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SUMMARY

Performance evaluation of embedded software is essential an early development phase so as to ensure that
the software will run on the embedded device’s limited compting resources. Prevailing approaches either
require the deployment of the software on the embedded tardewhich can be tedious and may be impossible
in an early development phase, or rely on simulation, which an be very slow. In this article, we introduce
a customizable cross-profiling framework for embedded Javarocessors, including processors featuring
a method cache. The developer profiles the embedded softwaie the host environment, completely
decoupled from the target system, on any standard Java virtal machine, but the generated profiles
represent the execution time metric of the target system. Qucross-profiling framework is based on
bytecode instrumentation. We identify several pointcuts m the execution of bytecode that need to be
instrumented in order to estimate the CPU cycle consumptioron the target system. An evaluation using
the JOP embedded Java processor as target confirms that our @poach reconciles high profile accuracy
with moderate overhead. Our cross-profiling framework alsoenables the performance evaluation of new
processor architectures before they are implemented. As ase study, we explore the performance impact of
various processor design choices and optimizations, such different cache sizes or pipeline organizations,
and come up with an improved processor design that yields spelups of up to 40% on standard Java
benchmarks.

KEY WORDS. Cross-profiling; Embedded Java processors; Bytecodeumsntation; Platform-independent
dynamic metrics; Processor architecture design spaceraxjan

1. INTRODUCTION

High-level, object-oriented programming models are bdogmincreasingly popular for the

development of embedded and real-time systems, since thigyelmhance productivity and avoid
certain kinds of programming mistakes. Because of its gafarantees, Java [27] is an attractive
language for developing embedded systems. Language saéztys that the execution of programs
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2 W. BINDER ET AL. S &E

proceeds according to the language semantics. For instipes are not misinterpreted and data is
not mistaken for executable code. The safety propertieaxa depend on techniques such as strong
typing, automatic memory management, dynamic bound cheaokkbytecode verification.

The Java Platform Micro Edition (JavaME) provides a sub$dahe language features and class
library of the Standard Edition (JavaSE), suitable for eddssl systems with limited computing
resources. Special requirements for real-time systemsdaeesses in the Real-Time Specification
for Java [20]. While Java is still an emerging language fassic embedded systems (e.g., in the
automotive and airborne domain), almost all mobile phoresady contain a Java virtual machine
(JVM) [42] to execute so-called MIDlets.

JVMs tailored to embedded systems either interpret theiGgifuin bytecode, employ just-in-time
compilation on the embedded system, compile the embeddedajplication (in the development
environment) to native code for the embedded target systemse a dedicated Java processor (that
is, a JVM implemented in hardware) to directly execute bytles, such as the aJile processor [31],
Cjip [37], or JOP [55]. In this article, we consider only endbled Java processors as cross-profiling
targets.

Java processors may play an important role in future safiétizal applications, for which Java is
currently being considered [34]. Safety-critical appiicas need to be certified and the reduction of
code size is of primary importance, as the certification dosttly depends on the code size. Software
certification is performed at the source code level and geduthe whole software stack (operating
system and libraries). A Java processor simplifies certifinaand hence helps reduce cost, because
it does not require an operating system and because onlyicae language needs to be certified.
Furthermore, worst-case execution time (WCET) for thetgatdtical tasks must be known. A Java
processor also simplifies WCET analysis of Java programg, @ be performed at the bytecode
level [9].

Performance evaluation of embedded system software isatinorder to ensure that the created
software executes satisfactorily on the target systen@scscresources. Concomitant performance
evaluation is particularly important for embedded systeftwsare written in Java (or in any other
high-level, object-oriented programming language), sithe performance impact of certain language
features (such as type checks, bound checks, garbagetioolleztc.) may not be directly apparent to
the programmer.

Unfortunately, profiling of embedded Java applications usrently a tedious task that requires
either deployment of the embedded application on the tapigform or a simulator of that
platform. However, the embedded target system may not bagablein an early development
phase. Furthermore, deployment and performance measnieme the target platform are time-
consuming. Similarly, simulators can be prohibitivelyvgld-or instance, we found that the simulator
ModelSim [43] causes excessive overhead of up to factor 33W&n compared to running the same
Java application in a standard JVM on the same machine. Goastly, embedded Java applications
are rarely profiled in an early development phase.

Whereas the JavaSE offers a dedicated profiling interfaeeJ¥M Tool Interface (JVMTI) [63],
embedded Java systems often lack profiling support. Beadubke resource constraints on embedded
Java systems, CPU time and memory consuming profiling tgalesi are often impossible. For
example, the Calling Context Tree (CCT) [3] provides dethjprofiling data for each calling context,
which helps locate hotspots. However, the CCT may consugrgfisiantly more heap memory than
the profiled application itself.
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S &E CROSS-PROFILING FOR JAVA PROCESSORS 3

In order to enable and ease performance evaluation of ereldetitva software that is intended to
run on a Java processor, we introduce the customizable-profiing framework CProf. CProf is
written in pure Java and runs on any standard JVM. It enalal#ieg context cross-profiling of Java
applications directly within the development environmaevttich we will call *host’ in the following,
completely decoupled from the embedded target system.tNeless, the generated profiles show the
execution time metrics of the target.

Cross-profiling not only helps analyze the performance dfetded Java software, it also allows
estimating the performance of different Java processdgdesvithout requiring these designs to be
implemented. It is important to estimate the effects of #ectural design choices on the performance
of domain-specific applications in an early phase of pramedsvelopment [40]. With cross-profiling
it is possible to collect evaluation data for realisticalged programs. That is, cross-profiling enables
rapid design space exploration for embedded Java prosessstead of implementing a new processor
in hardware, it is sufficient to model its cycle consumptiod & evaluate the performance on various
workloads. Only the best performing processor model iswfieds implemented in hardware.

Our cross-profiling framework CProf is based on bytecodérunsentation in order to generate
calling context cross-profiles with CPU cycle estimatedifiertarget processor. It relies on a bytecode
instrumentation framework [13], which ensures that eaefa Jaethod is instrumented and therefore
represented in the profile, including all methods in appiliceclasses and in the Java class library.

CProf identifies particular points in the execution of pangs, so-callegointcutsin aspect-oriented
programming (AOP) terminolodyf39], where the cycle estimate needs to be updated. Cuyr@mrfof
supportanethod entrymethod returpandbasic block entnas relevant pointcuts. As we will show in
this article, these pointcuts enable cross-profiling feaJarocessors.

This article builds on our prior work on cross-profiling [167, 57], presenting the software
architecture of the customizable cross-profiling framdw@Prof, as well as its specialization for the
Java Optimized Processor JOP [55]. We choose JOP as cafiifagrtarget, because the CPU cycle
consumption for the bytecodes is public available. Moreal@P is a recent architecture that includes
an instruction cache, which caches whole methods. Thergéooss-profiling for the JOP processor
also requires simulating that instruction cache. We eval@Prof with the JOP target model. Our
results confirm that CProf yields accurate CPU cycle estématith an error below 2% and causes
reasonable overhead, orders of magnitude less than sorailat

As case study, we employ cross-profiling in order to quatititly explore the performance impact
of various processor design options and optimizationsrnitgthe current JOP architecture as baseline,
we investigate the impact of different cache sizes and ppiparganizations, and come up with an
improved processor design that yields speedups of up to 408tamdard Java benchmarks.

This article is structured as follows: Section 2 gives arraiesv of the JOP processor and describes
CProf’s execution time model. Section 3 explains our cresiing framework CProf. In Section 4
we assess the accuracy of the generated cross-profiles fer embedded Java benchmarks and
measure the runtime overhead due to cross-profiling. In@estwe describe our case study, exploring

fIn AOP, aspects specifgointcutsto intercept certain points in the execution of programso@ted join pointg, such as
method calls, field accesses, eiclvicesare executedbefore after, or aroundthe intercepted join points. Advices have access
to contextual information of the join points.
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4 W. BINDER ET AL. S &E

architectural enhancements for a Java processor with thefaiross-profiling. Section 6 discusses
related work and Section 7 concludes this article.

2. JAVA PROCESSORS AS CROSS-PROFILING TARGETS

There are several Java processors which follow a similarugian time model, and some implement a
method cache. Since our cross-profiling approach is basegaba estimates for bytecodes, we firstly
briefly describe JOP, which is the target processor for oafuation, and discuss its method cache.
Afterwards, we summarize our assumptions on the targetioecime model.

2.1. The Java Processor JOP

JOP [55] is an implementation of the JVM in hardware. As endeedsystems are often also real-

time systems with hard timing constraints, the main focushefdevelopment of JOP has been on
time-predictable bytecode execution. All function unéted especially the interactions between them,
are carefully designed to avoid any time dependencies legivogtecodes. This feature simplifies

the low-level part of worst-case execution time (WCET) e, a mandatory analysis for hard

real-time systems. Due to JOP’s accessible timing modeéraeWCET analysis tools support JOP

[58, 32, 19, 35].

We have chosen JOP [55] for our evaluation of the proposedsguoofiing and computer
architecture exploration as it is: (a) a simple proces&jmpen-source, and (c) the execution timing is
well documented. Furthermore, the JOP design is actuadlyrabt of a family of Java processors.
Flavius Gruian has built a JOP compatible processor, witliffardnt pipeline organization, with
Bluespec Verilog [29]. The SHAP Java processor [70], algomow with a different pipeline structure
and hardware assisted garbage collection, also has isirotite JOP design.

JOP dynamically translates the Java bytecodes to a RIS&;stesed instruction set (the microcode)
that can be executed in a 3-stage pipeline. The transladkestexactly one cycle per bytecode. All
microcode instructions have a constant execution time &f @rcle. No stalls are possible in the
microcode pipeline. The absence of time dependencies batiygecodes results in a simple processor
model for the low-level WCET analysis [58], which fully carfns to the aforementioned assumptions
for cross-profiling.

The stack, which holds invocation frames, local variabées] the operand stack, is implemented
as on-chip memory. This stack cache allows a non-stallimementation of the microcode pipeline.
Furthermore, the instructions are cached in the so callédaodeache. Heap data and data in the class
information area are not cached in our current configuratfalOP.

Besides JOP, there are several other Java processors feddetbsystems; the execution time
modeling for those processors can be done in a similar wag.fifét Java processor, picoJava [46],
was developed by Sun Microsystems. The most successfulplavassor is the alJile processor [31]
that was initially conceived as a platform for the Real-TiSgecification for Java [20]. Another
Java processor, Cjip [37], supports multiple instructietssand the JVM is implemented largely in
microcode. Komodo [41] is a multithreaded Java processended as a basis for research on real-time
scheduling on a multithreaded microcontroller. The folop project, jamuth [65], is a commercial
version of Komodo.
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S &E CROSS-PROFILING FOR JAVA PROCESSORS 5

Table I. Execution time of simple bytecodes in cycles

Instruction Cycles Function

iload 0 1 load local variable 0 on TOS
istore 0 1 store local variable 0
iconst0 1 load constant 0 on TOS

dup 1 duplicate TOS

iadd 1 integer addition

isub 1 integer subtraction

swap 4 exchange TOS and TOS-1
ifeq 4 conditional branch

2.2. Bytecode Timing

Simple bytecodes (e.gadd, dup, oriload_0) execute in a single cycle on JOP. Slightly more complex
bytecodes (e.gdupx1) are implemented in a short microcode sequence and execab@stant time.
The execution time in clock cycles equals the number of nmstouctions executed. As the stack is
on-chip, it can be accessed in a single cycle. Table | shoasiple bytecode instructions, their timing,
and their meaning (TOS is top-of-stack).

Access to object, array, and class fields depend on the tiofittge main memory. As an example,
we give the execution time of the bytecoglestatic. With r,,; wait states on the read access to the
main memory, the execution time in cycles is computed asvial!

tgetstatic =7+ Tws

A complete list of all bytecode timings of JOP can be foundbi@]|

2.3. Method Cache

JOP introduced a special instruction cache, the methodecf?], which caches whole methods.
A method cache is also integrated in the embedded Java pac88IAP [48], and the CarCore
processor [44] also uses method caches. Furthermore, dnisidered in jamuth [65] as a time-
predictable caching solution.

With a method cache, only invoke and return bytecodes camtrasa cache miss. All other
bytecodes are guaranteed cache hits. The idea to cache wleti@ds is based on the assumption
that WCET analysis at the call graph level is more practicahtperforming cache analysis for each
bytecode. Furthermore, loading whole methods also leadstter average case execution times for a
memory with long latency but high bandwidth.

tPersonal communication with Sascha Uhrig.
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6 W. BINDER ET AL. S &E

Memory access time determines the cache load time on a noisthé-current implementation, the
cache load time is calculated as follows: The wait statefor a single word cache load is:

o — Tws = Tws > 1
ws 1 @ rps <1

On a method invoke or return, the respective method has todzked into the cache on a cache miss.
The load timd is:

I 64+ (n—+1)(1+cys) : cachemiss
o 4 : cache hit

wheren is the size of the method in number of 32-bit words. As an exantpe exact execution time
for bytecodenvokevirtual is:

—3 i Tws >3 +{7’w5—2 D Tws > 2 {1—37 1> 37

T’LUS
t:100+27‘w3+{ 0 : Tms§3 0 : rw5§2 0 : ZS37

On a method return, the caller method has to be found in thégdetache or needs to be loaded.
Therefore, the execution time of the return instructionetets on the method size of the caller. The
execution time of bytecodeturn is:

B Tws —3 @ Tws >3 [—9 : [>9
t_21+{ 0 7uwe<3 +{ 0 : 1<9

CProf supports the simulation of a method cache in a custitéavay. The simulation provides the
information whether the invoked method or the method cailpem return will be a cache hit or a cache
miss. On a miss, we calculate the cache load time with thengivecessor execution time model. The
load time depends on the size of the method. However, on B@Rache loading is done in parallel
with microcode execution in the core pipeline. Thereforealk methods do not add any additional
latency to the invoke or return bytecodes.

2.4. Assumptions on the Execution Time Model
Our cross-profiling approach targeting Java processoiasison the following assumptions:

e For most bytecodes, the CPU cycle consumption on the taegebe accurately estimated by
constants, independently of the context where these bgésonccur.

e For method invocation and return bytecodes, the cycle gopton on the target may also
depend on the size of the callee or caller method. Furthexntioe presence of a method cache
may affect the cycle consumption of invoke/return bytesode object-oriented programs tend
to have rather small methods and method invocation/retytetbdes are expected to be executed
frequently, we consider an accurate estimation of the cgolessumption essential for these
bytecodes.

¢ In addition to invocation/return bytecodes, some otheebgtles, such as type checks, may not
consume a constant number of cycles on the target. We asdanestisonable (though not
always accurate) estimates are available for these bygscod
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S &E CROSS-PROFILING FOR JAVA PROCESSORS 7

3. CROSS-PROFILING

Bytecode instrumentation is a well-known technique forfiting [12, 14]. While the work presented
here leverages bytecode instrumentation-based profilegniques that preserve calling context
information, it introduces the instrumentation of certiain-level pointcuts, allowing for flexible, user-
defined collection of dynamic metrics. Thanks to CProf’smup for customization, we are able to
create cross-profilers for Java processors with a minimudeweélopment effort.

In the following, we firstly describe our representationtut talling context. Secondly, we discuss
how collected profiling data can be processed online and irstomized way. Thirdly, we present our
generic instrumentation techniques that enable crodilipgfor embedded Java processors. Fourthly,
we describe CProf’s configuration for the JOP processor usedr evaluation.

3.1. Calling Context Tree

The CCT was first introduced by Ammons et al. in [3] as runtiragadstructure for calling context
profiling. Each node in the CCT represents a calling contedtstores the measured dynamic metrics
for that calling context; it also refers to a unique identifi¢ the method in which the metrics were
collected. Method identifiers convey class name, methodenamthod signature, and method size (in
bytes).

The parent of a CCT node represents the caller's contextewtie children nodes correspond to the
callee methods. If the same method is invoked in distindingatontexts, the different invocations are
represented by distinct nodes in the CCT. In contrast, iEdrae method is invoked multiple times in
the same calling context, the dynamic metrics collectethdithe executions of that method are stored
in the same CCT node.

CProf instruments bytecode such that each thread creat€d av@ile executing methods. Thanks
to the generated code for CCT creatfotihe instrumentation has access to both the caller’s node and
the callee’s node in the current thread’s CCT.

Figure 1 illustrates the CCT of an example cross-profilejaasg one invocation of methd(. The
cross-profile was generated using a CProf configuratiorhfdOP target, which will be described in
more detail in Section 3.4. In this example, each CCT n¥dgores the number of method invocations
(by the same sequence of callers) and an estimate of the atatechCPU cycles for the subtree rooted
at nodeN.

3.2. Customized Processing of Profiling Data

Periodically, each thread invokes a user-defined profilpracess the thread’s CCT. A typical profiler
may aggregate the CCTs of all threads within a ‘global’ CCpresenting the activities of all

threads and output the ‘global’ CCT upon program termimafmg., using a JVM shutdown hook).
Alternatively, custom profilers may be used for online pssieg of the profiling data, such as for
displaying continuous metrics.

§Method signatures are extended so as to pass the callersn6@to the callee, and upon entry, the callee first looks up or
creates its own node as a child of the caller’s node.
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8 W. BINDER ET AL. S &E

voi d f(_) { f()
Int | , . . Invocations = 1
for (i =1; i <= 10; ++i) { Cycles = 10600
h();
a(i);
}
} h() g(int)
. . . Invocations =10 Invocations =10
voi d g( i nt i) { Cycles = 210 Cycles = 8100
int j;
for (j =1; ] <=1i; ++) {
h();
} h()
} Invocations = 55
. Cycles = 1155
void h() { return; }

Figure 1. Example CCT, assuming methigdis invoked once. Each CCT node stores the number of method
invocations (with the same call stack) and the accumulatels @stimate for the subtree.

The profiler interface has only three methods that must béeim@nted by the user-defined profiler:
one method to initialize the profiler, a second method foistegng the CCT root of each thread that
executes profiling code, and a third method that gets peddigiinvoked by each thread to enable
online processing of profiling data.

The latter method is invoked whenever a dedicated, threeal-bytecode counter reaches a user-
defined threshold. We use some form of call/return pollingj [2 increment and check the bytecode
counter in strategic program locations, such as upon meghog or in the beginning of loops. This
approach ensures the periodic activation of the profiler &ghethread, according to the progress
(measured as the number of executed bytecodes) the threaddd® since its last invocation of the
profiler.

3.3. Customized Collection of Dynamic Metrics

CProf allows customizing the way dynamic metrics are coregdior each calling context. Figure 2
gives a high-level overview of CProf, showing the configleadnd extensible parts of the system.
Moreover, the figure illustrates the instrumentation of msie method.

Instrumentation with CProf involves three phases, the cbasick analysis (BBA), the static
calculation of metrics for each basic block (BB), and theiakinstrumentation.

3.3.1. Basic Block Analysis

The basic block analysis takes the bytecode of a method a@uathsea representation of the control
flow graph (CFG). CProf provides the necessary abstractmnspresent a CFG and the nodes in it.
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Figure 2. Overview of CProf

While the user may employ a custom BBA algorithm, CProf pdesgitwo predefined BBA algorithms,
which we call ‘Default BBA' and ‘Precise BBA.

In the Default BBA, only bytecodes that may change the cdfiter non-sequentially (i.e., jumps,
branches, method returns, explicit throw of exceptiond)@&BB. Method invocations do not end BBs,
because we assume that the execution will return after theTtds definition of BB corresponds to
the one used in [15] and is related to the factored control §oaph (FCFG) [22]. In contrast, using
the Precise BBA, each bytecode that potentially might thaovexception ends a BB.

When statically calculating metrics for a BB, method inviimaand return bytecodes are ignored,
as the metrics contribution of these bytecodes may varyra#pg on the state of the method cache and
therefore are not statically known. The metrics contrimutf these bytecodes is computed at runtime,
when profiling method entry and return.

As we will explain below, CProf instruments the beginningeath BB, assuming that all bytecodes
in the BB will be executed. The advantage of the Default BBAhiat it creates rather large BBs.
Therefore, the Default BBA helps reduce the number of pnogi@cations where instrumentation

Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:1-33
Prepared usingspeauth.cls



10 W. BINDER ET AL. S &E

code is inserted, resulting in lower cross-profiling ovaidheAs long as no exceptions are thrown,
the Default BBA does not cause any inaccuracies. Howevdhencase of an exception, CProf’s
assumption that all bytecodes in the BB would be executedoigsited, if the exception-throwing
bytecode is not the last one in its BB. The Precise BBA avdigspotential imprecision, but causes
higher overhead because the resulting BBs are smaller.

3.3.2. Static Basic Block Metrics Calculation

Regarding the supported target processors for crossipgofive assume that the CPU cycle
consumption of all bytecodes, apart from method invocaiwhreturn, can be estimated by a constant.
This assumption allows us to statically compute the CPUecgsttimate for each BB, by summing
up the CPU cycle estimates for the bytecodes in the BB (whit®iing method invocation/return
bytecodes).

Figure 2 shows CProf’s component for the static BB metridsutation. While this component
can be replaced by the user, the default implementation ircass-profiling framework invokes a
given CycleEstimator for each bytecode in a BB (see the UML class diagram includegigure 2).
The CycleEstimator is an abstraction providing the methgektCycles(...) that takes, amongst others,
a bytecode as argument and returns the corresponding CR& estimate. We designed the cross-
profiling framework so as to ease the plug-in of custoyaleEstimator implementations according to
the cross-profiling target process@ytlesJOP respectivelyCyclesX in the class diagram).

The statically computed BB cycle estimates are stored witié nodes of the CFG. That information
is used afterwards by the instrumentation component foningenting the beginning of each BB.

3.3.3. Instrumentation

CProf’s instrumentation component fulfills three roles) iflgenerates the code for maintaining the
CCT, (2) it inserts the polling code that ensures the petiodiocation of a custom profiler, and (3) it
injects the code that computes the CPU cycle estimatiorhitarget. Below we focus on the third
issue.

Figure 2 illustrates a sample CFG generated by a BBA alguritihh the left side, as well as the
resulting CFG after instrumentation on the right side. TR&Gs used to identify the method entry,
method return, and basic block entry pointcuts. For thecblalsick entry pointcut, CProf inserts a
bytecode sequence in the beginning of each BB that incren@eryicle counter (within the CCT node
representing the executing method) according to the athtipre-calculated cycle estimate for the
BB. Hence, the chosen BBA algorithm determines the progmaations where this instrumentation
happens.

The method entry and return pointcuts are instrumentedinithcations to th&nterReturnProfiler,
which provides the two methodsMethodEnter(...) and onMethodReturn(...).¥ As arguments, these
methods receive the caller and callee nodes in the CCT, dssvtie invocation/return bytecode. As

9In AOP terminology, EnterReturnProfiler corresponds to an aspect class, and the metlooddethodEnter(...) and
onMethodReturn(...) are related to advices.
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S &E CROSS-PROFILING FOR JAVA PROCESSORS 11

mentioned before, each CCT node refers to the correspomiittypd identifier, which in turn provides
method-related information, such as the method size (béfistrumentation).

While a customEnterReturnProfiler can be provided by the user, our default implementation first
determines whether the method to be loaded (i.e., the claltenMethodEnter(...), respectively the
caller for onMethodReturn(...)) is in the cache. To this end, CProf provides thecheStrategy
abstraction with a boolean meth@a€acheHit(...) that takes as argument a method identifier. The user
has to provide an appropriate implementation of@heheStrategy for the target processor. The UML
class diagram in Figure 2 shows two concrete implementafiacheJOP andCacheX.

After consulting the configure@acheStrategy, the default implementation dnterReturnProfiler
invokes theCycleEstimator to compute the cycles consumed by the method invocatiamfretn
addition to a bytecodeggtCycles(...) also takes information on the method size and whether thieodet
was found in the cache (for bytecodes other than method atiaureturn, this extra information is
meaningless and ignored by implementationged€ycles(...)). The cycle estimate is added to the cycle
counter in the appropriate CCT node (i.e., in the caller fodenethod invocation, respectively in the
callee node for method return).

For the method return pointcut, the instrumentation conepbexactly knows the return bytecode
and passes it as argument ¢aMethodReturn(...). However, for the method entry pointcut, the
instrumentation component cannot always determine whiebcation bytecode will be used by the
caller. A method that is also declared in an interface maydleda with theinvokevirtual bytecode
or with theinvokeinterface bytecode. Furthermore, one useifokespecial is to access a superclass’
version of a method (this mechanism is used to compile Jaup& () construct). l.e., in certain cases
the same method may be called inyokevirtual, invokeinterface, or invokespecial. However, as the
CPU cycle consumption of the distinct method invocatiorebgties may differ, knowing the concrete
invocation bytecode can help improve the accuracy of cppshing.

As general solution, we can pass the information regardiegrtethod invocation bytecode from the
caller to the callee as an extra method argument. For inotabf static methods, private methods,
and constructors, the extra argumentis not needed, bettaugwocation bytecode is statically known
(both when instrumenting the caller method(s) and the eatethod). Note that in general, the
method entry pointcut cannot be implemented by instrumgritie caller, because of polymorphic
call sites (where the method identifier of the callee would @ known). In contrast, the method
identifier of the caller is always known to the callee, sifue¢aller passes its CCT node to the callee.

Another issue is abnormal method completion through an @ In this casepnMethod-
Return(...) is not invoked. A general solution to this issue would be tiimiduction of another pointcut
(corresponding to a meth@#MethodAbnormalCompletion(...) in EnterReturnProfiler), which could be
implemented by an inserted exception handler. In contoaSerof, prevailing AOP frameworks, such
as AspectJ [38], provide mechanisms for intercepting atnabmethod completion. However, because
exception throwing is infrequent in embedded Java softwalReof currently lacks such a mechanism.

IThe instrumentation component can statically determinetidr a callee is private, since it processes all methodsnte
same class file, and private methods can only be called ingfiging class. Constructor invocations are identified bysihecial
method namecinit>.
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3.4. Customization for the JOP Processor

While the software architecture of CProf allows customaaiand replacement of all components
shown in Figure 2, the typical customization for a targetcpssor that fits our execution time model
will require only the implementation of th@eycleEstimator andCacheStrategy interfaces.

With respect to cross-profiling for the JOP processor, we@Rmf's Default BBA. This choice
is a reasonable trade-off between cross-profiling accuaadyoverhead. Regarding the customized
processing of cross-profiling data, we created a simple Iprafhat aggregates the CCTs of all
application threads into a global structure, but disregdhg CCTs of system threads. The profiler
keeps weak references to application threads, associatiedhe corresponding CCT root nodes, in
order to collect the CCTs of threads that terminate durimgsiprofiling. Upon JVM shutdown, the
CCTs of the remaining application threads are collectefhrbehe final cross-profile is emitted.

We implemented &ycleEstimator in the classCyclesJOP, which is an adapter to the JOP cycle
estimation API provided by the classm.jopdesign.wcet. WCETInstruction from the WCET analysis
tool [58]. Furthermore, we implementedCacheStrategy in the classCacheJOP that simulates the
hardware method cache of the current JOP processor.

Figure 3 illustrates theacheJOP implementation. It simulates an instruction cache with@IF
replacement. As CProf uniquely identifies each method bgtéxane instance of typ®IID, reference
comparison is sufficient to check whether a method is in trdedi.e., there is no need to check
the equality ofMID instances, which would cause higher overhead). The cachkinentation is
straightforward. If the passedID instance is in the array simulating the cache contents, lzedait is
returned {rue). Otherwise, théMID instance is stored in the next position in the array, thessieeded
to store the complete method body are overwritten, and aecanibs is returneddlse). The method
isCacheHit(...) is synchronized, because we simulate a single cache fdmalids in the system.

4. EVALUATION

In this section, we evaluate CProf regarding cross-profileueacy and runtime overhead. For the
accuracy assessment, we compare CProf’s cycle estimatéiseg on the host, with the actual CPU
cycle consumption on JOP, measured on the target. For thieneioverhead evaluation, we measure
the execution time of CProf on the host and analyze the éiffiesources of overhead.

4.1. Benchmarks and Evaluation Settings

To evaluate our cross-profiling approach, we selected twotiaark suites, the embedded benchmarks
JavaBenchEmbedd&d(JBE) and SPEC JVM98 [60]. JBE contains several micro bemacksnand
three real-world applications [54Kfl (a motor control system),ift (a lift controller), andudplp (a
TCP/IP stack for embedded Java). We use only these thregvoel applications in our evaluation.
SPEC JVM98 consists of seven benchmarks, which cannot ruthenarget system (because of

**http: //ww. j opwi ki . or g/ JavaBenchEnbedded/
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public class CacheJOP inpl enents CacheStrategy {
private final int cacheSize;
private final int nunber O Bl ocks;
private final int blockSize;
private final M D] cache;
private int next;

public CacheJOP(int cacheSize, int nunber OBl ocks) {
t his.cacheSi ze = cacheSi ze;
t hi s. number O Bl ocks = nunber O Bl ocks;
this. bl ockSi ze = cacheSi ze / nunber O Bl ocks;
cache = new M D[ nunber O Bl ocks] ;
next = 0;

}

public synchroni zed bool ean i sCacheH t(M D md) {
[/ if midis in the cache, return true
for (int i = 0; i < nunberOBlocks; ++i) {
if (cache[i] == md) return true;
}

/1 store mid in the next slot
cache[ next ++] = mid;
i f (next == nunber O Bl ocks) next = O;

/1 skip the bl ocks occupi ed by the method
int nmsize = mid.getSize();

int nbl = (nsize + blockSize - 1) / bl ockSi ze;
for (int i =1; i < nbl; ++i) {
cache[ next++] = null;
i f (next == nunber O Bl ocks) next = O;
}
return false; // cache mss
}
}
Figure 3.CacheStrategy implementation with FIFO replacement
Copyright(© 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;0:1-33
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Table 1. Benchmark execution time and cross-profiling Itssim clock cycles for JOP with a 4KB/16 method

cache
Benchmark JOP CProf Error (%)
Kil 5.023x107 5.021x107 —0.04
Lift 5.282x107 5.262x107 —0.38
Udplp 1.13%10% 1.111x108 —1.81

resource constraints and because JOP does not provide gstiderg, but represent larger workloads
for the runtime overhead evaluation. We use SPEC JVM98 wittohlem size of 100.

Since the accuracy evaluation of CProf aims at calculatiRgo€s cycle estimate independently
from the execution time on the host, we use a standard desktoputer for this purpose. In contrast,
for the runtime overhead evaluation, in order to obtainodpcible results, we execute the benchmarks
on an isolated host in single-user mode (no networking) revlae removed background processes as
much as possible. The host environment for the accuracgsssat is a Windows based notebook,
whereas the host environment for the overhead evaluatiariLiaux Fedora Core 2 computer (Intel
Pentium 4, 2.66 GHz, 1024 MB RAM). For the overhead measunésne/e use the Sun JDK 1.7-ea-
b24 HotSpot Server VM.

4.2. Accuracy of Cross-Profiles

To assess that our approach is sound, we compare the CPUesyiciates from the generated cross-
profiles with the actual CPU cycle consumption on JOP. WiiheRperiment the accuracy of execution
time estimation through cross-profiling is validated. Iistexperiment, JOP is clocked at 100 MHz in
a low-cost FPGA and the memory access time is 2 clock cyclesfaling a 32-bit word and 3 clock
cycles for a 32-bit write access. JOP is configured with a 4 KBOHnstruction cache organized in 16
blocks. We have used CProf with method cache simulationledab yield the best estimations. As
the embedded applications are designed to not throw exeepdiuring runtime, the ‘Default BBA' is
sufficient for our cross-profiling application. Furtherrapthe embedded applications do not allocate
data during their mission phase. As a consequence, theggdadlector has no impact on the cross-
profiling results.

The three embedded benchmakds Lift, and Udplp are executed 10000 times on JOP and the
execution time is measured with a CPU cycle counter. The smnehmarks are profiled with CProf,
and in the generated cross-profile the cumulative CPU cystleate of the benchmark harness (the
methodtest()) is taken, effectively excluding the execution of startoge on the host. Table Il shows
the execution times on JOP and cross-profiling results inkcttycles. The last column shows the
percent error of the cross-profiling estimates. For two herarks, the error is well below 1%, for
Udplp the error is below 2%.

Although we use WCET values for the bytecode timings, thesirofiling results underestimate
the execution time. The inaccuracies are caused by diffesem the Java class libraries on JOP
respectively on the host, and by a simplified execution tineeefs for some complex bytecodes (e.g.,
runtime type checks and casts, floating point arithmetic) efhose bytecodes are implemented in Java
and their execution time also depends on the cache state/VOeT analysis tool [36] models those
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Table 1ll. CProf overhead with/without Enter-Return cdER), respectively with/without cache strategy

Orig. CProf CProf CProf
no ER ER, nocache| ER + cache
JBE (ms) | (ms) ovh| (ms) ovh | (ms) ovh
Kil 2.87| 11.16 3.89| 15.80 5.51| 39.04 13.60
Udplp 439 1793 4.08| 31.17 7.10| 67.06 15.28
Lift 1.82| 9.11 5.01| 1341 7.37| 23.29 12.80
geo.mean| 2.84| 12.22 4.30| 18.76 6.60| 39.36 13.85
JVM98 (s) (s) ovh (s) ovh (s) ovh
compress 5.68| 14.69 2.59| 19.70 3.47| 40.74 7.17
jess 1.47| 6.16 4.19| 8.07 5.49| 20.81 14.16
db 13.71| 18.22 1.33| 21.12 1.54| 40.30 2.94
javac 3.79| 15.54 4.10| 17.42 4.60| 32.33 8.53
mpegaudio| 2.48| 7.15 2.88| 9.23 3.72| 19.22 7.75
mtrt 1.16| 11.59 9.99| 16.45 14.18| 55.15 47.54
jack 3.48| 820 2.36| 10.09 2.90| 18.91 5.43

geo.mean| 3.31| 10.82 3.27| 13.68 4.13| 30.05 9.08

bytecodes as invocations of the static methods. For cnadgipg we model those bytecodes with an
average case estimation. Nonetheless, for all measuretivemnks that run on the JOP hardware, the
error in the CPU cycle estimates is below 2%.

Another reason for the underestimation, especially inUth@p benchmark, is the write barrier code
for incremental garbage collection on JOP. If the bytecqulefield and putstatic access a reference
field, they are substituted upon class loading by a spectatbye that contains the write barrier code.
These special bytecodes are implemented in Java so as tdaassharing with the garbage collector
thatis also programmed in Java. Consequently, these $pgteaodes are slower than the versions for
primitive data. The cross-profiler does not cover this défece and treats the execution timepoffield
andputstatic as constant, independently of the field type.

4.3. Runtime Overhead
Table Il presents the results of our overhead evaluatiodB& and SPEC JVM98. Each measurement

represents the median of 15 runs of the benchmark withinahmsIVM process. The column ‘Orig.’
shows our reference measurements, running the benchméahkaiwCProf on the host. The columns

tfIn prior work [17] we reported higher errors. Thanks to immo CPU cycle estimates for some bytecodes, we were able to
reduce the error.
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‘ovh’ present overhead factors for each setting. For eadkHtmmark suite, we also show the geometric
mean of the measurements. We evaluated CProf in threeadtiffeonfigurations so as to separate the
distinct sources of overhead.

Firstly, we evaluated the overhead due to the inserted duatecteates the CCTs and performs
computations on the BB pointcuts, but without the methodyeartd return pointcuts (‘CProf no ER’).
This corresponds to the instrumented CFG of Figure 2 but owiththe invocations of the
EnterReturnProfiler. In this setting, we observe an overhead factor of 1.33-9F@9 ‘mtrt’, we
experience the highest overhead. ‘mtrt’ is known to makeresive use of small methods [28], which
makes the CCT maintenance expensive.

Secondly, we enabled the method entry and return pointduts,used a trivial ‘no cache’
strategy that always assumed a miss (‘CProf ER, no cachethi$ setting, CProf produces cross-
profiles for an embedded Java processor without method cdébenotice that the invocations of
the EnterReturnProfiler increases the overhead factor by 0.21-4.19 (overheadratiffe between
‘CProf ER, no cache’ and ‘CProf no ER’).

Thirdly, we evaluated the real CProf configuration for JOfng a cache strategy that simulates a
method cache of 4 KB with 16 blocks (‘CProf ER+cache’). Thpanienced overhead of factor 2.94—
47.54 is more than twice the overhead in the previous setingontrast to CProf’s instrumentation,
the custom cache strateggacheJOP in Figure 2) was not optimized, which explains the high extra
overhead. Overall, the execution time in this setting i stasonable (below 70 ms for the JBE
benchmarks); optimizing the cache strategy to reduce @uxfling overhead is typically not worth
the effort in practice.

5. CASE STUDY: CROSS-PROFILING FOR PROCESSOR ARCHITECTURE EXPLO-
RATION

In this section we explore a new use-case for cross-profigugluating the performance benefit of
various possible architectural improvements for JOP. €psfiling gives as a tool for quick design
space exploration without the need to actually implemeataichitectural changes. Only promising
enhancements will be chosen for the next version of JOP.

For simple processor architectures without caches, tleetsfbf different instruction timings can be
evaluated by collecting dynamic instruction frequenci&3][ However, when instruction caches are
integrated, the execution time of the whole program caneqtriedicted with instruction frequencies
anymore. The dependency of instruction timings on cachi gtifferent timings for cache hit
respectively miss) is hard to model statically. Therefave,use cross-profiling with runtime cache
simulation and cycle estimation.

Compared to the collection of instruction traces and postgssing them with a processor
simulation, cross-profiling has the benefit of aggregativgdata during runtime. Accumulating the
relevant information during profiling results in less ddiart collecting complete instruction traces.
Furthermore, the combination of trace generation (exagutie benchmark) and processor simulation
in a single tool simplifies the exploration process.
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5.1. Methodology

In order to evaluate the impact of an architectural changeJOR with the aid of CProf, the
timing information of the bytecodes and the cache confignmatre specified using corresponding
CycleEstimator respectivelyCacheStrategy implementations. Afterwards, a set of benchmarks is cross-
profiled; an overall cycle estimate is extracted from eadssiprofile and compared with the baseline
(i.e., the currently available version of JOP) so as to astesachieved speedup.

For our case study, we use the 3 embedded benchmarks diddusSection 4.1 Kfl, Lift, and
Udplp), as well as 6 benchmarks from the SPEC JVM98 suite [0l compress, 202 _jess, -209_db,

213 javac, -222_mpegaudio, and_228 jack). In the generated cross-profiles, the cumulative CPU cycle
estimate of the benchmark harness is taken (metksagl for the embedded benchmarks, respectively
methodSpecApplication.main() for SPEC JVM98).

All chosen benchmarks are single-threaded. We exclude théi-threaded SPEC JVM98
benchmark 227_mtrt from our evaluation, in order to avoid drawing any false dosions because
of possible inaccuracies in the cross-profiles caused bylifferent thread-scheduling on the cross-
profiling host JVM and on the JOP target.

In Section 4.2, we validated the soundness of cross-profilith the three embedded benchmarks.
Because the SPEC JVM98 suite requires more resources thaitgad by JOP, it is impossible to
assess the accuracy of our cross-profiles for SPEC JVM3&: #iie benchmarks cannot be executed on
JOP to collect exact execution times. Fortunately, for treduation of different architectural changes,
the cross-profiling estimates need not be perfectly acet]. We are interested in the relative
performance differences between the cross-profiling ranslitinct architectures. Hence, we found
it useful to include also some SPEC JVM98 benchmarks in tase study, in order to evaluate the
performance impact of architectural changes on a largafsedrkloads.

Our results represent performance differences in peroesig the following well-known
formula [33], wherep is the speedup in percent, .. the base execution time, ang,;, the execution
time of the enhanced architecture:

p= (tbase/tenh - 1) x 100

For example, with a speedup of 200% the enhanced archiédstthree times faster. Also the average
clocks per instruction (CPI) are given in tables where itaelevant. The CPI value is calculated by
dividing the execution time in clock cycles by the dynamistianction count.

In order to ease performance comparison, we also compuggtiraetric mean of the measurements
for all benchmarks. The geometric mean is calculated from rtileasured execution times and
instruction count, and the other metrics (speedup respdgCPl) are computed from those values.

5.2. The Baseline

In order to explore the performance benefit of different aedtural enhancements to JOP, we first
establish the baseline by measuring the performance ofitinert JOP design. Hence, we cross-profile
the benchmarks using the current configuration of JOP wit#iKB 4#nhstruction cache, organized in 16
blocks, with FIFO replacement strategy. We will assess ffeets of our architectural optimizations
in comparison with this baseline. Table IV shows the executime in clock cycles, the dynamic
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Table IV. Cross-profiling results of the baseline in clockleg (Time), dynamic instruction count (IC), and clocks
per instruction (CPI)

Benchmark Time (clocks) IC CPI
Kil 5.02x107 1.09x107 4.62
Lift 5.26x107 1.13x107 4.66
Udplp 1.11x10°  2.06x107  5.39
201 compress 9.28101°  1.25x10'°  7.44
_202jess 2.9k 1010 1.74x10°  16.72
-209.db 4.10<10'°  3.61x10° 11.33
_213javac 3.24101  1.84x10° 17.60
_222mpegaudio  2.910'"  1.15x10'0 25.21
_228jack 1.69<101° 1.02<10° 16.48
geo. mean 5.5710° 5.46x10% 10.20

instruction count (IC), and the resulting clocks per instien (CPI) of the benchmarks cross-profiled
using the WCET cycle estimates for JOP.

An interesting result of this first evaluation is the sigrafit difference with respect to the CPI
values. The embedded benchmaiis Lift, andUdplp, as well ascompress, have a lower CPI than
the other SPEC JVYM98 benchmarks, where the higher CPI vadisedt from a more object-oriented
programming style (i.e., shorter methods, more frequefdablallocation, etc.). Method invocation
on JOP is expensive and shorter methods lead to a higheratiwodrequency. Furthermore, floating
point operations and operations on 64 bit integers are eiypens well. Those data types are avoided
in the embedded applications.

For computer architects that work on in-order RISC pipaljrike CPI values may look excessively
high. However, JVM bytecodes are often much more complex Bi&C instructions. A JIT compiler
will generate several RISC instructions for object-orgehbytecodes, such as field access or method
invocation. In JOP the more complex bytecodes are mappeddmeode sequences for a RISC-
style stack machine. The microcode instructions (excephamg access) execute in a single cycle.
Therefore, the CPI at the microcode level is about 1.

5.3. Variation of the Instruction Cache

Our first architectural change is the variation of the methadhe size. The method cache is split
into cache blocks and caches whole methods. The replacestnategy is FIFO. Table V shows the
performance differences relative to the standard configuraf JOP given in Table IV. The third and
fourth columns show configurations with bigger caches of Boad 64 KB with 64 and 256 blocks
respectively. A cache of 64 KB is uncommon in embedded psmssand the performance gain is
quite small. To check whether the method cache has actuathe performance enhancing effect, we
also measured a smaller cache with 1 KB and 4 blocks. Wittsthadl cache the performance decreases
considerably. Therefore, we conclude that, without angtihanges in the processor architecture, a
method cache of 4 KB with 16 blocks is a good design decision.
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Table V. Influence of the instruction cache size on the peréorce relative to a 4KB/16 cache

1KB/4  16KB/64 64KB/256

Benchmark (%) (%) (%)
Kfl —-7.5 2.9 2.9
Lift —3.6 0.0 0.0
Udplp —5.6 2.5 2.5
201 compress 7.4 0.0 0.0
_202jess —4.7 0.8 0.8
-209.db —0.1 0.0 0.0
_213javac -30.8 10.1 11.9
222 mpegaudio —1.2 0.0 0.0
_228jack —15.8 5.4 11.0
geo. mean -9.0 24 3.1

Four benchmarks do not benefit from a larger method cachd.atval conclude that for these
benchmarks, the methods where most of the execution timpeist git together into the cache, or
most of the invoked methods are very short. In the latter,digecache load time is hidden by the
invoke instruction as cache loading is performed partiallparallel with microcode execution.

It has to be noted that the cache size and organization (nuafilidocks) is configurable in JOP,
so this variation can be easily explored in the FPGA for theetded benchmarks. However, on-chip
memory in an FPGA is very limited. Thus, for this experimenitigqeand expensive FPGA would be
needed.

5.4. Faster Method Invocation and Return

Invoke instructions for Java methods are complex. The nurobarguments and local variables has
to be determined, the stack frame manipulated, some stetd sato the stack, and a virtual method
lookup has to be performed. This quite complex process idemented in microcode on JOP and
takes about 100 cycles. That number is not so uncommon, aslileeprocessor takes about the same
number of clock cycles for an invoke instruction [55].

We have investigated the microcode sequence for the invoRereturn instructions and found
several places where operations can be performed in haed@ay., bit manipulation to extract sub
fields from the method dispatch data structure). With somevare support, we assume that the
number of cycles for the invoke and return instruction cancbedown by a factor of two. The
performance impact of this optimization with cache sized &€B, 4 KB, and 16 KB is shown in
Table VI. A size of 64 KB is not included as it performs simitara 16 KB cache (see previous
experiment). Furthermore, a 64 KB first-level cache is glaitge, especially in resource-constrained
embedded processors.

The third column of Table VI shows that the performance iases (except for222_mpegaudio)
between 12% and 24%, with a geometric mean of 16% for the atdnthche size of 4 KB. Only
_222 _mpegaudio does not show any significant improvement; the reason isntleat of the execution
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Table VI. Faster invoke instructions with different caclees

1KB/4  4KB/16 16KB/64

Benchmark (%) (%) (%)
Kfl 7.3 21.7 28.9
Lift 5.6 12.4 12.4
Udplp 7.4 17.6 23.7
201 compress 4.4 14.7 14.7
202jess 15.0 24.3 26.1
-209.db 14.8 14.9 14.9
_213javac —234 19.0 34.6
_222 mpegaudio 0.4 1.9 1.9
228 jack 2.7 21.0 30.8
geo. mean 2.6 16.2 20.5

time is spent in just a few methods. The second and forth colslmw the performance changes with
different cache sizes. The improved invoke instruction campensate for the performance decrease
due to a small 1 KB method cache, as seen by comparing thedeotumn of Table V and Table VI.

It is interesting to note that the cache size has now a highgact on the performance than without
the changed invoke instruction, as shown in the previougmx@nt. For example, the change from
4 KB to 16 KB results in a speedup of 10.1% favac, the faster invoke instruction with 4 KB cache
in a speedup of 19%, but the combined effect is a speedup 6934l his effect can be explained by
the fact that some cache load time is hidden by execution afoodde for the invoke instruction. That
is, short methods have no cache load penalty on a miss anerliigghes do not help. When the invoke
instruction itself is enhanced, less method load time cahitbgen and larger caches help reduce the
execution time. Therefore, both changes in the architegesult in more than a linear speedup. This
result is also an argument for the dynamic approach of goosfiling that takes cache influences into
account.

5.5. Longer Pipeline

The actual pipeline of JOP consists of four stages: bytedetth and translation to microcode
addresses, microcode fetch, decode, and execute. Theifiedinp stage is the limiting factor for
the maximum clock frequency. Some experiments with thegtleshowed that the split of bytecode
fetch and microcode address mapping results in a 10% hi¢ek requency. This additional pipeline
stage results in an increase of the execution time of bytecodtrol instructions (branch and goto) by
one cycle.

Table VII shows the resulting increase of CPI due to slowentimd instructions. The (negative)
speedup is between -0.1% and -3.9%. Consequently, theasemf the maximum clock frequency
will result in a faster architecture. With a 10% higher cldeéquency, the longer pipeline results in a
speedup of 8.5%.
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Table VII. Longer pipeline with slower control instructi®n

Benchmark speedup (%) CPI
Kfl -3.9 4.81
Lift —2.8 4.80
Udplp -1.8 5.49
_201.compress -0.9 7.51
_202jess -0.7 16.84
_209.db —-1.0 11.44
_213javac -0.6 17.70
_222 mpegaudio —0.1 25.25
_228jack —0.7 16.60
geo. mean —-1.4 10.35

Table VIII. Single cycle bytecode fetch

Benchmark speedup (%) CPI
Kil 3.6 4.46
Lift 6.3 4.39
Udplp 8.0 4.99
_201 compress 10.2 6.75
_202jess 3.0 16.23
_209.db 5.3 10.77
_213javac 3.1 17.07
_222 mpegaudio 2.2 24.67
_228jack 2.8 16.04
geo. mean 4.9 9.73

Itis interesting to note that the embedded benchmarks hiaigghar branch frequency than the SPEC
JVM98 benchmarks. This is an indication that embedded egijidins have a more complex intra-
procedural control flow and a simpler inter-procedural oarftow, as they are less object-oriented.

5.6. Advanced Instruction Fetch

In the current design of JOP the bytecode instruction feigherformed with one byte per cycle in
order to achieve a time-predictable architecture. Withdditeonal pipeline stage, fetching of complete
bytecodes in a single cycle is possible. The optimizatiguliap to all bytecodes that are longer than
one byte and are implemented in microcode. Table VIII shdwesperformance increase when these
bytecodes are fetched in a single cycle. The experimenirathades the penalty of the additional clock
cycle for control instructions.
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Table IX. Effect of the combination of all architectural emltements

speedup (%) CPI
4KB/16 16KB/64 4KB/16 16KB/64
Kfl 27.0 34.8 3.64 3.43
Lift 204 204 3.87 3.87
Udplp 28.8 36.2 4.19 3.96
_201compress  28.3 28.3 5.80 5.80
202jess 29.0 30.9 12.96 12.77
-209.db 21.9 21.9 9.30 9.30
_213javac 234 40.3 14.26 12.54
222 mpegaudio 4.1 4.2 24.21 24.21
228 jack 25.1 35.7 13.17 12.15
geo. mean 22.9 27.6 8.30 8.00

5.7. Combined Effect

As a summary, the combined effect of all mentioned architetenhancements is given in Table IX.
For a 16 KB method cache the performance gain is between 26%G#, again with the exception of
-222_mpegaudio. The geometric mean speedup is 28%. As before, it also iasltiie slower control
instructions due to a longer pipeline. Therefore, the rpaédup, with a clock frequency improvement
of 10%, is up to 54% for the213 javac benchmark and the geometric mean speedup is 40%.

6. RELATED WORK

In this section we describe related work in two areas, (e)jpssfiling, as well as computer architecture
evaluation.

6.1. Profiling

Cross-profiling techniques have been used to simulatelpbcamputers [23]. As the host processor
may have a different instruction set than the target pracessoss-profiling tries to match up the
basic blocks on the host and on the target machines, chatigingstimates on the host to reflect
the simulated target. Our approach follows a similar ppheibut uses precise cycle estimates at the
instruction-level, because both the target and the hostictions are JVM bytecodes.

Profiling embedded Java applications is difficult becausb®lise of emulators, the lack of cross-
profiling tools, and the limited resources and profiling suppn these devices. ProSyst's JProfiler [49]
uses a profiling agent running directly on the target devidee agent communicates through the
network with the profiling front-end running within the Hatie IDE. The agent is implemented in
native code using the JVM Profiler Interface (JVMPI) (The JNIN62] has been deprecated in JDK 1.5
and was replaced by the JVMTI [63]), and hence is limited tecaiced number of virtual machines and
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operating systems. Furthermore, the agent itself consuesesirces on the target system which may
perturbate measurements. Another drawback is that pipféiquires deployment of the application on

the target system. In contrast, CProf runs independerttty the target platform, using state-of-the-art
Java technology on the host.

There are several JVM hardware implementations, such adaiea [46], alJile's JEMCore [31],
Komodo [41], or FemtoJava [10]. Even though simulationsaok available for the processor designs,
profiling is not always possible and made only at the lategiesbf development, i.e., on the actual
processor. Moreover, most current profilers rely on the JYMBVMTI, which are not well supported
by many embedded Java systems. Our portable approach &s-profiling avoids this problem.

There is a large body of related work dealing with differeaahitniques to generate CCTs [3, 6, 68,
61, 71, 21], highlighting the importance of the CCT for aadlicontext profiling. Generating complete
CCTs reflecting every method call may cause high overheatressed in [71, 21], and much related
work on calling context profiling has focused on efficientjypeoximating the CCT with sampling
techniques [6, 68, 71].

Most prevailing approaches to calling context profiling elegh on a modified JVM or on native
code, limiting portability. For example, adaptive burgtifr1] relies on the JVM Profiler Interface
(JVMPI), the predecessor of the JVMTI [63], which requiresfling agents to be written in native
code. Probabilistic Calling Context (PCC) [21] is based onaglified Jikes RVM [2], thus preventing
its use on other standard JVMs. In contrast, we strive forimam portability and compatibility with
standard JVMs thanks to our approach based on bytecodarmesttation, so as to generate calling
context cross-profiles with CPU cycle estimates for thedapgocessor. Nonetheless, while several
other approaches, such as PCC, exclude the Java clasy fitmar profiling, our approach guarantees
complete method coverage.

CProf performs complete cross-profiling, tracking all iked methods. In contrast, sampling-
based profilers are activated only periodically, in orderaduce profiling overhead [5, 68, 12]. The
framework presented in [5] uses code duplication combingd wompiler-inserted, counter-based
sampling. A second version of the code is introduced whidafitains all computationally expensive
instrumentation. The original code is minimally instrurteshto allow control to transfer in and out of
the duplicated code in a fine-grained manner, based on atistnucounting. This approach achieves
low overhead, as execution proceeds most of the time inkigléightly instrumented code portions.
In [4], a hybrid approach combines timer-based and courdsed sampling. Such an approach reduces
overhead and increases accuracy compared to pure coased-bampling. For typical workloads to
be executed on embedded Java systems, the overhead of tmorpks-profiling using CProf is not an
issue. Hence, we have not yet explored reducing cross-pmpfiverhead with sampling techniques.

In [12] a portable sampling profiler for standard JVMs is prgsd, which relies on bytecode
counting. A profiling agent is periodically invoked in a deténistic way after the execution of a
certain number of bytecodes. The profiling data structuregaed by the sampling profiler can be
regarded as a partial CCT covering only a subset of the exd@ailling contexts.

In [64] the authors present a fast partitioning algorithradzhon profiles to remotely execute parts
of an embedded Java application on a server so as to redug emesumption on the embedded
device. The partitioning algorithm is executed on the endiedddevice. Our cross-profiling approach
helps identifying and optimizing hotspots before the aggilon is deployed.

Related to aspect weaving in AOP, our approach is based ooutstemized instrumentation of
three low-level pointcuts, method entry, method returrd basic block entry. The AspectJ weaver
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(htt p: // ww. aspectj . org/) also works at the bytecode level and AspectJ provides paist
for method entry and return, but not for basic block entry30] an extension to AspectJ uses control-
flow analysis to determine loop pointcuts used to parabeloops. Eos-T [51], an aspect-oriented
version of C#, also supports low-level pointcuts to enakledive branch coverage profiling. Our
approach shows that low-level pointcuts at the basic blecéllare well suited for cross-profiling.

The use of AspectJ for profiling is explored in [47], yieldingxed results. While it is possible
to implement profilers concisely with aspects, unfortulyatee Aspectd weaver does not provide
support for comprehensive aspect weaving (it prevents ingdiie Java class library), thus resulting
in incomplete profiles. Even though the work presented in§@§removes this limitation, the AspectJ
language itself lacks a number of pointcuts, such as thasessary to capture basic blocks as in CProf,
thus limiting its applicability for cross-profiling. Som@jaroaches, such abc[8] or Nu [25], ease
the extension of AspectJ with new pointcuts [1, 18, 24], calde extensions using an intermediate
language and explicit join points [50]. Unfortunately, $heapproaches do not support full method
coverage, thus limiting their applicability to implementensions for cross-profiling.

CProf is related to the profiler JP described in [11, 14, 4%jic generates largely platform-
independent profiles using the number of executed bytecasl@ynamic metric. In contrast to JP,
CProf generates cross-profiles that estimate CPU cyclea embhedded target system. Hence, CProf
can be regarded as a generalization of JP, which uses théanbrycle estimate of “1” for all
bytecodes.

6.2. Computer Architecture Evaluation

Quantitative evaluation of computer architectures is tyaiperformed by simulation [59].
Skadron et. al argue that current simulation tools are boilan ad-hoc manner and that tool
development is error-prone. Furthermore, computer a¥chite research focuses on architectures
where simulation models are available. The authors arqated¢isearch in simulation frameworks and
benchmark methodologies is needed. In line with their agputmwve introduce the new approach to
computer architecture evaluation with cross-profiling.

Using benchmarks intended to evaluate real hardware fopatenarchitecture simulation leads to
impractical simulation time on cycle-accurate simula{&@]. The result is that usually only subsets
of the benchmarks are used to reduce the simulation time. ¥l argue that besides standardizing the
subsets, higher level abstractions in the simulation agdwsable option, especially in an early stage of
design space exploration. Our cross-profiling approadbvial their advice and simulates at the level
of basic blocks, method entry, and return, instead of penifog instruction-level simulation.

SimpleScalar [7] is a popular processor performance sitmul&impleScalar contains, besides the
simulator, the full tool chain (GCC compiler, librariessambler, and linker). SimpleScalar models a
five-stage, out-of-order pipeline and is highly configuealBlimpleScalar models the microarchitecture,
but not an entire system to run an operating system (OS). Witfcross-profiling approach, we also
omit the low-level functions of the OS, but include the ritaralard Java class library.

Another approach to architectural evaluation for desigm@émented in an FPGA is shown in [53].
The execution time of a bytecode is artificially increased amew design synthesized. The actual
increase in the execution time can be used, with some tranafwns of Amdahl’s law [33], to estimate
the performance when the instruction timing is enhancee. microcoded design of JOP simplifies
the increase of the execution time; just no-operationuesions need to be inserted into the microcode
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sequences for the bytecode under evaluation. The turndrime for those kinds of experiments is

in the range of minutes. However, this approach is limitedb@éachmarks that can be executed on
the target hardware. With cross-profiling it is possible valeate architectural changes with larger
benchmark suites.

7. CONCLUSION

In this article we presented CProf, a customizable crosfiipng framework for embedded Java
processors. CProf is completely portable and runs on amydatd JVM. It relies on bytecode
instrumentation to collect calling context cross-profilesa given target processor. Instrumentation
takes place at certain low-level pointcuts, concretely @thod entry, on method return, and on basic
block entry.

CProf has been designed for customization and extensidningdlved algorithms (i.e., basic
block analysis, static basic block metrics calculatiorg arstrumentation) are provided as pluggable
components. The defaultimplementations of these compsaea also configurable in a flexible way,
regarding the cycle estimation for bytecodes and the sitionl@f a method cache. Hence, CProf can
be easily customized for Java processors that conform tofGRyeneral execution time model.

For our evaluation, we configured CProf to yield cycle esteador the Java Optimized Processor
JOP, which features a method cache. Using JOP as targairpiatfre have shown that our approach
reconciles high cross-profile accuracy (error below 2%) moderate overhead, which is an order of
magnitude below the overhead caused by typical simulators.

As a case study, we have presented an approach to compuigeeitere evaluation for embedded
Java processors using cross-profiling. With the aid of CRvefevaluated the performance impact of
various architectural enhancements to JOP using standaadb&nchmarks. We have shown that the
combination of several enhancements to the architectur®Bfwill result in a speedup of about 40%.
All the proposed changes are still time-predictable antvait defeat the intention of JOP to serve as
a real-time Java processor.

Regarding limitations, CProf currently does not represertiin system activities of the targetin the
generated cross-profiles. For instance, the automated mpananagement on the target is not being
simulated in the host environment.

With respect to ongoing research, we are working on tectasiqo simulate activities of the target
runtime system (e.g., garbage collection) on the hostheumore, we are investigating the simulation
of data caches. In addition, we are exploring the possibiit cross-profiling for embedded Java
systems that rely on just-in-time compilation (in contttasiava processors).
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