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SUMMARY

Performance evaluation of embedded software is essential in an early development phase so as to ensure that
the software will run on the embedded device’s limited computing resources. Prevailing approaches either
require the deployment of the software on the embedded target, which can be tedious and may be impossible
in an early development phase, or rely on simulation, which can be very slow. In this article, we introduce
a customizable cross-profiling framework for embedded Javaprocessors, including processors featuring
a method cache. The developer profiles the embedded softwarein the host environment, completely
decoupled from the target system, on any standard Java virtual machine, but the generated profiles
represent the execution time metric of the target system. Our cross-profiling framework is based on
bytecode instrumentation. We identify several pointcuts in the execution of bytecode that need to be
instrumented in order to estimate the CPU cycle consumptionon the target system. An evaluation using
the JOP embedded Java processor as target confirms that our approach reconciles high profile accuracy
with moderate overhead. Our cross-profiling framework alsoenables the performance evaluation of new
processor architectures before they are implemented. As a case study, we explore the performance impact of
various processor design choices and optimizations, such as different cache sizes or pipeline organizations,
and come up with an improved processor design that yields speedups of up to 40% on standard Java
benchmarks.

KEY WORDS: Cross-profiling; Embedded Java processors; Bytecode instrumentation; Platform-independent
dynamic metrics; Processor architecture design space exploration

1. INTRODUCTION

High-level, object-oriented programming models are becoming increasingly popular for the
development of embedded and real-time systems, since they help enhance productivity and avoid
certain kinds of programming mistakes. Because of its safety guarantees, Java [27] is an attractive
language for developing embedded systems. Language safetymeans that the execution of programs
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2 W. BINDER ET AL.

proceeds according to the language semantics. For instance, types are not misinterpreted and data is
not mistaken for executable code. The safety properties of Java depend on techniques such as strong
typing, automatic memory management, dynamic bound checks, and bytecode verification.

The Java Platform Micro Edition (JavaME) provides a subset of the language features and class
library of the Standard Edition (JavaSE), suitable for embedded systems with limited computing
resources. Special requirements for real-time systems areaddresses in the Real-Time Specification
for Java [20]. While Java is still an emerging language for classic embedded systems (e.g., in the
automotive and airborne domain), almost all mobile phones already contain a Java virtual machine
(JVM) [42] to execute so-called MIDlets.

JVMs tailored to embedded systems either interpret the application bytecode, employ just-in-time
compilation on the embedded system, compile the embedded Java application (in the development
environment) to native code for the embedded target system,or use a dedicated Java processor (that
is, a JVM implemented in hardware) to directly execute bytecodes, such as the aJile processor [31],
Cjip [37], or JOP [55]. In this article, we consider only embedded Java processors as cross-profiling
targets.

Java processors may play an important role in future safety-critical applications, for which Java is
currently being considered [34]. Safety-critical applications need to be certified and the reduction of
code size is of primary importance, as the certification costdirectly depends on the code size. Software
certification is performed at the source code level and includes the whole software stack (operating
system and libraries). A Java processor simplifies certification and hence helps reduce cost, because
it does not require an operating system and because only codein one language needs to be certified.
Furthermore, worst-case execution time (WCET) for the safety-critical tasks must be known. A Java
processor also simplifies WCET analysis of Java programs, asit can be performed at the bytecode
level [9].

Performance evaluation of embedded system software is crucial in order to ensure that the created
software executes satisfactorily on the target system’s scarce resources. Concomitant performance
evaluation is particularly important for embedded system software written in Java (or in any other
high-level, object-oriented programming language), since the performance impact of certain language
features (such as type checks, bound checks, garbage collection, etc.) may not be directly apparent to
the programmer.

Unfortunately, profiling of embedded Java applications is currently a tedious task that requires
either deployment of the embedded application on the targetplatform or a simulator of that
platform. However, the embedded target system may not be available in an early development
phase. Furthermore, deployment and performance measurements on the target platform are time-
consuming. Similarly, simulators can be prohibitively slow. For instance, we found that the simulator
ModelSim [43] causes excessive overhead of up to factor 33 000 when compared to running the same
Java application in a standard JVM on the same machine. Consequently, embedded Java applications
are rarely profiled in an early development phase.

Whereas the JavaSE offers a dedicated profiling interface, the JVM Tool Interface (JVMTI) [63],
embedded Java systems often lack profiling support. Becauseof the resource constraints on embedded
Java systems, CPU time and memory consuming profiling techniques are often impossible. For
example, the Calling Context Tree (CCT) [3] provides detailed profiling data for each calling context,
which helps locate hotspots. However, the CCT may consume significantly more heap memory than
the profiled application itself.
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CROSS-PROFILING FOR JAVA PROCESSORS 3

In order to enable and ease performance evaluation of embedded Java software that is intended to
run on a Java processor, we introduce the customizable cross-profiling framework CProf. CProf is
written in pure Java and runs on any standard JVM. It enables calling context cross-profiling of Java
applications directly within the development environment, which we will call ‘host’ in the following,
completely decoupled from the embedded target system. Nonetheless, the generated profiles show the
execution time metrics of the target.

Cross-profiling not only helps analyze the performance of embedded Java software, it also allows
estimating the performance of different Java processor designs without requiring these designs to be
implemented. It is important to estimate the effects of architectural design choices on the performance
of domain-specific applications in an early phase of processor development [40]. With cross-profiling
it is possible to collect evaluation data for realisticallysized programs. That is, cross-profiling enables
rapid design space exploration for embedded Java processors. Instead of implementing a new processor
in hardware, it is sufficient to model its cycle consumption and to evaluate the performance on various
workloads. Only the best performing processor model is afterwards implemented in hardware.

Our cross-profiling framework CProf is based on bytecode instrumentation in order to generate
calling context cross-profiles with CPU cycle estimates forthe target processor. It relies on a bytecode
instrumentation framework [13], which ensures that each Java method is instrumented and therefore
represented in the profile, including all methods in application classes and in the Java class library.

CProf identifies particular points in the execution of programs, so-calledpointcutsin aspect-oriented
programming (AOP) terminology† [39], where the cycle estimate needs to be updated. Currently, CProf
supportsmethod entry, method return, andbasic block entryas relevant pointcuts. As we will show in
this article, these pointcuts enable cross-profiling for Java processors.

This article builds on our prior work on cross-profiling [16,17, 57], presenting the software
architecture of the customizable cross-profiling framework CProf, as well as its specialization for the
Java Optimized Processor JOP [55]. We choose JOP as cross-profiling target, because the CPU cycle
consumption for the bytecodes is public available. Moreover, JOP is a recent architecture that includes
an instruction cache, which caches whole methods. Therefore, cross-profiling for the JOP processor
also requires simulating that instruction cache. We evaluate CProf with the JOP target model. Our
results confirm that CProf yields accurate CPU cycle estimates with an error below 2% and causes
reasonable overhead, orders of magnitude less than simulators.

As case study, we employ cross-profiling in order to quantitatively explore the performance impact
of various processor design options and optimizations. Taking the current JOP architecture as baseline,
we investigate the impact of different cache sizes and pipeline organizations, and come up with an
improved processor design that yields speedups of up to 40% on standard Java benchmarks.

This article is structured as follows: Section 2 gives an overview of the JOP processor and describes
CProf’s execution time model. Section 3 explains our cross-profiling framework CProf. In Section 4
we assess the accuracy of the generated cross-profiles for some embedded Java benchmarks and
measure the runtime overhead due to cross-profiling. In Section 5 we describe our case study, exploring

†In AOP, aspects specifypointcuts to intercept certain points in the execution of programs (so-called join points), such as
method calls, field accesses, etc.Advicesare executedbefore, after, or aroundthe intercepted join points. Advices have access
to contextual information of the join points.
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4 W. BINDER ET AL.

architectural enhancements for a Java processor with the aid of cross-profiling. Section 6 discusses
related work and Section 7 concludes this article.

2. JAVA PROCESSORS AS CROSS-PROFILING TARGETS

There are several Java processors which follow a similar execution time model, and some implement a
method cache. Since our cross-profiling approach is based oncycle estimates for bytecodes, we firstly
briefly describe JOP, which is the target processor for our evaluation, and discuss its method cache.
Afterwards, we summarize our assumptions on the target execution time model.

2.1. The Java Processor JOP

JOP [55] is an implementation of the JVM in hardware. As embedded systems are often also real-
time systems with hard timing constraints, the main focus ofthe development of JOP has been on
time-predictable bytecode execution. All function units,and especially the interactions between them,
are carefully designed to avoid any time dependencies between bytecodes. This feature simplifies
the low-level part of worst-case execution time (WCET) analysis, a mandatory analysis for hard
real-time systems. Due to JOP’s accessible timing model, several WCET analysis tools support JOP
[58, 32, 19, 35].

We have chosen JOP [55] for our evaluation of the proposed cross-profiling and computer
architecture exploration as it is: (a) a simple processor, (b) open-source, and (c) the execution timing is
well documented. Furthermore, the JOP design is actually the root of a family of Java processors.
Flavius Gruian has built a JOP compatible processor, with a different pipeline organization, with
Bluespec Verilog [29]. The SHAP Java processor [70], although now with a different pipeline structure
and hardware assisted garbage collection, also has its roots in the JOP design.

JOP dynamically translates the Java bytecodes to a RISC, stack-based instruction set (the microcode)
that can be executed in a 3-stage pipeline. The translation takes exactly one cycle per bytecode. All
microcode instructions have a constant execution time of one cycle. No stalls are possible in the
microcode pipeline. The absence of time dependencies between bytecodes results in a simple processor
model for the low-level WCET analysis [58], which fully conforms to the aforementioned assumptions
for cross-profiling.

The stack, which holds invocation frames, local variables,and the operand stack, is implemented
as on-chip memory. This stack cache allows a non-stalling implementation of the microcode pipeline.
Furthermore, the instructions are cached in the so called method cache. Heap data and data in the class
information area are not cached in our current configurationof JOP.

Besides JOP, there are several other Java processors for embedded systems; the execution time
modeling for those processors can be done in a similar way. The first Java processor, picoJava [46],
was developed by Sun Microsystems. The most successful Javaprocessor is the aJile processor [31]
that was initially conceived as a platform for the Real-TimeSpecification for Java [20]. Another
Java processor, Cjip [37], supports multiple instruction sets, and the JVM is implemented largely in
microcode. Komodo [41] is a multithreaded Java processor intended as a basis for research on real-time
scheduling on a multithreaded microcontroller. The follow-up project, jamuth [65], is a commercial
version of Komodo.
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CROSS-PROFILING FOR JAVA PROCESSORS 5

Table I. Execution time of simple bytecodes in cycles

Instruction Cycles Function

iload 0 1 load local variable 0 on TOS
istore 0 1 store local variable 0
iconst0 1 load constant 0 on TOS
dup 1 duplicate TOS
iadd 1 integer addition
isub 1 integer subtraction
swap 4 exchange TOS and TOS-1
ifeq 4 conditional branch

2.2. Bytecode Timing

Simple bytecodes (e.g.,iadd, dup, or iload 0) execute in a single cycle on JOP. Slightly more complex
bytecodes (e.g.,dup x1) are implemented in a short microcode sequence and execute in constant time.
The execution time in clock cycles equals the number of microinstructions executed. As the stack is
on-chip, it can be accessed in a single cycle. Table I shows example bytecode instructions, their timing,
and their meaning (TOS is top-of-stack).

Access to object, array, and class fields depend on the timingof the main memory. As an example,
we give the execution time of the bytecodegetstatic. With rws wait states on the read access to the
main memory, the execution time in cycles is computed as follows:

tgetstatic = 7 + rws

A complete list of all bytecode timings of JOP can be found in [56].

2.3. Method Cache

JOP introduced a special instruction cache, the method cache [52], which caches whole methods.
A method cache is also integrated in the embedded Java processor SHAP [48], and the CarCore
processor [44] also uses method caches. Furthermore, it is considered in jamuth [65] as a time-
predictable caching solution.‡

With a method cache, only invoke and return bytecodes can result in a cache miss. All other
bytecodes are guaranteed cache hits. The idea to cache wholemethods is based on the assumption
that WCET analysis at the call graph level is more practical than performing cache analysis for each
bytecode. Furthermore, loading whole methods also leads tobetter average case execution times for a
memory with long latency but high bandwidth.

‡Personal communication with Sascha Uhrig.
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6 W. BINDER ET AL.

Memory access time determines the cache load time on a miss. For the current implementation, the
cache load time is calculated as follows: The wait statecws for a single word cache load is:

cws =

{

rws : rws > 1
1 : rws ≤ 1

On a method invoke or return, the respective method has to be loaded into the cache on a cache miss.
The load timel is:

l =

{

6 + (n + 1)(1 + cws) : cache miss
4 : cache hit

wheren is the size of the method in number of 32-bit words. As an example, the exact execution time
for bytecodeinvokevirtual is:

t = 100 + 2rws +

{

rws − 3 : rws > 3
0 : rws ≤ 3

+

{

rws − 2 : rws > 2
0 : rws ≤ 2

+

{

l − 37 : l > 37
0 : l ≤ 37

On a method return, the caller method has to be found in the method cache or needs to be loaded.
Therefore, the execution time of the return instruction depends on the method size of the caller. The
execution time of bytecodereturn is:

t = 21 +

{

rws − 3 : rws > 3
0 : rws ≤ 3

+

{

l − 9 : l > 9
0 : l ≤ 9

CProf supports the simulation of a method cache in a customizable way. The simulation provides the
information whether the invoked method or the method callerupon return will be a cache hit or a cache
miss. On a miss, we calculate the cache load time with the given processor execution time model. The
load time depends on the size of the method. However, on JOP, the cache loading is done in parallel
with microcode execution in the core pipeline. Therefore, small methods do not add any additional
latency to the invoke or return bytecodes.

2.4. Assumptions on the Execution Time Model

Our cross-profiling approach targeting Java processors is based on the following assumptions:

• For most bytecodes, the CPU cycle consumption on the target can be accurately estimated by
constants, independently of the context where these bytecodes occur.

• For method invocation and return bytecodes, the cycle consumption on the target may also
depend on the size of the callee or caller method. Furthermore, the presence of a method cache
may affect the cycle consumption of invoke/return bytecodes. As object-oriented programs tend
to have rather small methods and method invocation/return bytecodes are expected to be executed
frequently, we consider an accurate estimation of the cycleconsumption essential for these
bytecodes.

• In addition to invocation/return bytecodes, some other bytecodes, such as type checks, may not
consume a constant number of cycles on the target. We assume that reasonable (though not
always accurate) estimates are available for these bytecodes.
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CROSS-PROFILING FOR JAVA PROCESSORS 7

3. CROSS-PROFILING

Bytecode instrumentation is a well-known technique for profiling [12, 14]. While the work presented
here leverages bytecode instrumentation-based profiling techniques that preserve calling context
information, it introduces the instrumentation of certainlow-level pointcuts, allowing for flexible, user-
defined collection of dynamic metrics. Thanks to CProf’s support for customization, we are able to
create cross-profilers for Java processors with a minimum ofdevelopment effort.

In the following, we firstly describe our representation of the calling context. Secondly, we discuss
how collected profiling data can be processed online and in a customized way. Thirdly, we present our
generic instrumentation techniques that enable cross-profiling for embedded Java processors. Fourthly,
we describe CProf’s configuration for the JOP processor usedin our evaluation.

3.1. Calling Context Tree

The CCT was first introduced by Ammons et al. in [3] as runtime data structure for calling context
profiling. Each node in the CCT represents a calling context and stores the measured dynamic metrics
for that calling context; it also refers to a unique identifier of the method in which the metrics were
collected. Method identifiers convey class name, method name, method signature, and method size (in
bytes).

The parent of a CCT node represents the caller’s context, while the children nodes correspond to the
callee methods. If the same method is invoked in distinct calling contexts, the different invocations are
represented by distinct nodes in the CCT. In contrast, if thesame method is invoked multiple times in
the same calling context, the dynamic metrics collected during the executions of that method are stored
in the same CCT node.

CProf instruments bytecode such that each thread creates a CCT while executing methods. Thanks
to the generated code for CCT creation,§ the instrumentation has access to both the caller’s node and
the callee’s node in the current thread’s CCT.

Figure 1 illustrates the CCT of an example cross-profile, assuming one invocation of methodf(). The
cross-profile was generated using a CProf configuration for the JOP target, which will be described in
more detail in Section 3.4. In this example, each CCT nodeN stores the number of method invocations
(by the same sequence of callers) and an estimate of the accumulated CPU cycles for the subtree rooted
at nodeN .

3.2. Customized Processing of Profiling Data

Periodically, each thread invokes a user-defined profiler toprocess the thread’s CCT. A typical profiler
may aggregate the CCTs of all threads within a ‘global’ CCT representing the activities of all
threads and output the ‘global’ CCT upon program termination (e.g., using a JVM shutdown hook).
Alternatively, custom profilers may be used for online processing of the profiling data, such as for
displaying continuous metrics.

§Method signatures are extended so as to pass the caller’s CCTnode to the callee, and upon entry, the callee first looks up or
creates its own node as a child of the caller’s node.
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8 W. BINDER ET AL.

void f() {
int i;
for (i = 1; i <= 10; ++i) {

h();
g(i);

}
}

void g(int i) {
int j;
for (j = 1; j <= i; ++j) {

h();
}

}

void h() { return; }

f()

Invocations = 1

Cycles = 10600

h()

Invocations = 10

Cycles = 210

g(int)

Invocations = 10

Cycles = 8100

h()

Invocations = 55

Cycles = 1155

Figure 1. Example CCT, assuming methodf() is invoked once. Each CCT node stores the number of method
invocations (with the same call stack) and the accumulated cycle estimate for the subtree.

The profiler interface has only three methods that must be implemented by the user-defined profiler:
one method to initialize the profiler, a second method for registering the CCT root of each thread that
executes profiling code, and a third method that gets periodically invoked by each thread to enable
online processing of profiling data.

The latter method is invoked whenever a dedicated, thread-local bytecode counter reaches a user-
defined threshold. We use some form of call/return polling [26] to increment and check the bytecode
counter in strategic program locations, such as upon methodentry or in the beginning of loops. This
approach ensures the periodic activation of the profiler by each thread, according to the progress
(measured as the number of executed bytecodes) the thread has made since its last invocation of the
profiler.

3.3. Customized Collection of Dynamic Metrics

CProf allows customizing the way dynamic metrics are computed for each calling context. Figure 2
gives a high-level overview of CProf, showing the configurable and extensible parts of the system.
Moreover, the figure illustrates the instrumentation of a sample method.

Instrumentation with CProf involves three phases, the basic block analysis (BBA), the static
calculation of metrics for each basic block (BB), and the actual instrumentation.

3.3.1. Basic Block Analysis

The basic block analysis takes the bytecode of a method and returns a representation of the control
flow graph (CFG). CProf provides the necessary abstractionsto represent a CFG and the nodes in it.
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CROSS-PROFILING FOR JAVA PROCESSORS 9
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Figure 2. Overview of CProf

While the user may employ a custom BBA algorithm, CProf provides two predefined BBA algorithms,
which we call ‘Default BBA’ and ‘Precise BBA’.

In the Default BBA, only bytecodes that may change the control flow non-sequentially (i.e., jumps,
branches, method returns, explicit throw of exceptions) end a BB. Method invocations do not end BBs,
because we assume that the execution will return after the call. This definition of BB corresponds to
the one used in [15] and is related to the factored control flowgraph (FCFG) [22]. In contrast, using
the Precise BBA, each bytecode that potentially might throwan exception ends a BB.

When statically calculating metrics for a BB, method invocation and return bytecodes are ignored,
as the metrics contribution of these bytecodes may vary depending on the state of the method cache and
therefore are not statically known. The metrics contribution of these bytecodes is computed at runtime,
when profiling method entry and return.

As we will explain below, CProf instruments the beginning ofeach BB, assuming that all bytecodes
in the BB will be executed. The advantage of the Default BBA isthat it creates rather large BBs.
Therefore, the Default BBA helps reduce the number of program locations where instrumentation
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10 W. BINDER ET AL.

code is inserted, resulting in lower cross-profiling overhead. As long as no exceptions are thrown,
the Default BBA does not cause any inaccuracies. However, inthe case of an exception, CProf’s
assumption that all bytecodes in the BB would be executed is violated, if the exception-throwing
bytecode is not the last one in its BB. The Precise BBA avoids this potential imprecision, but causes
higher overhead because the resulting BBs are smaller.

3.3.2. Static Basic Block Metrics Calculation

Regarding the supported target processors for cross-profiling, we assume that the CPU cycle
consumption of all bytecodes, apart from method invocationand return, can be estimated by a constant.
This assumption allows us to statically compute the CPU cycle estimate for each BB, by summing
up the CPU cycle estimates for the bytecodes in the BB (while ignoring method invocation/return
bytecodes).

Figure 2 shows CProf’s component for the static BB metrics calculation. While this component
can be replaced by the user, the default implementation in our cross-profiling framework invokes a
given CycleEstimator for each bytecode in a BB (see the UML class diagram included in Figure 2).
The CycleEstimator is an abstraction providing the methodgetCycles(...) that takes, amongst others,
a bytecode as argument and returns the corresponding CPU cycle estimate. We designed the cross-
profiling framework so as to ease the plug-in of customCycleEstimator implementations according to
the cross-profiling target processor (CyclesJOP respectivelyCyclesX in the class diagram).

The statically computed BB cycle estimates are stored within the nodes of the CFG. That information
is used afterwards by the instrumentation component for instrumenting the beginning of each BB.

3.3.3. Instrumentation

CProf’s instrumentation component fulfills three roles: (1) it generates the code for maintaining the
CCT, (2) it inserts the polling code that ensures the periodic invocation of a custom profiler, and (3) it
injects the code that computes the CPU cycle estimation for the target. Below we focus on the third
issue.

Figure 2 illustrates a sample CFG generated by a BBA algorithm on the left side, as well as the
resulting CFG after instrumentation on the right side. The CFG is used to identify the method entry,
method return, and basic block entry pointcuts. For the basic block entry pointcut, CProf inserts a
bytecode sequence in the beginning of each BB that increments a cycle counter (within the CCT node
representing the executing method) according to the statically pre-calculated cycle estimate for the
BB. Hence, the chosen BBA algorithm determines the program locations where this instrumentation
happens.

The method entry and return pointcuts are instrumented withinvocations to theEnterReturnProfiler,
which provides the two methodsonMethodEnter(...) andonMethodReturn(...).¶ As arguments, these
methods receive the caller and callee nodes in the CCT, as well as the invocation/return bytecode. As

¶In AOP terminology, EnterReturnProfiler corresponds to an aspect class, and the methodsonMethodEnter(...) and
onMethodReturn(...) are related to advices.
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CROSS-PROFILING FOR JAVA PROCESSORS 11

mentioned before, each CCT node refers to the correspondingmethod identifier, which in turn provides
method-related information, such as the method size (before instrumentation).

While a customEnterReturnProfiler can be provided by the user, our default implementation first
determines whether the method to be loaded (i.e., the calleefor onMethodEnter(...), respectively the
caller for onMethodReturn(...)) is in the cache. To this end, CProf provides theCacheStrategy
abstraction with a boolean methodisCacheHit(...) that takes as argument a method identifier. The user
has to provide an appropriate implementation of theCacheStrategy for the target processor. The UML
class diagram in Figure 2 shows two concrete implementation, CacheJOP andCacheX.

After consulting the configuredCacheStrategy, the default implementation ofEnterReturnProfiler
invokes theCycleEstimator to compute the cycles consumed by the method invocation/return. In
addition to a bytecode,getCycles(...) also takes information on the method size and whether the method
was found in the cache (for bytecodes other than method invocation/return, this extra information is
meaningless and ignored by implementations ofgetCycles(...)). The cycle estimate is added to the cycle
counter in the appropriate CCT node (i.e., in the caller nodefor method invocation, respectively in the
callee node for method return).

For the method return pointcut, the instrumentation component exactly knows the return bytecode
and passes it as argument toonMethodReturn(...). However, for the method entry pointcut, the
instrumentation component cannot always determine which invocation bytecode will be used by the
caller. A method that is also declared in an interface may be called with theinvokevirtual bytecode
or with theinvokeinterface bytecode. Furthermore, one use ofinvokespecial is to access a superclass’
version of a method (this mechanism is used to compile Java’ssuper() construct). I.e., in certain cases
the same method may be called byinvokevirtual, invokeinterface, or invokespecial. However, as the
CPU cycle consumption of the distinct method invocation bytecodes may differ, knowing the concrete
invocation bytecode can help improve the accuracy of cross-profiling.

As general solution, we can pass the information regarding the method invocation bytecode from the
caller to the callee as an extra method argument. For invocations of static methods, private methods,
and constructors, the extra argument is not needed, becausethe invocation bytecode is statically known
(both when instrumenting the caller method(s) and the callee method).‖ Note that in general, the
method entry pointcut cannot be implemented by instrumenting the caller, because of polymorphic
call sites (where the method identifier of the callee would not be known). In contrast, the method
identifier of the caller is always known to the callee, since the caller passes its CCT node to the callee.

Another issue is abnormal method completion through an exception. In this case,onMethod-
Return(...) is not invoked. A general solution to this issue would be the introduction of another pointcut
(corresponding to a methodonMethodAbnormalCompletion(...) in EnterReturnProfiler), which could be
implemented by an inserted exception handler. In contrast to CProf, prevailing AOP frameworks, such
as AspectJ [38], provide mechanisms for intercepting abnormal method completion. However, because
exception throwing is infrequent in embedded Java software, CProf currently lacks such a mechanism.

‖The instrumentation component can statically determine whether a callee is private, since it processes all methods within the
same class file, and private methods can only be called in the defining class. Constructor invocations are identified by thespecial
method name<init>.
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12 W. BINDER ET AL.

3.4. Customization for the JOP Processor

While the software architecture of CProf allows customization and replacement of all components
shown in Figure 2, the typical customization for a target processor that fits our execution time model
will require only the implementation of theCycleEstimator andCacheStrategy interfaces.

With respect to cross-profiling for the JOP processor, we useCProf’s Default BBA. This choice
is a reasonable trade-off between cross-profiling accuracyand overhead. Regarding the customized
processing of cross-profiling data, we created a simple profiler that aggregates the CCTs of all
application threads into a global structure, but disregards the CCTs of system threads. The profiler
keeps weak references to application threads, associated with the corresponding CCT root nodes, in
order to collect the CCTs of threads that terminate during cross-profiling. Upon JVM shutdown, the
CCTs of the remaining application threads are collected, before the final cross-profile is emitted.

We implemented aCycleEstimator in the classCyclesJOP, which is an adapter to the JOP cycle
estimation API provided by the classcom.jopdesign.wcet.WCETInstruction from the WCET analysis
tool [58]. Furthermore, we implemented aCacheStrategy in the classCacheJOP that simulates the
hardware method cache of the current JOP processor.

Figure 3 illustrates theCacheJOP implementation. It simulates an instruction cache with FIFO
replacement. As CProf uniquely identifies each method by exactly one instance of typeMID, reference
comparison is sufficient to check whether a method is in the cache (i.e., there is no need to check
the equality ofMID instances, which would cause higher overhead). The cache implementation is
straightforward. If the passedMID instance is in the array simulating the cache contents, a cache hit is
returned (true). Otherwise, theMID instance is stored in the next position in the array, the slots needed
to store the complete method body are overwritten, and a cache miss is returned (false). The method
isCacheHit(...) is synchronized, because we simulate a single cache for all threads in the system.

4. EVALUATION

In this section, we evaluate CProf regarding cross-profile accuracy and runtime overhead. For the
accuracy assessment, we compare CProf’s cycle estimates, profiled on the host, with the actual CPU
cycle consumption on JOP, measured on the target. For the runtime overhead evaluation, we measure
the execution time of CProf on the host and analyze the different sources of overhead.

4.1. Benchmarks and Evaluation Settings

To evaluate our cross-profiling approach, we selected two benchmark suites, the embedded benchmarks
JavaBenchEmbedded∗∗ (JBE) and SPEC JVM98 [60]. JBE contains several micro benchmarks and
three real-world applications [54],Kfl (a motor control system),Lift (a lift controller), andUdpIp (a
TCP/IP stack for embedded Java). We use only these three real-world applications in our evaluation.
SPEC JVM98 consists of seven benchmarks, which cannot run onthe target system (because of

∗∗http://www.jopwiki.org/JavaBenchEmbedded/
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public class CacheJOP implements CacheStrategy {
private final int cacheSize;
private final int numberOfBlocks;
private final int blockSize;
private final MID[] cache;
private int next;

public CacheJOP(int cacheSize, int numberOfBlocks) {
this.cacheSize = cacheSize;
this.numberOfBlocks = numberOfBlocks;
this.blockSize = cacheSize / numberOfBlocks;
cache = new MID[numberOfBlocks];
next = 0;

}

public synchronized boolean isCacheHit(MID mid) {
// if mid is in the cache, return true
for (int i = 0; i < numberOfBlocks; ++i) {

if (cache[i] == mid) return true;
}

// store mid in the next slot
cache[next++] = mid;
if (next == numberOfBlocks) next = 0;

// skip the blocks occupied by the method
int msize = mid.getSize();
int nbl = (msize + blockSize - 1) / blockSize;
for (int i = 1; i < nbl; ++i) {

cache[next++] = null;
if (next == numberOfBlocks) next = 0;

}

return false; // cache miss
}

}

Figure 3.CacheStrategy implementation with FIFO replacement
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Table II. Benchmark execution time and cross-profiling results in clock cycles for JOP with a 4KB/16 method
cache

Benchmark JOP CProf Error (%)

Kfl 5.023×107 5.021×107 −0.04
Lift 5.282×107 5.262×107 −0.38
UdpIp 1.132×108 1.111×108 −1.81

resource constraints and because JOP does not provide a file system), but represent larger workloads
for the runtime overhead evaluation. We use SPEC JVM98 with aproblem size of 100.

Since the accuracy evaluation of CProf aims at calculating CProf’s cycle estimate independently
from the execution time on the host, we use a standard desktopcomputer for this purpose. In contrast,
for the runtime overhead evaluation, in order to obtain reproducible results, we execute the benchmarks
on an isolated host in single-user mode (no networking), where we removed background processes as
much as possible. The host environment for the accuracy assessment is a Windows based notebook,
whereas the host environment for the overhead evaluation isa Linux Fedora Core 2 computer (Intel
Pentium 4, 2.66 GHz, 1024 MB RAM). For the overhead measurements, we use the Sun JDK 1.7-ea-
b24 HotSpot Server VM.

4.2. Accuracy of Cross-Profiles

To assess that our approach is sound, we compare the CPU cycleestimates from the generated cross-
profiles with the actual CPU cycle consumption on JOP. With this experiment the accuracy of execution
time estimation through cross-profiling is validated. In this experiment, JOP is clocked at 100 MHz in
a low-cost FPGA and the memory access time is 2 clock cycles for reading a 32-bit word and 3 clock
cycles for a 32-bit write access. JOP is configured with a 4 KB FIFO instruction cache organized in 16
blocks. We have used CProf with method cache simulation enabled to yield the best estimations. As
the embedded applications are designed to not throw exceptions during runtime, the ‘Default BBA’ is
sufficient for our cross-profiling application. Furthermore, the embedded applications do not allocate
data during their mission phase. As a consequence, the garbage collector has no impact on the cross-
profiling results.

The three embedded benchmarksKfl, Lift, andUdpIp are executed 10 000 times on JOP and the
execution time is measured with a CPU cycle counter. The samebenchmarks are profiled with CProf,
and in the generated cross-profile the cumulative CPU cycle estimate of the benchmark harness (the
methodtest()) is taken, effectively excluding the execution of startup code on the host. Table II shows
the execution times on JOP and cross-profiling results in clock cycles. The last column shows the
percent error of the cross-profiling estimates. For two benchmarks, the error is well below 1%, for
UdpIp the error is below 2%.

Although we use WCET values for the bytecode timings, the cross-profiling results underestimate
the execution time. The inaccuracies are caused by differences in the Java class libraries on JOP
respectively on the host, and by a simplified execution time models for some complex bytecodes (e.g.,
runtime type checks and casts, floating point arithmetic, etc.). Those bytecodes are implemented in Java
and their execution time also depends on the cache state. TheWCET analysis tool [36] models those
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Table III. CProf overhead with/without Enter-Return calls(ER), respectively with/without cache strategy

Orig. CProf CProf CProf
no ER ER, no cache ER + cache

JBE (ms) (ms) ovh (ms) ovh (ms) ovh

Kfl 2.87 11.16 3.89 15.80 5.51 39.04 13.60
Udplp 4.39 17.93 4.08 31.17 7.10 67.06 15.28
Lift 1.82 9.11 5.01 13.41 7.37 23.29 12.80

geo. mean 2.84 12.22 4.30 18.76 6.60 39.36 13.85

JVM98 (s) (s) ovh (s) ovh (s) ovh

compress 5.68 14.69 2.59 19.70 3.47 40.74 7.17
jess 1.47 6.16 4.19 8.07 5.49 20.81 14.16
db 13.71 18.22 1.33 21.12 1.54 40.30 2.94
javac 3.79 15.54 4.10 17.42 4.60 32.33 8.53
mpegaudio 2.48 7.15 2.88 9.23 3.72 19.22 7.75
mtrt 1.16 11.59 9.99 16.45 14.18 55.15 47.54
jack 3.48 8.20 2.36 10.09 2.90 18.91 5.43

geo. mean 3.31 10.82 3.27 13.68 4.13 30.05 9.08

bytecodes as invocations of the static methods. For cross-profiling we model those bytecodes with an
average case estimation. Nonetheless, for all measured benchmarks that run on the JOP hardware, the
error in the CPU cycle estimates is below 2%.††

Another reason for the underestimation, especially in theUdpIp benchmark, is the write barrier code
for incremental garbage collection on JOP. If the bytecodesputfield andputstatic access a reference
field, they are substituted upon class loading by a special bytecode that contains the write barrier code.
These special bytecodes are implemented in Java so as to easedata sharing with the garbage collector
that is also programmed in Java. Consequently, these special bytecodes are slower than the versions for
primitive data. The cross-profiler does not cover this difference and treats the execution time ofputfield
andputstatic as constant, independently of the field type.

4.3. Runtime Overhead

Table III presents the results of our overhead evaluation for JBE and SPEC JVM98. Each measurement
represents the median of 15 runs of the benchmark within the same JVM process. The column ‘Orig.’
shows our reference measurements, running the benchmarks without CProf on the host. The columns

††In prior work [17] we reported higher errors. Thanks to improved CPU cycle estimates for some bytecodes, we were able to
reduce the error.
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‘ovh’ present overhead factors for each setting. For each benchmark suite, we also show the geometric
mean of the measurements. We evaluated CProf in three different configurations so as to separate the
distinct sources of overhead.

Firstly, we evaluated the overhead due to the inserted code that creates the CCTs and performs
computations on the BB pointcuts, but without the method entry and return pointcuts (‘CProf no ER’).
This corresponds to the instrumented CFG of Figure 2 but without the invocations of the
EnterReturnProfiler. In this setting, we observe an overhead factor of 1.33–9.99. For ‘mtrt’, we
experience the highest overhead. ‘mtrt’ is known to make extensive use of small methods [28], which
makes the CCT maintenance expensive.

Secondly, we enabled the method entry and return pointcuts,but used a trivial ‘no cache’
strategy that always assumed a miss (‘CProf ER, no cache’). In this setting, CProf produces cross-
profiles for an embedded Java processor without method cache. We notice that the invocations of
the EnterReturnProfiler increases the overhead factor by 0.21–4.19 (overhead difference between
‘CProf ER, no cache’ and ‘CProf no ER’).

Thirdly, we evaluated the real CProf configuration for JOP, using a cache strategy that simulates a
method cache of 4 KB with 16 blocks (‘CProf ER+cache’). The experienced overhead of factor 2.94–
47.54 is more than twice the overhead in the previous setting. In contrast to CProf’s instrumentation,
the custom cache strategy (CacheJOP in Figure 2) was not optimized, which explains the high extra
overhead. Overall, the execution time in this setting is still reasonable (below 70 ms for the JBE
benchmarks); optimizing the cache strategy to reduce cross-profiling overhead is typically not worth
the effort in practice.

5. CASE STUDY: CROSS-PROFILING FOR PROCESSOR ARCHITECTURE EXPLO-
RATION

In this section we explore a new use-case for cross-profiling, evaluating the performance benefit of
various possible architectural improvements for JOP. Cross-profiling gives as a tool for quick design
space exploration without the need to actually implement the architectural changes. Only promising
enhancements will be chosen for the next version of JOP.

For simple processor architectures without caches, the effects of different instruction timings can be
evaluated by collecting dynamic instruction frequencies [33]. However, when instruction caches are
integrated, the execution time of the whole program cannot be predicted with instruction frequencies
anymore. The dependency of instruction timings on cache state (different timings for cache hit
respectively miss) is hard to model statically. Therefore,we use cross-profiling with runtime cache
simulation and cycle estimation.

Compared to the collection of instruction traces and post processing them with a processor
simulation, cross-profiling has the benefit of aggregating the data during runtime. Accumulating the
relevant information during profiling results in less data than collecting complete instruction traces.
Furthermore, the combination of trace generation (executing the benchmark) and processor simulation
in a single tool simplifies the exploration process.
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5.1. Methodology

In order to evaluate the impact of an architectural change onJOP with the aid of CProf, the
timing information of the bytecodes and the cache configuration are specified using corresponding
CycleEstimator respectivelyCacheStrategy implementations. Afterwards, a set of benchmarks is cross-
profiled; an overall cycle estimate is extracted from each cross-profile and compared with the baseline
(i.e., the currently available version of JOP) so as to assess the achieved speedup.

For our case study, we use the 3 embedded benchmarks discussed in Section 4.1 (Kfl, Lift, and
UdpIp), as well as 6 benchmarks from the SPEC JVM98 suite [60] (201 compress, 202 jess, 209 db,
213 javac, 222 mpegaudio, and 228 jack). In the generated cross-profiles, the cumulative CPU cycle
estimate of the benchmark harness is taken (methodtest() for the embedded benchmarks, respectively
methodSpecApplication.main() for SPEC JVM98).

All chosen benchmarks are single-threaded. We exclude the multi-threaded SPEC JVM98
benchmark 227 mtrt from our evaluation, in order to avoid drawing any false conclusions because
of possible inaccuracies in the cross-profiles caused by thedifferent thread-scheduling on the cross-
profiling host JVM and on the JOP target.

In Section 4.2, we validated the soundness of cross-profiling with the three embedded benchmarks.
Because the SPEC JVM98 suite requires more resources than provided by JOP, it is impossible to
assess the accuracy of our cross-profiles for SPEC JVM98, since the benchmarks cannot be executed on
JOP to collect exact execution times. Fortunately, for the evaluation of different architectural changes,
the cross-profiling estimates need not be perfectly accurate [59]. We are interested in the relative
performance differences between the cross-profiling runs for distinct architectures. Hence, we found
it useful to include also some SPEC JVM98 benchmarks in this case study, in order to evaluate the
performance impact of architectural changes on a larger setof workloads.

Our results represent performance differences in percent,using the following well-known
formula [33], wherep is the speedup in percent,tbase the base execution time, andtenh the execution
time of the enhanced architecture:

p = (tbase/tenh − 1) × 100

For example, with a speedup of 200% the enhanced architecture is three times faster. Also the average
clocks per instruction (CPI) are given in tables where it is relevant. The CPI value is calculated by
dividing the execution time in clock cycles by the dynamic instruction count.

In order to ease performance comparison, we also compute thegeometric mean of the measurements
for all benchmarks. The geometric mean is calculated from the measured execution times and
instruction count, and the other metrics (speedup respectively CPI) are computed from those values.

5.2. The Baseline

In order to explore the performance benefit of different architectural enhancements to JOP, we first
establish the baseline by measuring the performance of the current JOP design. Hence, we cross-profile
the benchmarks using the current configuration of JOP with a 4KB instruction cache, organized in 16
blocks, with FIFO replacement strategy. We will assess the effects of our architectural optimizations
in comparison with this baseline. Table IV shows the execution time in clock cycles, the dynamic
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Table IV. Cross-profiling results of the baseline in clock cycles (Time), dynamic instruction count (IC), and clocks
per instruction (CPI)

Benchmark Time (clocks) IC CPI

Kfl 5.02×107 1.09×107 4.62
Lift 5.26×107 1.13×107 4.66
UdpIp 1.11×108 2.06×107 5.39
201 compress 9.28×1010 1.25×1010 7.44
202 jess 2.91×1010 1.74×109 16.72
209 db 4.10×1010 3.61×109 11.33
213 javac 3.24×1010 1.84×109 17.60
222 mpegaudio 2.90×1011 1.15×1010 25.21
228 jack 1.69×1010 1.02×109 16.48

geo. mean 5.57×109 5.46×108 10.20

instruction count (IC), and the resulting clocks per instruction (CPI) of the benchmarks cross-profiled
using the WCET cycle estimates for JOP.

An interesting result of this first evaluation is the significant difference with respect to the CPI
values. The embedded benchmarksKfl, Lift, andUdpIp, as well ascompress, have a lower CPI than
the other SPEC JVM98 benchmarks, where the higher CPI valuesresult from a more object-oriented
programming style (i.e., shorter methods, more frequent object allocation, etc.). Method invocation
on JOP is expensive and shorter methods lead to a higher invocation frequency. Furthermore, floating
point operations and operations on 64 bit integers are expensive as well. Those data types are avoided
in the embedded applications.

For computer architects that work on in-order RISC pipelines, the CPI values may look excessively
high. However, JVM bytecodes are often much more complex than RISC instructions. A JIT compiler
will generate several RISC instructions for object-oriented bytecodes, such as field access or method
invocation. In JOP the more complex bytecodes are mapped to microcode sequences for a RISC-
style stack machine. The microcode instructions (except memory access) execute in a single cycle.
Therefore, the CPI at the microcode level is about 1.

5.3. Variation of the Instruction Cache

Our first architectural change is the variation of the methodcache size. The method cache is split
into cache blocks and caches whole methods. The replacementstrategy is FIFO. Table V shows the
performance differences relative to the standard configuration of JOP given in Table IV. The third and
fourth columns show configurations with bigger caches of 16 KB and 64 KB with 64 and 256 blocks
respectively. A cache of 64 KB is uncommon in embedded processors, and the performance gain is
quite small. To check whether the method cache has actually some performance enhancing effect, we
also measured a smaller cache with 1 KB and 4 blocks. With thissmall cache the performance decreases
considerably. Therefore, we conclude that, without any other changes in the processor architecture, a
method cache of 4 KB with 16 blocks is a good design decision.
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Table V. Influence of the instruction cache size on the performance relative to a 4KB/16 cache

1KB/4 16KB/64 64KB/256
Benchmark (%) (%) (%)

Kfl −7.5 2.9 2.9
Lift −3.6 0.0 0.0
UdpIp −5.6 2.5 2.5
201 compress −7.4 0.0 0.0
202 jess −4.7 0.8 0.8
209 db −0.1 0.0 0.0
213 javac −30.8 10.1 11.9
222 mpegaudio −1.2 0.0 0.0
228 jack −15.8 5.4 11.0

geo. mean −9.0 2.4 3.1

Four benchmarks do not benefit from a larger method cache at all. We conclude that for these
benchmarks, the methods where most of the execution time is spent fit together into the cache, or
most of the invoked methods are very short. In the latter case, the cache load time is hidden by the
invoke instruction as cache loading is performed partiallyin parallel with microcode execution.

It has to be noted that the cache size and organization (number of blocks) is configurable in JOP,
so this variation can be easily explored in the FPGA for the embedded benchmarks. However, on-chip
memory in an FPGA is very limited. Thus, for this experiment abig and expensive FPGA would be
needed.

5.4. Faster Method Invocation and Return

Invoke instructions for Java methods are complex. The number of arguments and local variables has
to be determined, the stack frame manipulated, some state saved onto the stack, and a virtual method
lookup has to be performed. This quite complex process is implemented in microcode on JOP and
takes about 100 cycles. That number is not so uncommon, as theaJile processor takes about the same
number of clock cycles for an invoke instruction [55].

We have investigated the microcode sequence for the invoke and return instructions and found
several places where operations can be performed in hardware (e.g., bit manipulation to extract sub
fields from the method dispatch data structure). With some hardware support, we assume that the
number of cycles for the invoke and return instruction can becut down by a factor of two. The
performance impact of this optimization with cache sizes of1 KB, 4 KB, and 16 KB is shown in
Table VI. A size of 64 KB is not included as it performs similarto a 16 KB cache (see previous
experiment). Furthermore, a 64 KB first-level cache is quitelarge, especially in resource-constrained
embedded processors.

The third column of Table VI shows that the performance increases (except for222 mpegaudio)
between 12% and 24%, with a geometric mean of 16% for the standard cache size of 4 KB. Only
222 mpegaudio does not show any significant improvement; the reason is thatmost of the execution
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Table VI. Faster invoke instructions with different cache sizes

1KB/4 4KB/16 16KB/64
Benchmark (%) (%) (%)

Kfl 7.3 21.7 28.9
Lift 5.6 12.4 12.4
UdpIp 7.4 17.6 23.7
201 compress 4.4 14.7 14.7
202 jess 15.0 24.3 26.1
209 db 14.8 14.9 14.9
213 javac −23.4 19.0 34.6
222 mpegaudio 0.4 1.9 1.9
228 jack −2.7 21.0 30.8

geo. mean 2.6 16.2 20.5

time is spent in just a few methods. The second and forth column show the performance changes with
different cache sizes. The improved invoke instruction cancompensate for the performance decrease
due to a small 1 KB method cache, as seen by comparing the second column of Table V and Table VI.

It is interesting to note that the cache size has now a higher impact on the performance than without
the changed invoke instruction, as shown in the previous experiment. For example, the change from
4 KB to 16 KB results in a speedup of 10.1% forjavac, the faster invoke instruction with 4 KB cache
in a speedup of 19%, but the combined effect is a speedup of 34.6%. This effect can be explained by
the fact that some cache load time is hidden by execution of microcode for the invoke instruction. That
is, short methods have no cache load penalty on a miss and bigger caches do not help. When the invoke
instruction itself is enhanced, less method load time can behidden and larger caches help reduce the
execution time. Therefore, both changes in the architecture result in more than a linear speedup. This
result is also an argument for the dynamic approach of cross-profiling that takes cache influences into
account.

5.5. Longer Pipeline

The actual pipeline of JOP consists of four stages: bytecodefetch and translation to microcode
addresses, microcode fetch, decode, and execute. The first pipeline stage is the limiting factor for
the maximum clock frequency. Some experiments with the design showed that the split of bytecode
fetch and microcode address mapping results in a 10% higher clock frequency. This additional pipeline
stage results in an increase of the execution time of bytecode control instructions (branch and goto) by
one cycle.

Table VII shows the resulting increase of CPI due to slower control instructions. The (negative)
speedup is between -0.1% and -3.9%. Consequently, the increase of the maximum clock frequency
will result in a faster architecture. With a 10% higher clockfrequency, the longer pipeline results in a
speedup of 8.5%.
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Table VII. Longer pipeline with slower control instructions

Benchmark speedup (%) CPI

Kfl −3.9 4.81
Lift −2.8 4.80
UdpIp −1.8 5.49
201 compress −0.9 7.51
202 jess −0.7 16.84
209 db −1.0 11.44
213 javac −0.6 17.70
222 mpegaudio −0.1 25.25
228 jack −0.7 16.60

geo. mean −1.4 10.35

Table VIII. Single cycle bytecode fetch

Benchmark speedup (%) CPI

Kfl 3.6 4.46
Lift 6.3 4.39
UdpIp 8.0 4.99
201 compress 10.2 6.75
202 jess 3.0 16.23
209 db 5.3 10.77
213 javac 3.1 17.07
222 mpegaudio 2.2 24.67
228 jack 2.8 16.04

geo. mean 4.9 9.73

It is interesting to note that the embedded benchmarks have ahigher branch frequency than the SPEC
JVM98 benchmarks. This is an indication that embedded applications have a more complex intra-
procedural control flow and a simpler inter-procedural control flow, as they are less object-oriented.

5.6. Advanced Instruction Fetch

In the current design of JOP the bytecode instruction fetch is performed with one byte per cycle in
order to achieve a time-predictable architecture. With an additional pipeline stage, fetching of complete
bytecodes in a single cycle is possible. The optimization applies to all bytecodes that are longer than
one byte and are implemented in microcode. Table VIII shows the performance increase when these
bytecodes are fetched in a single cycle. The experiment alsoincludes the penalty of the additional clock
cycle for control instructions.
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Table IX. Effect of the combination of all architectural enhancements

speedup (%) CPI

4KB/16 16KB/64 4KB/16 16KB/64

Kfl 27.0 34.8 3.64 3.43
Lift 20.4 20.4 3.87 3.87
UdpIp 28.8 36.2 4.19 3.96
201 compress 28.3 28.3 5.80 5.80
202 jess 29.0 30.9 12.96 12.77
209 db 21.9 21.9 9.30 9.30
213 javac 23.4 40.3 14.26 12.54
222 mpegaudio 4.1 4.2 24.21 24.21
228 jack 25.1 35.7 13.17 12.15

geo. mean 22.9 27.6 8.30 8.00

5.7. Combined Effect

As a summary, the combined effect of all mentioned architectural enhancements is given in Table IX.
For a 16 KB method cache the performance gain is between 20% and 40%, again with the exception of
222 mpegaudio. The geometric mean speedup is 28%. As before, it also includes the slower control
instructions due to a longer pipeline. Therefore, the real speedup, with a clock frequency improvement
of 10%, is up to 54% for the213 javac benchmark and the geometric mean speedup is 40%.

6. RELATED WORK

In this section we describe related work in two areas, (cross-)profiling, as well as computer architecture
evaluation.

6.1. Profiling

Cross-profiling techniques have been used to simulate parallel computers [23]. As the host processor
may have a different instruction set than the target processor, cross-profiling tries to match up the
basic blocks on the host and on the target machines, changingthe estimates on the host to reflect
the simulated target. Our approach follows a similar principle, but uses precise cycle estimates at the
instruction-level, because both the target and the host instructions are JVM bytecodes.

Profiling embedded Java applications is difficult because ofthe use of emulators, the lack of cross-
profiling tools, and the limited resources and profiling support on these devices. ProSyst’s JProfiler [49]
uses a profiling agent running directly on the target device.The agent communicates through the
network with the profiling front-end running within the Eclipse IDE. The agent is implemented in
native code using the JVM Profiler Interface (JVMPI) (The JVMPI [62] has been deprecated in JDK 1.5
and was replaced by the JVMTI [63]), and hence is limited to a reduced number of virtual machines and
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operating systems. Furthermore, the agent itself consumesresources on the target system which may
perturbate measurements. Another drawback is that profiling requires deployment of the application on
the target system. In contrast, CProf runs independently from the target platform, using state-of-the-art
Java technology on the host.

There are several JVM hardware implementations, such as picoJava [46], aJile’s JEMCore [31],
Komodo [41], or FemtoJava [10]. Even though simulation tools are available for the processor designs,
profiling is not always possible and made only at the latest stage of development, i.e., on the actual
processor. Moreover, most current profilers rely on the JVMPI or JVMTI, which are not well supported
by many embedded Java systems. Our portable approach for cross-profiling avoids this problem.

There is a large body of related work dealing with different techniques to generate CCTs [3, 6, 68,
61, 71, 21], highlighting the importance of the CCT for calling context profiling. Generating complete
CCTs reflecting every method call may cause high overhead, asstressed in [71, 21], and much related
work on calling context profiling has focused on efficiently approximating the CCT with sampling
techniques [6, 68, 71].

Most prevailing approaches to calling context profiling depend on a modified JVM or on native
code, limiting portability. For example, adaptive bursting [71] relies on the JVM Profiler Interface
(JVMPI), the predecessor of the JVMTI [63], which requires profiling agents to be written in native
code. Probabilistic Calling Context (PCC) [21] is based on amodified Jikes RVM [2], thus preventing
its use on other standard JVMs. In contrast, we strive for maximum portability and compatibility with
standard JVMs thanks to our approach based on bytecode instrumentation, so as to generate calling
context cross-profiles with CPU cycle estimates for the target processor. Nonetheless, while several
other approaches, such as PCC, exclude the Java class library from profiling, our approach guarantees
complete method coverage.

CProf performs complete cross-profiling, tracking all invoked methods. In contrast, sampling-
based profilers are activated only periodically, in order toreduce profiling overhead [5, 68, 12]. The
framework presented in [5] uses code duplication combined with compiler-inserted, counter-based
sampling. A second version of the code is introduced which contains all computationally expensive
instrumentation. The original code is minimally instrumented to allow control to transfer in and out of
the duplicated code in a fine-grained manner, based on instruction counting. This approach achieves
low overhead, as execution proceeds most of the time inside the lightly instrumented code portions.
In [4], a hybrid approach combines timer-based and counter-based sampling. Such an approach reduces
overhead and increases accuracy compared to pure counter-based sampling. For typical workloads to
be executed on embedded Java systems, the overhead of complete cross-profiling using CProf is not an
issue. Hence, we have not yet explored reducing cross-profiling overhead with sampling techniques.

In [12] a portable sampling profiler for standard JVMs is presented, which relies on bytecode
counting. A profiling agent is periodically invoked in a deterministic way after the execution of a
certain number of bytecodes. The profiling data structure generated by the sampling profiler can be
regarded as a partial CCT covering only a subset of the executed calling contexts.

In [64] the authors present a fast partitioning algorithm based on profiles to remotely execute parts
of an embedded Java application on a server so as to reduce energy consumption on the embedded
device. The partitioning algorithm is executed on the embedded device. Our cross-profiling approach
helps identifying and optimizing hotspots before the application is deployed.

Related to aspect weaving in AOP, our approach is based on thecustomized instrumentation of
three low-level pointcuts, method entry, method return, and basic block entry. The AspectJ weaver
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(http://www.aspectj.org/) also works at the bytecode level and AspectJ provides pointcuts
for method entry and return, but not for basic block entry. In[30] an extension to AspectJ uses control-
flow analysis to determine loop pointcuts used to parallelize loops. Eos-T [51], an aspect-oriented
version of C#, also supports low-level pointcuts to enable selective branch coverage profiling. Our
approach shows that low-level pointcuts at the basic block level are well suited for cross-profiling.

The use of AspectJ for profiling is explored in [47], yieldingmixed results. While it is possible
to implement profilers concisely with aspects, unfortunately the AspectJ weaver does not provide
support for comprehensive aspect weaving (it prevents weaving the Java class library), thus resulting
in incomplete profiles. Even though the work presented in [66, 67] removes this limitation, the AspectJ
language itself lacks a number of pointcuts, such as those necessary to capture basic blocks as in CProf,
thus limiting its applicability for cross-profiling. Some approaches, such asabc [8] or Nu [25], ease
the extension of AspectJ with new pointcuts [1, 18, 24], or enable extensions using an intermediate
language and explicit join points [50]. Unfortunately, these approaches do not support full method
coverage, thus limiting their applicability to implement extensions for cross-profiling.

CProf is related to the profiler JP described in [11, 14, 45], which generates largely platform-
independent profiles using the number of executed bytecodesas dynamic metric. In contrast to JP,
CProf generates cross-profiles that estimate CPU cycles on an embedded target system. Hence, CProf
can be regarded as a generalization of JP, which uses the constant cycle estimate of “1” for all
bytecodes.

6.2. Computer Architecture Evaluation

Quantitative evaluation of computer architectures is mainly performed by simulation [59].
Skadron et. al argue that current simulation tools are builtin an ad-hoc manner and that tool
development is error-prone. Furthermore, computer architecture research focuses on architectures
where simulation models are available. The authors argue that research in simulation frameworks and
benchmark methodologies is needed. In line with their argument, we introduce the new approach to
computer architecture evaluation with cross-profiling.

Using benchmarks intended to evaluate real hardware for computer architecture simulation leads to
impractical simulation time on cycle-accurate simulators[69]. The result is that usually only subsets
of the benchmarks are used to reduce the simulation time. Yi et. al argue that besides standardizing the
subsets, higher level abstractions in the simulation are a valuable option, especially in an early stage of
design space exploration. Our cross-profiling approach follows their advice and simulates at the level
of basic blocks, method entry, and return, instead of performing instruction-level simulation.

SimpleScalar [7] is a popular processor performance simulator. SimpleScalar contains, besides the
simulator, the full tool chain (GCC compiler, libraries, assembler, and linker). SimpleScalar models a
five-stage, out-of-order pipeline and is highly configurable. SimpleScalar models the microarchitecture,
but not an entire system to run an operating system (OS). Withour cross-profiling approach, we also
omit the low-level functions of the OS, but include the rich standard Java class library.

Another approach to architectural evaluation for designs implemented in an FPGA is shown in [53].
The execution time of a bytecode is artificially increased and a new design synthesized. The actual
increase in the execution time can be used, with some transformations of Amdahl’s law [33], to estimate
the performance when the instruction timing is enhanced. The microcoded design of JOP simplifies
the increase of the execution time; just no-operation instructions need to be inserted into the microcode
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sequences for the bytecode under evaluation. The turnaround time for those kinds of experiments is
in the range of minutes. However, this approach is limited tobenchmarks that can be executed on
the target hardware. With cross-profiling it is possible to evaluate architectural changes with larger
benchmark suites.

7. CONCLUSION

In this article we presented CProf, a customizable cross-profiling framework for embedded Java
processors. CProf is completely portable and runs on any standard JVM. It relies on bytecode
instrumentation to collect calling context cross-profilesfor a given target processor. Instrumentation
takes place at certain low-level pointcuts, concretely on method entry, on method return, and on basic
block entry.

CProf has been designed for customization and extension. All involved algorithms (i.e., basic
block analysis, static basic block metrics calculation, and instrumentation) are provided as pluggable
components. The default implementations of these components are also configurable in a flexible way,
regarding the cycle estimation for bytecodes and the simulation of a method cache. Hence, CProf can
be easily customized for Java processors that conform to CProf’s general execution time model.

For our evaluation, we configured CProf to yield cycle estimates for the Java Optimized Processor
JOP, which features a method cache. Using JOP as target platform, we have shown that our approach
reconciles high cross-profile accuracy (error below 2%) andmoderate overhead, which is an order of
magnitude below the overhead caused by typical simulators.

As a case study, we have presented an approach to computer architecture evaluation for embedded
Java processors using cross-profiling. With the aid of CProf, we evaluated the performance impact of
various architectural enhancements to JOP using standard Java benchmarks. We have shown that the
combination of several enhancements to the architecture ofJOP will result in a speedup of about 40%.
All the proposed changes are still time-predictable and will not defeat the intention of JOP to serve as
a real-time Java processor.

Regarding limitations, CProf currently does not representcertain system activities of the target in the
generated cross-profiles. For instance, the automated memory management on the target is not being
simulated in the host environment.

With respect to ongoing research, we are working on techniques to simulate activities of the target
runtime system (e.g., garbage collection) on the host. Furthermore, we are investigating the simulation
of data caches. In addition, we are exploring the possibility of cross-profiling for embedded Java
systems that rely on just-in-time compilation (in contrastto Java processors).
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