
Cache-aware Cross-profiling for Java Processors

Walter Binder
Faculty of Informatics
University of Lugano

CH–6900 Lugano
Switzerland

walter.binder@unisi.ch

Alex Villazón
Faculty of Informatics
University of Lugano

CH–6900 Lugano
Switzerland

alex.villazon@lu.unisi.ch
Martin Schoeberl

Institute of Computer Engineering
Vienna University of Technology

A–1040 Vienna
Austria

mschoebe@
mail.tuwien.ac.at

Philippe Moret
Faculty of Informatics
University of Lugano

CH–6900 Lugano
Switzerland

philippe.moret@lu.unisi.ch

ABSTRACT
Performance evaluation of embedded software is essential in
an early development phase so as to ensure that the soft-
ware will run on the embedded device’s limited computing
resources. Prevailing approaches either require the deploy-
ment of the software on the embedded target, which can
be tedious and may be impossible in an early development
phase, or rely on simulation, which can be very slow. In this
paper, we introduce a customizable cross-profiling frame-
work for embedded Java processors, including processors
featuring a method cache. The developer profiles the em-
bedded software in the host environment, completely decou-
pled from the target system, on any standard Java Virtual
Machine, but the generated profiles represent the execution
time metric of the target system. Our cross-profiling frame-
work is based on bytecode instrumentation. We identify sev-
eral pointcuts in the execution of bytecode that need to be
instrumented in order to estimate the CPU cycle consump-
tion on the target system. An evaluation using the JOP
embedded Java processor as target confirms that our ap-
proach reconciles high profile accuracy with moderate over-
head. Our cross-profiling framework also enables the rapid
evaluation of the performance impact of possible optimiza-
tions, such as different caching strategies.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; C.4 [Performance of Systems]:
Measurement techniques; D.2.8 [Software Engineering]:
Metrics—Performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

General Terms
Algorithms, Languages, Measurement, Performance

Keywords
Cross-profiling, embedded Java processors, bytecode instru-
mentation, platform-independent dynamic metrics

1. INTRODUCTION
High-level, object-oriented programming models are be-

coming increasingly popular for the development of embed-
ded and real-time systems, since they help enhancing pro-
ductivity and avoiding certain kinds of programming mis-
takes. Because of its safety guarantees, Java [13] is an at-
tractive language for developing embedded systems. Lan-
guage safety means that the execution of programs proceeds
according to the language semantics. For instance, types are
not misinterpreted and data is not mistaken for executable
code. The safety properties of Java depend on techniques
such as strong typing, automatic memory management, dy-
namic bound checks, and bytecode verification. The Java
Platform Micro Edition (JavaME) provides a subset of the
language features and class library of the Standard Edition
(JavaSE), suitable for embedded systems with limited com-
puting resources. Special requirements for real-time systems
are addresses in the real-time specification for Java [9].

Java Virtual Machines (JVMs) [20] tailored to embedded
systems either interpret the application bytecode, employ
just-in-time compilation on the embedded system, compile
the embedded Java application (in the development environ-
ment) to native code for the embedded target system, or use
a dedicated Java processor that directly executes bytecodes,
such as the aJile processor [16], Cjip [17], or JOP [27]. In
this paper, we consider only embedded Java processors as
cross-profiling targets.

Performance evaluation of embedded system software is
crucial in order to ensure that the created software man-
ages on the target system’s scarce resources. Concomitant
performance evaluation is particularly important for embed-
ded system software written in Java (or in any other high-
level, object-oriented programming language), since the per-

formance impact of certain language features (such as type
checks, bound checks, garbage collection, etc.) may not be
directly apparent to the programmer.

Unfortunately, profiling of embedded Java applications is
currently a tedious task that requires either deployment of
the embedded application on the target platform or a simula-
tor of that platform. However, the embedded target system
may not be available in an early development phase. Fur-
thermore, deployment and performance measurements on
the target platform are time-consuming. Similarly, simula-
tors can be prohibitively slow. For instance, we found that
the simulator ModelSim [21] causes excessive overhead of up
to factor 33000 (when compared to running the same Java
application on a standard JVM on the same machine). Con-
sequently, embedded Java applications are rarely profiled in
an early development phase.

Whereas the JavaSE offers a dedicated profiling interface,
the JVM Tool Interface (JVMTI) [30], embedded Java sys-
tems often lack profiling support. Because of the resource
constraints on embedded Java systems, CPU time and mem-
ory consuming profiling techniques are often impossible. For
example, the Calling Context Tree (CCT) [1] provides de-
tailed profiling data for each calling context, which helps
locating hot spots. However, the CCT may consume sig-
nificantly more heap memory than the profiled application
itself.

In order to enable and ease performance evaluation of em-
bedded Java software that is intended to run on a Java pro-
cessor, we introduce the customizable cross-profiling frame-
work CProf. CProf is written in pure Java and runs on
any standard JVM. It enables calling-context-sensitive cross-
profiling of Java applications directly within the develop-
ment environment, which we will call ‘host’ in the follow-
ing, completely decoupled from the embedded target sys-
tem. Nonetheless, the generated profiles show the execution
time metrics of the target.

CProf uses bytecode instrumentation in order to generate
calling-context-sensitive profiles with CPU cycle estimations
for the target processor. It relies on a bytecode instrumen-
tation framework [6], which ensures that each Java method
is instrumented and therefore represented in the profile, in-
cluding all methods in application classes and in the Java
class library.

CProf identifies particular points in the execution of pro-
grams, so-called pointcuts in aspect-oriented programming
(AOP) terminology [18], where the cycle estimate needs
to be updated. Currently, CProf supports method entry,
method return, and basic block entry as relevant pointcuts.
As we will show in this paper, these pointcuts enable cross-
profiling for Java processors.

The scientific contributions of this paper are the soft-
ware architecture of the customizable cross-profiling frame-
work CProf, as well as its specialization for the embedded
Java processor JOP [27]. We choose JOP as our first cross-
profiling target, because the CPU cycle consumption for the
bytecodes is public available. Moreover, JOP is a recent ar-
chitecture that includes an instruction cache, which caches
whole methods. Therefore, cross-profiling for the JOP pro-
cessor also requires simulating that instruction cache. We
evaluated CProf with the JOP target model, varying differ-
ent parameters of the cache. Our results confirm that CProf

yields accurate CPU cycle estimations (with an error below
3.3%) and causes reasonable overhead, orders of magnitude
less than simulators.

This paper is structured as follows: Section 2 describes
CProf’s execution time model and gives an overview of the
JOP processor. Section 3 explains our cross-profiling frame-
work CProf. In Section 4 we assess the accuracy of the gener-
ated cross-profiles for some embedded Java benchmarks and
measure the runtime overhead due to cross-profiling. Sec-
tion 5 discusses related work and Section 6 concludes this
paper.

2. JAVA PROCESSORS AS CROSS-
PROFILING TARGETS

There are several Java processors which follow a similar
execution time model, and some implement a method cache.
Since our cross-profiling approach is based on cycle estimates
for bytecodes, we firstly summarize our assumptions on the
target execution time model. Afterwards, we briefly describe
JOP, which is the target processor for our evaluation, and
discuss its method cache.

2.1 Assumptions on the Execution Time
Model

Our cross-profiling approach targeting Java processors is
based on the following assumptions:

• For most bytecodes, the CPU cycle consumption on
the target can be accurately estimated by constants,
independently of the context where these bytecodes
occur.

• For method invocation and return bytecodes, the cy-
cle consumption on the target may also depend on
the size of the callee or caller method. Furthermore,
the presence of a method cache may affect the cycle
consumption of invoke/return bytecodes. As object-
oriented programs tend to have rather small methods
and method invocation/return bytecodes are expected
to be executed frequently, we consider an accurate es-
timation of the cycle consumption essential for these
bytecodes.

• In addition to invocation/return bytecodes, some other
bytecodes, such as type checks, may not consume a
constant number of cycles on the target. We as-
sume that reasonable (though not always accurate) es-
timates are available for these bytecodes.

2.2 The Java Processor JOP
JOP [27] is an implementation of the JVM in hardware.

As embedded systems are often also real-time systems with
hard timing constraints, the main focus of the development
of JOP has been on time-predictable bytecode execution.
All function units, and especially the interactions between
them, are carefully designed to avoid any time dependencies
between bytecodes. This feature simplifies the low-level part
of worst-case execution time (WCET) analysis, a mandatory
analysis for hard real-time systems.

JOP dynamically translates the CISC Java bytecodes to
a RISC, stack-based instruction set (the microcode) that
can be executed in a 3-stage pipeline. The translation takes
exactly one cycle per bytecode. All microcode instructions

have a constant execution time of one cycle. No stalls are
possible in the microcode pipeline. The absence of time de-
pendencies between bytecodes results in a simple processor
model for the low-level WCET analysis [28], which fully con-
forms to the aforementioned assumptions for cross-profiling.

Besides JOP, there are several other Java processors for
embedded systems; the execution time modeling for those
processors can be done in a similar way. The first Java
processor, picoJava [22], was developed by Sun Microsys-
tems. The most successful Java processor is the aJile pro-
cessor [16] that was initially conceived as a platform for
the Java real-time specification [9]. Another Java processor,
Cjip [17], supports multiple instruction sets, and the JVM
is implemented largely in microcode. Komodo [19] is a mul-
tithreaded Java processor intended as a basis for research
on real-time scheduling on a multithreaded microcontroller.
The follow-up project, jamuth [32], is a commercial version
of Komodo.

2.3 Method Cache
JOP introduced a special instruction cache, the method

cache [26], which caches whole methods. A method cache is
also integrated in the embedded Java processor SHAP [23]
and considered in jamuth [32] as a time-predictable caching
solution.1

With a method cache, only invoke and return bytecodes
can result in a cache miss. All other bytecodes are guaran-
teed cache hits. The idea to cache whole methods is based on
the assumption that WCET analysis at the call graph level
is more practical than performing cache analysis for each
bytecode. Furthermore, loading whole methods also leads
to better average case execution times for memory with long
latency but high bandwidth.

CProf supports the simulation of a method cache in a
customizable way. The simulation provides the information
whether the invoked method or the method caller upon re-
turn will be a cache hit or a cache miss. On a miss, we
calculate the cache load time with the given processor ex-
ecution time model. The load time depends on the size of
the method. However, on JOP, the cache loading is done
in parallel with microcode execution in the core pipeline.
Therefore, small methods do not add any additional latency
to the invoke or return bytecodes.

3. CROSS-PROFILING
Bytecode instrumentation is a well-known technique for

profiling [3, 4, 5]. While the work presented here lever-
ages bytecode instrumentation-based profiling techniques
that preserve calling context information, it introduces the
instrumentation of certain low-level pointcuts, allowing for
flexible, user-defined collection of dynamic metrics. Thanks
to CProf’s support for customization, we are able to cre-
ate cross-profilers for Java processors with a minimum of
development effort.

In the following, we firstly describe our representation
of the calling context. Secondly, we discuss how collected
profiling data can be processed online and in a customized
way. Thirdly, we present our generic instrumentation tech-
niques that enable cross-profiling for embedded Java pro-
cessors. Fourthly, we describe CProf’s configuration for the
JOP processor used in our evaluation.

1Personal communication with Sascha Uhrig.

3.1 Calling Context Tree
We instrument bytecode such that each thread main-

tains a Calling Context Tree (CCT) [1]. Each calling con-
text is represented by a node in the CCT, which holds a
method identifier, a method invocation counter, and the set
of callee contexts. In addition, CCT nodes may store vari-
ous dynamic metrics that are collected for each calling con-
text. Method identifiers convey class name, method name,
method signature, and method size (in bytes).

CProf maintains a CCT for each thread. Thanks to the
generated code for CCT management2, the instrumentation
has access to both the caller’s node and the callee’s node in
the current thread’s CCT.

3.2 Customized Processing of Profiling Data
Periodically, each thread invokes a user-defined profiler

to process the thread’s CCT. A typical profiler may aggre-
gate the CCTs of all threads within a ‘global’ CCT repre-
senting the activities of all threads and output the ‘global’
CCT upon program termination (e.g., using a JVM shut-
down hook). Alternatively, custom profilers may be used
for online processing of the profiling data, such as for dis-
playing continuous metrics.

The profiler interface has only three methods that must
be implemented by the user-defined profiler: one method to
initialize the profiler, a second method for registering the
CCT root of each thread that executes profiling code, and a
third method that gets periodically invoked by each thread
to enable online processing of profiling data.

The latter method is invoked whenever a dedicated,
thread-local bytecode counter reaches a user-defined thresh-
old. We use some form of call/return polling [12] to incre-
ment and check the bytecode counter in strategic program
locations, such as upon method entry or in the beginning of
loops. This approach ensures the periodic activation of the
profiler by each thread, according to the progress (measured
as the number of executed bytecodes) the thread has made
since its last invocation of the profiler.

3.3 Customized Collection of Dynamic
Metrics

CProf allows customizing the way dynamic metrics are
computed for each calling context. Figure 1 gives a high-
level overview of CProf, showing the configurable and ex-
tensible parts of the system. Moreover, the figure illustrates
the instrumentation of a sample method.

Instrumentation with CProf involves three phases, the ba-
sic block analysis (BBA), the static calculation of metrics for
each basic block (BB), and the actual instrumentation.

3.3.1 Basic Block Analysis
The basic block analysis takes the bytecode of a method

and returns a representation of the control flow graph
(CFG). CProf provides the necessary abstractions to rep-
resent a CFG and the nodes in it. While the user may
employ a custom BBA algorithm, CProf provides two pre-
defined BBA algorithms, which we call ‘Default BBA’ and
‘Precise BBA’.

In the Default BBA, only bytecodes that may change the
control flow non-sequentially (i.e., jumps, branches, method

2Method signatures are extended so as to pass the caller’s
CCT node to the callee, and upon entry, the callee first looks
up or creates its own node as a child of the caller’s node.

CProfCProf

Basic
Block

Analysis

Basic
Block

Analysis

Sta�c
BB Metrics
Calcula�on

Sta�c
BB Metrics
Calcula�on

Instrumen-
ta�on

Instrumen-
ta�on

Method
Bytecode
Method

Bytecode

Instrumented
Method

Bytecode for
Cross-profiling

Instrumented
Method

Bytecode for
Cross-profiling

CycleEs�mator

EnterReturnProfiler

CacheX

CacheJOP

CFG

. . .

??

????

??

??

????

??

CacheStrategy

getCycles()

onMethodEnter()

isCacheHit()

onMethodReturn()

cycles+=…cycles+=…

cycles+=…cycles+=…

cycles+=…cycles+=…

cycles+=…cycles+=…

cycles+=…cycles+=…

cycles+=…cycles+=…

cycles+=…cycles+=…

CyclesX

CyclesJOP
. . .

CFG
+

BB Metrics

<<call>>

<<call>>

<<call>>

<<call>>

Figure 1: Overview of CProf

return, exception throwing) end a BB. Method invocations
do not end BBs, because we assume that the execution will
return after the call. This definition of BB corresponds to
the one used in [7] and is related to the factored control flow
graph (FCFG) [10]. In contrast, using the Precise BBA,
each bytecode that might throw an exception ends a BB.

As we will explain below, CProf instruments the beginning
of each BB, assuming that all bytecodes in the BB will be ex-
ecuted. The advantage of the Default BBA is that it creates
rather large BBs. Therefore, the Default BBA helps reduc-
ing the number of program locations where instrumentation
code is inserted, resulting in lower cross-profiling overhead.
As long as no exceptions are thrown, the Default BBA does
not cause any inaccuracies. However, in the case of an excep-
tion, CProf’s assumption that all bytecodes in the BB would
be executed is violated, if the exception-throwing bytecode
is not the last one in its BB. The Precise BBA avoids this
potential imprecision, but causes higher overhead because
the resulting BBs are smaller.

3.3.2 Static Basic Block Metrics Calculation
Regarding the supported target processors for cross-

profiling, we assume that the CPU cycle consumption of all
bytecodes, apart from method invocation and return, can be
estimated by a constant. This assumption allows us to stati-
cally compute the CPU cycle estimate for each BB, by sum-
ming up the CPU cycle estimates for the bytecodes in the
BB (while ignoring method invocation/return bytecodes).

Figure 1 shows CProf’s component for the static BB met-
rics calculation. While this component can be replaced by
the user, the default implementation in our cross-profiling
framework invokes a given CycleEstimator for each byte-
code in a BB (see the UML class diagram included in Fig-
ure 1). The CycleEstimator is an abstraction providing the
method getCycles() that takes, amongst others, a bytecode
as argument and returns the corresponding CPU cycle es-
timate. We designed the cross-profiling framework so as to
ease the plug-in of custom CycleEstimator implementations
according to the cross-profiling target processor (CyclesJOP
respectively CyclesX in the class diagram).

The statically computed BB cycle estimates are stored
within the nodes of the CFG. That information is used after-
wards by the instrumentation component for instrumenting
the beginning of each BB.

3.3.3 Instrumentation
CProf’s instrumentation component fulfills three roles:

(1) it generates the code for maintaining the CCT, (2) it
inserts the polling code that ensures the periodic invocation
of a custom profiler, and (3) it injects the code that com-
putes the CPU cycle estimation for the target. While the
first two issues have been outlined before, we focus here on
the third issue.

Figure 1 illustrates a sample CFG generated by a BBA
algorithm on the left side, as well as the resulting CFG af-
ter instrumentation on the right side. The CFG is used to
identify the method entry, method return, and basic block
entry pointcuts.

For the basic block entry pointcut, CProf inserts a byte-
code sequence in the beginning of each BB that increments a
cycle counter (within the CCT node representing the execut-
ing method) according to the statically pre-calculated cycle
estimate for the BB. Hence, the chosen BBA algorithm de-
termines the program locations where this instrumentation
happens.

The method entry and return pointcuts are instrumented
with invocations to the EnterReturnProfiler, which pro-
vides the two methods onMethodEnter() and onMethod-

Return().3 As arguments, these methods receive the caller
and callee nodes in the CCT, as well as the invocation/return
bytecode. As mentioned before, each CCT node refers to
the corresponding method identifier, which in turn provides
method-related information, such as the method size (before
instrumentation).

While a custom EnterReturnProfiler can be provided
by the user, our default implementation first determines
whether the method to be loaded (i.e., the callee for onMeth-
odEnter(), respectively the caller for onMethodReturn()) is
in the cache. To this end, CProf provides the CacheStrat-

egy abstraction with a boolean method isCacheHit() that
takes as argument a method identifier. The user has to pro-
vide an appropriate implementation of the CacheStrategy

for the target processor. The UML class diagram in Figure 1
shows two concrete implementation, CacheJOP and CacheX.

After consulting the configured CacheStrategy, the de-
fault implementation of EnterReturnProfiler invokes the
CycleEstimator to compute the cycles consumed by the
method invocation/return. In addition to a bytecode, get-
Cycles() also takes information on the method size and
whether the method was found in the cache (for byte-
codes other than method invocation/return, this extra in-
formation is meaningless and ignored by implementations
of getCycles()). The cycle estimate is added to the cy-
cle counter in the appropriate CCT node (i.e., in the caller
node for method invocation, respectively in the callee node
for method return).

For the method return pointcut, the instrumentation com-
ponent exactly knows the return bytecode and passes it as
argument to onMethodReturn(). However, for the method
entry pointcut, the instrumentation component cannot al-

3In AOP terminology, EnterReturnProfiler corresponds to
an aspect class, and the methods onMethodEnter() and on-
MethodReturn() are related to advices.

ways determine which invocation bytecode will be used by
the caller. A method that is also declared in an interface may
be called with the invokevirtual bytecode or with the in-

vokeinterface bytecode. Furthermore, one use of invoke-
special is to access a superclass’ version of a method (this
mechanism is used to compile Java’s super() construct).
I.e., in certain cases the same method may be called by in-

vokevirtual, invokeinterface, or invokespecial.
As general solution to this problem, we can pass the in-

formation regarding the method invocation bytecode from
the caller to the callee as an extra method argument. For
invocations of static methods, private methods, and con-
structors, the extra argument is not needed, because the
invocation bytecode is statically known (both when instru-
menting the caller method(s) and the callee method).4 Note
that in general, the method entry pointcut cannot be imple-
mented by instrumenting the caller, because of polymorphic
call sites (where the method identifier of the callee would not
be known). In contrast, the method identifier of the caller is
always known to the callee, since the caller passes its CCT
node to the callee.

Another issue is abnormal method completion through an
exception. In this case, onMethodReturn() is not invoked. A
general solution to this issue would be the introduction of an-
other pointcut (corresponding to a method onMethodAbnor-

malCompletion() in EnterReturnProfiler), which could be
implemented by an inserted exception handler. However, as
such an instrumentation would cause higher cross-profiling
overhead, we have not yet implemented such a pointcut.

3.4 Customization for the JOP Processor
While the software architecture of CProf allows cus-

tomization and replacement of all components shown in Fig-
ure 1, the typical customization for a target processor that
fits our execution time model will require only the implemen-
tation of the CycleEstimator and CacheStrategy interfaces.

With respect to cross-profiling for the JOP processor, we
use CProf’s Default BBA. This choice is a reasonable trade-
off between cross-profiling accuracy and overhead.

Regarding the customized processing of cross-profiling
data, we created a simple profiler that aggregates the CCTs
of all application threads into a global structure, but disre-
gards the CCTs of system threads. The profiler keeps weak
references to application threads, associated with the corre-
sponding CCT root nodes, in order to collect the CCTs of
threads that terminate during cross-profiling. Upon JVM
shutdown, the CCTs of the remaining application threads
are collected, before the final cross-profile is emitted.

We implemented a CycleEstimator in the
class CyclesJOP, which is an adapter to the
JOP cycle estimation API provided by the class
com.jopdesign.wcet.WCETInstruction5 . Furthermore,
we implemented a CacheStrategy in the class CacheJOP,
which has less than 50 lines of Java code and simulates the
hardware method cache of the current JOP processor.

4The instrumentation component can statically determine
whether a callee is private, since it processes all methods
within the same class file, and private methods can only
be called in the defining class. Constructor invocations are
identified by the special method name <init>.
5http://www.opencores.org/cvsweb.shtml/jop/

In Figure 1, the classes CyclesX and CacheX are meant to
illustrate that CProf can be easily adapted to another Java
processor X, provided that X fits into our execution time
model.

4. EVALUATION
In the following we evaluate CProf regarding cross-profile

accuracy and runtime overhead. For the accuracy assess-
ment, we compare CProf’s cycle estimates measured on the
host with the actual CPU cycle consumption on JOP. For
the runtime overhead evaluation, we measure the execution
time of CProf on the host and analyze the different sources
of overhead.

4.1 Benchmarks and Evaluation Settings
To evaluate our cross-profiling approach, we selected

two benchmark suites, the embedded benchmarks Jav-
aBenchEmbedded6 (JBE) and SPEC JVM987. JBE con-
tains several micro benchmarks and three real-world appli-
cations (a motor control system, a tiny TCP/IP stack for
embedded Java, and a lift controller); we use only the real-
world applications, run with a constant iteration count of
10000. JVM98 consists of seven benchmarks, which are not
aimed to run on the target system, but provide larger work-
loads for the runtime overhead evaluation. We use JVM98
with a problem size of 100.

Since the accuracy evaluation of CProf aims at calculat-
ing CProf’s cycle estimate independently from the execution
time on the host, we use a standard desktop computer for
this purpose. In contrast, for the runtime overhead eval-
uation, in order to obtain reproducible results, we execute
the benchmarks on an isolated host in single-user mode (no
networking), where we removed background processes as
much as possible. The host environment for the accuracy
assessment is a Linux Debian computer (Intel Core2 Duo,
2.33GHz, 2048MB RAM), whereas the host environment for
the overhead evaluation is a Linux Fedora Core 2 computer
(Intel Pentium 4, 2.66GHz, 1024MB RAM). For all mea-
surements, we use the Sun JDK 1.7-ea-b24 HotSpot Server
VM.

4.2 Accuracy
In order to gather reference data for the accuracy assess-

ment, we ran JBE on the real hardware (JOP processor,
100MHz, 1MB RAM) and used a clock cycle counter to mea-
sure the execution time.

Table 1 compares the CPU cycle consumption on the
target (‘JOP’) with the total cycle estimates in the cross-
profiles obtained on the host (‘CProf’). The total cycle es-
timates are the sum of the cycle estimates in all calling con-
texts of the cross-profiles. We varied the method cache size
respectively the number of blocks, and observed a maximum
error of 3.28%. The inaccuracies are caused by differences
in the Java class libraries on JOP respectively on the host,
and by a simplified execution time model for some byte-
codes (e.g., runtime type checks and casts, floating point
arithmetic, etc.).

In order to compare the achieved cross-profiling accuracy
with a simulator, we also obtained cycle estimates with Jop-

6http://www.jopwiki.org/JavaBenchEmbedded/
7http://www.spec.org/osg/jvm98/

Sim8, a high-level simulator for JOP written in Java. Jop-
Sim is an interpreting JVM with simulation of JOP internal
hardware (e.g., timer interrupts and I/O devices); its main
purpose is to help debugging JOP-related functions. We
found that JopSim’s cycle estimates are far less accurate
than those obtained with CProf. E.g., we observed an er-
ror of up to 102% for the JBE benchmarks with a 1KB/16
cache setting, which is extremely high compared to an error
of -2.54% obtained with CProf for the same setting.

4.3 Runtime Overhead
Table 2 presents the results of our overhead evaluation

for JBE and JVM98. Each measurement represents the me-
dian of 15 runs of the benchmark within the same JVM
process. The column ‘Orig.’ shows our reference measure-
ments, running the benchmarks without CProf on the host.
The columns ‘ovh’ present overhead factors for each setting.
For each benchmark suite, we also show the geometric mean
of the measurements.

We evaluated CProf in three different configurations so as
to separate the distinct sources of overhead.

Firstly, we evaluated the overhead due to the inserted code
that creates the CCTs and performs computations on the
BB pointcuts, but without the method entry and return
pointcuts (‘CProf no ER’). This corresponds to the instru-
mented CFG of Figure 1 but without the invocations of the
EnterReturnProfiler. In this setting, we observe an over-
head factor of 1.33–9.99. For ‘mtrt’, we experienced the
highest overhead. ‘mtrt’ is known to make extensive use
of small methods [14], which makes the CCT maintenance
expensive.

Secondly, we enabled the method entry and return point-
cuts, but used a trivial ‘no cache’ strategy that always as-
sumed a miss (‘CProf ER, no cache’). We notice that the
invocations of the EnterReturnProfiler introduces an ad-
ditional overhead of factor 0.21–4.19 (overhead difference
between ‘CProf ER, no cache’ and ‘CProf no ER’).

Thirdly, we evaluated the real CProf configuration for
JOP, using a cache strategy that simulates a method cache
of 1KB with 16 blocks (‘CProf ER+cache’). The experi-
enced overhead of factor 2.94–47.54 is more than twice the
overhead in the previous setting. In contrast to CProf’s
instrumentation, the custom cache strategy (CacheJOP in
Figure 1) was not optimized, which explains the high extra
overhead. Overall, the execution time in this setting is still
reasonable (below 70ms for the JBE benchmarks); optimiz-
ing the cache strategy to reduce cross-profiling overhead is
typically not worth the effort in practice.

We also executed the JBE benchmarks with the JopSim
simulator (cache enabled) and observed overheads of factor
690–10500 depending on the host platform. Still, the over-
heads caused by VHDL simulators, such as ModelSim [21],
can be orders of magnitude higher. However, such simula-
tors are not intended to be used for cross-profiling.

5. RELATED WORK
Cross-profiling techniques have been used to simulate par-

allel computers [11]. Since it is not always possible to use
a host processor that has the same instruction set as the
target processor, cross-profiling tries to match up the basic

8JopSim is part of the JOP source distribution. http://
www.jopdesign.org/

Table 1: Accuracy of CProf’s cycle estimates with different method cache size and number of blocks.

Table 2: CProf overhead with/without Enter-Return calls (ER), respectively with/without cache strategy.

blocks on the host and on the target machines, changing the
estimates on the host to reflect the simulated target. Our
approach follows a similar principle, but uses precise cycle
estimates at the instruction-level, because both the target
and the host instructions are JVM bytecodes.

Profiling embedded Java applications is difficult because
of the use of emulators, the lack of cross-profiling tools,
and the limited resources and profiling support on these de-
vices. ProSyst’s JProfiler [24] uses a profiling agent run-
ning directly on the target device. The agent communicates
through the network with the profiling front-end running
within the Eclipse IDE. Although this approach enables ac-
curate profiling, the agent is implemented in native code us-
ing the JVM Profiler Interface (JVMPI)9, and hence is lim-
ited to a reduced number of virtual machines and operating
systems. Furthermore, the agent itself consumes resources
on the target system which may perturbate measurements.
Another drawback is that profiling requires deployment of
the application on the target system. In contrast, CProf
runs independently from the target platform, using state-of-
the-art Java technology on the host.

9The JVMPI [29] has been deprecated in JDK 1.5 and was
replaced by the JVMTI [30].

Reference [31] presents a fast partitioning algorithm based
on profiles to remotely execute parts of an embedded Java
application on a server so as to reduce energy consump-
tion on the embedded device. The partitioning algorithm is
executed on the embedded device. Our cross-profiling ap-
proach helps identifying hot spots before the application is
deployed.

There are several JVM hardware implementations, such as
picoJava [22], aJile’s JEMCore [16], Komodo [19], or Fem-
toJava [2]. Even though simulation tools are available for
the processor design, profiling is not always possible and
made only at the latest stage of development, i.e., on the ac-
tual processor. Moreover, most current profilers rely on the
JVMPI or JVMTI, which are not well supported by many
embedded Java systems. Our portable approach for cross-
profiling avoids this problem.

Cross-profiling for an embedded Java processor was intro-
duced in [8]. In contrast to the solution presented here, the
cross-profiler in [8] was not configurable and supported only
a single target processor. Furthermore, it lacked the method
return pointcut and was incapable of simulating a method
cache.

Related to aspect weaving in AOP, our approach is based
on the customized instrumentation of three low-level point-
cuts, method entry, method return, and basic block entry.

The AspectJ weaver10 also works at the bytecode level and
AspectJ provides pointcuts for method entry and return, but
not for basic block entry. In reference [15] an extension to
AspectJ uses control-flow analysis to determine loop point-
cuts used to parallelize loops. Eos-T [25], an aspect-oriented
version of C#, also supports low-level pointcuts to enable se-
lective branch coverage profiling. Our approach shows that
low-level pointcuts at the basic block level are well suited
for cross-profiling.

6. CONCLUSION
In this paper we presented CProf, a customizable cross-

profiling framework for embedded Java processors. CProf is
completely portable and runs on any standard JVM. It re-
lies on bytecode instrumentation to collect calling-context-
sensitive cross-profiles for a given target processor. Instru-
mentation takes place at certain low-level pointcuts, con-
cretely on method entry, on method return, and on basic
block entry.

CProf has been designed for customization and extension.
All involved algorithms (i.e., basic block analysis, static ba-
sic block metrics calculation, and instrumentation) are pro-
vided as pluggable components. The default implementa-
tions of these components are also configurable in a flexible
way, regarding the cycle estimation for bytecodes and the
simulation of a method cache. Hence, CProf can be eas-
ily customized for Java processors that conform to CProf’s
general execution time model.

For our evaluation, we configured CProf to yield cycle
estimates for the Java processor JOP, which also features
a method cache. Using JOP as target platform, we have
shown that our approach reconciles high cross-profile accu-
racy (error below 3.3%) and moderate overhead, which is
orders of magnitude below the overhead caused by typical
simulators.

We are currently using CProf to evaluate the impact of
different cache strategies (different size, organization, and
replacement strategy), as well as to determine the impact
of performance optimzations of individual bytecodes. While
there is a lack of large benchmark suites for embedded Java,
our cross-profiling approach allows us to use also standard
Java benchmarks (e.g., SPEC JVM98, SPEC JBB2005, Da-
Capo, etc.) in order to gather more statistics on the impact
of certain processor optimizations.

Regarding future work, we are extending the set of point-
cuts supported by CProf to enable a more precise estimation
for bytecodes where a constant approximation is inappropri-
ate. Hence, CProf is evolving towards a low-level, aspect-
oriented programming environment for profiling and cross-
profiling. Moreover, we want to explore whether our ap-
proach can be generalized to Java-based embedded systems
that use interpretation respectively compilation instead of a
Java processor.

Acknowledgements
The work presented in this paper has been supported by the
Swiss National Science Foundation.

10http://www.aspectj.org/

7. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting

hardware performance counters with flow and context
sensitive profiling. In PLDI ’97: Proceedings of the
ACM SIGPLAN 1997 conference on Programming
language design and implementation, pages 85–96.
ACM Press, 1997.

[2] A. C. Beck and L. Carro. Low power Java processor
for embedded applications. In Proceedings of the 12th
IFIP International Conference on Very Large Scale
Integration, December 2003.

[3] W. Binder. A portable and customizable profiling
framework for Java based on bytecode instruction
counting. In Third Asian Symposium on Programming
Languages and Systems (APLAS 2005), volume 3780
of Lecture Notes in Computer Science, pages 178–194,
Tsukuba, Japan, Nov. 2005. Springer Verlag.

[4] W. Binder. Portable and accurate sampling profiling
for Java. Software: Practice and Experience,
36(6):615–650, 2006.

[5] W. Binder and J. Hulaas. Flexible and efficient
measurement of dynamic bytecode metrics. In Fifth
International Conference on Generative Programming
and Component Engineering (GPCE-2006), pages
171–180, Portland, Oregon, USA, Oct. 2006. ACM.

[6] W. Binder, J. Hulaas, and P. Moret. Advanced Java
Bytecode Instrumentation. In PPPJ 2007 (5th
International Conference on Principles and Practices
of Programming in Java), pages 135–144, Lisbon,
Portugal, 2007. ACM Press.

[7] W. Binder, J. G. Hulaas, and A. Villazón. Portable
resource control in Java. ACM SIGPLAN Notices,
36(11):139–155, Nov. 2001. Proceedings of the 2001
ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA’01).

[8] W. Binder, M. Schoeberl, P. Moret, and A. Villazón.
Cross-profiling for embedded Java processors. In Fifth
International Conference on the Quantitative
Evaluation of SysTems (QEST-2008), Saint-Malo,
France, Sept. 2008. IEEE Computer Society Press.

[9] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time
Specification for Java. Addison-Wesley, Reading, MA,
USA, 2000.

[10] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar.
Efficient and precise modeling of exceptions for the
analysis of Java programs. In Proceedings of the ACM
SIGPLAN–SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, pages 21–31.
ACM Press, 1999.

[11] R. Covington, S. Dwarkadas, J. Jump, J. Sinclair, and
S. Madala. The efficient simulation of parallel
computer systems. International Journal in Computer
Simulation, 1:31–58, 1991.

[12] M. Feeley. Polling efficiently on stock hardware. In the
1993 ACM SIGPLAN Conference on Functional
Programming and Computer Architecture,
Copenhagen, Denmark, pages 179–187, June 1993.

[13] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The
Java Language Specification, Third Edition. The Java
Series. Addison-Wesley, 2005.

[14] D. Gregg, J. F. Power, and J. Waldron. A
method-level comparison of the Java Grande and
SPEC JVM98 benchmark suites. Concurrency and
Computation: Practice and Experience,
17(7–8):757–773, 2005.

[15] B. Harbulot and J. R. Gurd. A join point for loops in
AspectJ. In AOSD ’06: Proceedings of the 5th
international conference on Aspect-oriented software
development, pages 63–74, New York, NY, USA, 2006.
ACM.

[16] D. S. Hardin. Real-time objects on the bare metal: An
efficient hardware realization of the Java virtual
machine. In Proceedings of the Fourth International
Symposium on Object-Oriented Real-Time Distributed
Computing, pages 53–59. IEEE Computer Society,
2001.

[17] Imsys. Im1101c (the cjip) technical reference manual /
v0.25, 2004.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Akşit and
S. Matsuoka, editors, Proceedings of European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[19] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig,
and T. Ungerer. Real-time event-handling and
scheduling on a multithreaded Java microcontroller.
Microprocessors and Microsystems, 27(1):19–31, 2003.

[20] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, USA,
second edition, 1999.

[21] Mentor Graphic Inc. ModelSim. Web pages at
http://www.model.com/.

[22] J. M. O’Connor and M. Tremblay. picoJava-I: The
Java virtual machine in hardware. IEEE Micro,
17(2):45–53, 1997.

[23] T. B. Preusser, M. Zabel, and R. G. Spallek.
Bump-pointer method caching for embedded Java
processors. In JTRES ’07: Proceedings of the 5th
international workshop on Java technologies for
real-time and embedded systems, pages 206–210, New
York, NY, USA, 2007. ACM.

[24] ProSyst. JProfiler. Web pages at http://www.

prosyst.com/products/tools_jprofiler.html.

[25] H. Rajan and K. Sullivan. Aspect language features
for concern coverage profiling. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 181–191,
New York, NY, USA, 2005. ACM.

[26] M. Schoeberl. A time predictable instruction cache for
a Java processor. In On the Move to Meaningful
Internet Systems 2004: Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2004), volume 3292 of LNCS, pages 371–382,
Agia Napa, Cyprus, October 2004. Springer.

[27] M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[28] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the 4th International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2006), pages 202–211,
New York, NY, USA, 2006. ACM Press.

[29] Sun Microsystems, Inc. Java Virtual Machine Profiler
Interface (JVMPI). Web pages at http:

//java.sun.com/j2se/1.4.2/docs/guide/jvmpi/,
2000.

[30] Sun Microsystems, Inc. JVM Tool Interface (JVMTI)
version 1.1. Web pages at
http://java.sun.com/javase/6/docs/technotes/

guides/jvmti/index.html, 2006.

[31] S. Tallam and R. Gupta. Profile-guided Java program
partitioning for power aware computing. In 18th
International Parallel and Distributed Processing
Symposium (IPDPS), page 156b, Los Alamitos, CA,
USA, 2004. IEEE Computer Society.

[32] S. Uhrig and J. Wiese. jamuth: an IP processor core
for embedded Java real-time systems. In JTRES ’07:
Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems, pages
230–237, New York, NY, USA, 2007. ACM Press.

