
ing feature on the execution time and the resulting overes-
timation of the cross-profiler. We consider implementation
of the cache simulation as future work.

5.3. CProf versus Simulators

We compared the execution time of the benchmarks run-
ning on the target processor at 100 MHz (method cache dis-
abled as in Table 1) with CProf and with two simulators.
The first simulator, JopSim3 (version 1.38), is a high-level
simulation for JOP written in Java and not optimized for
speed. JopSim is an interpreting JVM with simulation of
JOP internal hardware (e.g., timer interrupts and I/O de-
vices). The second simulator is the VHDL simulator Mod-
elSim [13] (ModelSim SE 6.1e) that performs the whole
processor simulation and is used to debug the hardware.
CProf and the simulators were executed on an Intel Core2
Duo at 2.2 GHz running Windows XP.

Table 3 shows the wall clock execution time of the three
benchmarks in different execution environments. The sec-

3JopSim is part of the source distribution of JOP: http://www.

jopdesign.com/simulation.jsp

Benchmark JOP CProf JopSim ModelSim

Kfl 711 ms 14 ms 1360 ms 6h25’
UdpIp 1378 ms 53 ms 2719 ms 12h30’
Lift 599 ms 15 ms 1422 ms 5h30’

Table 3. Benchmark execution time in differ-
ent environments; JOP method cache dis-
abled.

Benchmark JOP JopSim Error

Kfl 71.1×106 63.4×106 -11%
UdpIp 137.8×106 162.3×106 18%
Lift 59.9×106 120.9×106 102%

Table 4. JOP cycle consumption versus
JopSim cycle estimates; JOP method cache
disabled.

ond column shows the execution time on the embedded tar-
get. The time is, as expected, the same as given by the cycle
count measurement (Table 1). To provide useful measure-
ments with cross-profiling, we increased the problem size to
100000 iterations and averaged three benchmark runs. The
third column shows the execution time results scaled back
to 10000 iterations. As we can see from the execution times,
cross-profiling on a fast host is an attractive, efficient option
for performance estimation. Cross-profiling in a state-of-
the-art host environment is about 25 to 50 times faster than
executing the benchmarks in the target environment.

The high-level simulation JopSim (fourth column) exe-
cutes by a factor of two slower on the 2.2 GHz machine
than the Java processor at 100 MHz. However, JopSim is a
simple, high-level simulator intended to debug JOP related
functions and has not been optimized for speed. JopSim
also estimates the target execution cycles as shown in Ta-
ble 4. However, the estimates are less accurate than those
given by our new cross-profiler.

The VHDL simulation ModelSim (Table 3, fifth column)
has been measured with a smaller problem size (1000 itera-
tions) and scaled to 10000 iterations. VHDL simulation of
the processor is a very time consuming approach. It is not
very practical to estimate performance on the target system
even for such small scale applications. One millisecond ex-
ecution time on the target at 100 MHz needs about 32 sec-
onds simulation time on a 2.2 GHz PC. However, VHDL
simulation gives the greatest simulation details.

5.4. CProf Overhead

We evaluated the performance overhead introduced by
the bytecode instrumentation and by the additional code
inserted for cross-profiling. In this evaluation we only

consider the overhead on the host environment where the
cross-profiling is performed. For this purpose, we ran the
JBE benchmarks with the same fixed number of iterations
(10000) as in the previous experiments. In addition, since
the goal of this evaluation is not measuring execution time
in the target environment, but assessing the cross-profiling
overhead in the host environment, we also included the
standard SPEC JVM984 and DaCapo5 benchmark suites,
which provide much larger workloads. JVM98 consists of
7 benchmarks and DaCapo has 11 benchmarks. We ran the
JVM98 suite with a problem size of 100 and DaCapo, ver-
sion ‘dacapo-2006-10-MR2’,with its default workload size.

Our measurement platform for this overhead evaluation
is a Linux Fedora Core 2 computer (Intel Pentium 4, 2.66
GHz, 1024 MB RAM). All the benchmarks were run in
single-user mode (no networking) and we removed back-
ground processes as much as possible in order to obtain
reproducible results. The test platform for this evaluation
is therefore different from the one used in previous evalu-
ations. The metric used for Dacapo and JVM98 is the ex-
ecution time in seconds, whereas JBE gives the execution
time in milliseconds. We present only the overhead fac-
tor between the execution time of the original unmodified
benchmarks and the instrumented benchmarks running on
an instrumented JDK. The benchmarks were instrumented
dynamically whereas the JDK libraries were instrumented
statically. We present measurements made with Sun JDK
1.7.0-ea-b21 using both the Hotspot Client VM (‘client’)
and the HotSpot Server VM (‘server’).

Figure 2 shows the overhead factor as the median of 15
runs made within the same JVM process to attenuate the
impact of load-time instrumentation. The overhead is of
factor 1.72–13.86 in ‘client’ mode, respectively 1.33–9.99
in ‘server’ mode. For every benchmark suite, we also cal-
culated the geometric mean giving an overhead factor of
4.16–5.71 for ‘client’ mode and of 3.27–4.29 for ‘server’
mode. We experienced the highest overheads with the ‘ud-
pip’ benchmark of JBE and ‘mtrt’ of JVM98. For the ‘up-
dip’ benchmark in ‘client’ mode, we observed that in the
instrumented version, the percentage of interpreted meth-
ods (as opposed to the percentage of methods compiled by
the HotSpot Client just-in-time compiler) significantly in-
creased. The ‘mtrt’ benchmark is known to make exten-
sive use of small methods [9], which explains the observed
higher overhead. In general, we can see that the HotSpot
Server just-in-time compiler is more effective in reducing
the overhead due to our instrumentation. Overall, the over-
head is moderate considering that profiling covers all byte-
codes in application and JDK classes.

4http://www.spec.org/osg/jvm98/
5http://www.dacapo-bench.org/

4.06

13.86

3.30

5.71

3.56

5.87

1.72

4.11

3.94

13.51

3.12

4.24

4.98

5.79

5.92

3.75

2.59

2.79

4.61

5.22

3.40

3.33

5.08

4.16

3.88

4.08

4.98

4.29

2.59

4.19

1.33

4.10

2.88

9.99

2.36

3.27

3.38

5.84

2.92

4.34

2.95

2.93

4.78

6.07

5.51

2.97

5.91

4.14

0 2 4 6 8 10 12 14

kfl

udpip

li�

JBE Geo.mean

compress

jess

db

javac

mpegaudio

mtrt

jack

JVM98 Geo.mean

antlr

bloat

chart

eclipse

fop

hsqldb

jython

luindex

lusearch

pmd

xalan

DaCapo Geo.mean

client

server

Figure 2. Cross-profiling overhead (slow-
down factor) on Sun JDK 1.7.0, ‘client’ and
‘server’ mode.

6. Related Work

Cross-profiling has been used to simulate parallel sys-
tems [5, 8]. Since it is not always possible to use a host
processor that has the same instruction set as the target pro-
cessor, cross-profiling attempts to match up the BBCs on
the host and the target machines and changes the estimation
of the BBCs on the host machine to reflect the estimates
on the simulated target machine. Our approach follows a
similar principle, but using precise cycle estimations at the
instruction-level, because both the target and the host in-
structions are JVM bytecodes.

A variety of dynamic metrics have been proposed for
profiling, including bytecode metrics [6]. In [7], the *J tool
is presented for the metrics computation. *J relies on the

Java Virtual Machine Profiler Interface (JVMPI)6, which
is known to cause very high overhead and requires native
code [12]. Our bytecode metrics computation minimizes
the overhead and is implemented in pure Java.

Profiling JavaME applications is difficult because of the
use of emulators, the lack of cross-profiling tools, and
the limited resources and profiling support on these de-
vices. ProSyst’s JProfiler [15] uses a profiling agent run-
ning directly on the target device. The agent communicates
through the network with the profiling front-end running on
the Eclipse’s IDE. Even though this approach enables accu-
rate profiling, the agent is implemented in native code using
the JVMPI, and therefore is limited to a reduced number
of virtual machines and operating systems. In addition, the
agent itself consumes resources on the target system which
may have an impact on performance and may perturbate the
measurements. Another drawback of this approach is that
profiling requires deployment of the application on the tar-
get system, which is tedious and time-consuming. In con-
trast, our approach does not require deployment of the ap-
plication. Cross-profiling is done totally independently of
the target environment using portable, standard, and state-
of-the-art Java technology and tools on the host environ-
ment. This allows profiling of applications in an early phase
of development, without the overhead of application de-
ployment and execution in the target environment.

7. Discussion and Future Work

In the following we discuss the strengths and limitations
of our approach and outline our ongoing research on cross-
profiling.

The main goals of our work are: (1) to provide a
platform-independent cross-profiler for an embedded Java
processor, (2) to ensure portability of our profiler and com-
patibility with standard JVMs, (3) to guarantee complete
bytecode coverage in the cross-profiles, (4) to keep the
cross-profiling overhead moderate such that also complex
applications can be profiled, and (5) to achieve high accu-
racy in our CPU cycle estimations.

Our cross-profiler meets the first and second goal
to a large extent, because it is implemented in
pure Java and compatible with any standard JVM
(JDK 1.5 or higher, since our cross-profiler relies on the
java.lang.instrument API). For deterministic applica-
tions, cross-profiles are exactly reproducible, as long as the
same Java class library is used. However, in practice many
applications involve some non-determinism. For instance,
if algorithms make use of the identity hashcodes of objects
(e.g., hashtable operations), they may follow different
execution paths if the hashcodes vary between different

6The JVMPI has been deprecated in Java 1.5 and has been replaced
with the JVMTI.

runs of the program. Concurrency and the unknown thread
scheduling contribute to the observed non-determinism,
too. Therefore, multithreaded applications may be sched-
uled in a different way on the host platform used for
cross-profiling respectively on the embedded target system.

Our approach to bytecode instrumentation ensures full
coverage of any code that has a corresponding bytecode rep-
resentation; hence, it fully meets the third goal. We are able
to profile the execution of any Java method in the JDK (even
in java.lang.Object) as well as any dynamically loaded
or generated code.

Concerning our fourth goal, we have shown in Sec-
tion 5.4 that even large benchmarks, such as the DaCapo
suite, can be profiled within reasonable time. Although we
inject instrumentation code for calling context reification,
for cycle counting, and for periodically triggering a custom
profiling agent, the experienced overhead remains moder-
ate when compared with a JVMTI-based profiler that tracks
each method call. In past work we evaluated the profiling
agent “hprof” (which is part of many standard JDK releases
and relies on the JVMTI) in its exact profiling mode and
showed that it causes overhead up to factor 4000 [2]. The
reason for such excessive overhead is that certain events sig-
naled by the JVMTI, such as method entry or exit, prevent
just-in-time compilation. In contrast, our instrumentation is
completely transparent to the JVM, and the inserted instru-
mentation code gets optimized by the just-in-time compiler
just as any application code. Because our approach treats
the JVM as a “blackbox”, we can always resort to the most
recent JDK release with a state-of-the-art compiler for run-
ning our cross-profiler.

In Section 5.2 we have shown that for all measured
embedded applications, the CPU cycle estimations in our
cross-profiles are quite accurate with an error below 5%.
Thus, we think that we have achieved the fifth goal to a
large extend.

While inaccuracies due to application-inherent non-
determinism cannot be avoided, there are still three sources
of inaccuracy in our cross-profiles that we want to eliminate
in our ongoing research: (a) differences in the Java class li-
brary, (b) simplistic cycle estimations for bytecodes that are
substituted by routines in the embedded system, and (c) a
simplified model of JOP’s method cache.

The Java class library available on the embedded sys-
tem is often different from the version in the cross-profiling
environment. In our case, JOP uses a modified version of
GNU Classpath7, whereas in our measurements we used a
standard Sun JDK for cross-profiling. As GNU Classpath
now supports the java.lang.instrument API, we may
use a JVM based on GNU Classpath for cross-profiling in
the future. In this way, we can reduce inaccuracies when
profiling the execution of JDK methods.

7http://www.gnu.org/software/classpath/

Several bytecodes (e.g., runtime type checks and casts,
object and array allocation, floating point arithmetic, divi-
sion, etc.) consume a variable number of cycles on em-
bedded Java processors. These bytecodes are substituted
with routines that depend on runtime parameters (e.g., ob-
ject type, array dimensions, etc.). Currently, we estimate
the cycle consumption of these bytecodes with a constant,
causing inaccuracies in the cross-profiles. To solve this is-
sue, we will instrument the affected bytecodes so as to sim-
ulate the routines that would be executed on the embedded
target platform. This simulation will not actually execute
these routines, but only compute the cycles that would be
consumed when executing them.

One major limitation of our current cross-profiler is its
inability to take cache behavior into account. Recent Java
processors have a method cache that helps reducing the cy-
cles consumed by method invocation and return. We are
currently working on an extension mechanism for our cross-
profiler that allows intercepting method call and return so
as to simulate a custom method cache and compute the ac-
tual call/return cycles accordingly. With this additional fea-
ture, our cross-profiler will also become a valuable tool for
quickly evaluating new caching strategies on large sets of
benchmarks, before implementing the most effective strat-
egy in hardware. However, depending on the complexity of
the cache simulation, the extra overhead can be significant.

Finally, we want to show the general applicability of our
approach by supporting additional Java processors as cross-
profiling target.

8. Conclusion

In this paper, we introduced a novel technique for cross-
profiling based on Java bytecode instrumentation. Our
approach ensures platform-independence, portability, and
compatibility with standard Java runtime systems. It en-
ables calling-context-sensitive cross-profiling of embed-
ded applications (which normally execute in resource-
constrained target environments) in any standard Java host
environment, completely decoupled from the target system.

As case study, we evaluated our approach with the Java
processor JOP as target system. The generated cross-
profiles are sufficiently accurate for many practical pur-
poses; the error is below 5% for the embedded benchmarks
we profiled. Our performance evaluation also shows that
the overhead caused by bytecode instrumentation is reason-
able, considering that the cross-profiler is written in pure
Java and hence is completely portable.

To sum up, we are promoting new profiling techniques
(and their implementation in the cross-profiler CProf) for
accurate performance analysis of embedded Java applica-
tions that can be easily used by the software developer
within the preferred development environment. Because

there is no need to deploy the embedded application on the
target system and because the profiling causes only mod-
erate overhead, our approach is already applicable before
the target system exists and allows cross-profiling of large-
scale applications and benchmarks that could not run on the
target system because of resource constraints.

Acknowledgements

The work presented in this paper has been supported by
the Swiss National Science Foundation.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive pro-
filing. In PLDI ’97: Proceedings of the ACM SIGPLAN
1997 conference on Programming language design and im-
plementation, pages 85–96. ACM Press, 1997.

[2] W. Binder. A portable and customizable profiling frame-
work for Java based on bytecode instruction counting. In
Third Asian Symposium on Programming Languages and
Systems (APLAS 2005), volume 3780 of Lecture Notes in
Computer Science, pages 178–194, Tsukuba, Japan, Nov.
2005. Springer Verlag.

[3] W. Binder, J. Hulaas, and P. Moret. Advanced Java Bytecode
Instrumentation. In PPPJ 2007 (5th International Confer-
ence on Principles and Practices of Programming in Java),
pages 135–144, Lisbon, Portugal, 2007. ACM Press.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[5] R. Covington, S. Dwarkadas, J. Jump, J. Sinclair, and
S. Madala. The efficient simulation of parallel computer sys-
tems. International Journal in Computer Simulation, 1:31–
58, 1991.

[6] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge.
Dynamic metrics for Java. ACM SIGPLAN Notices,
38(11):149–168, Nov. 2003.

[7] B. Dufour, L. Hendren, and C. Verbrugge. *J: A tool
for dynamic analysis of Java programs. In OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, pages 306–307, New York, NY, USA, 2003.
ACM Press.

[8] S. Dwarkadas, J. R. Jump, R. Mukherjee, and J. B. Sin-
clair. Execution-driven simulation of shared-memory multi-
processors. In MASCOTS, pages 83–86, 1993.

[9] D. Gregg, J. F. Power, and J. Waldron. A method-level com-
parison of the Java Grande and SPEC JVM98 benchmark
suites. Concurrency and Computation: Practice and Expe-
rience, 17(7–8):757–773, 2005.

[10] D. S. Hardin. Real-time objects on the bare metal: An
efficient hardware realization of the Java virtual machine.
In Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, pages
53–59. IEEE Computer Society, 2001.

[11] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
T. Ungerer. Real-time event-handling and scheduling on a
multithreaded Java microcontroller. Microprocessors and
Microsystems, 27(1):19–31, 2003.

[12] S. Liang and D. Viswanathan. Comprehensive profiling sup-
port in the Java virtual machine. In Proceedings of the
5th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS-99), pages 229–240, Berkeley, CA,
May 3–7 1999. USENIX Association.

[13] Mentor Graphic Inc. ModelSim. Web pages at http://
www.model.com/.

[14] J. M. O’Connor and M. Tremblay. picoJava-I: The Java vir-
tual machine in hardware. IEEE Micro, 17(2):45–53, 1997.

[15] ProSyst. JProfiler. Web pages at http://www.prosyst.
com/products/tools_jprofiler.html.

[16] W. Puffitsch. picoJava-II in an FPGA. Master’s thesis, Vi-
enna University of Technology, 2007.

[17] W. Puffitsch and M. Schoeberl. picoJava-II in an FPGA.
In Proceedings of the 5th International Workshop on Java
Technologies for Real-time and Embedded Systems (JTRES
2007), pages 213–221, Vienna, Austria, September 2007.
ACM Press.

[18] M. Schoeberl. A time predictable Java processor. In Pro-
ceedings of the Design, Automation and Test in Europe Con-
ference (DATE 2006), pages 800–805, Munich, Germany,
March 2006.

[19] M. Schoeberl. Application experiences with a real-time Java
processor. In Proceedings of the 17th IFAC World Congress,
Seoul, Korea, July 2008.

[20] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture, 54/1–
2:265–286, 2008.

[21] M. Schoeberl and R. Pedersen. WCET analysis for a Java
processor. In Proceedings of the 4th International Workshop
on Java Technologies for Real-time and Embedded Systems
(JTRES 2006), pages 202–211, New York, NY, USA, 2006.
ACM Press.

