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Abstract. Code generation from models is the ultimate goal of model-based de-
sign. For real-time systems the generated code must be analyzable for the worst-
case execution time (WCET). In this paper we evaluate Java code generation from
Ptolemy II for embedded real-time Java. The target system is the time-predictable
Java processor JOP. The quality of the generated code is verified by WCET anal-
ysis for the target platform. Our results indicate that code generated from syn-
chronous data-flow and finite state machine models is WCET analyzable and the
generated code leads to tight WCET bounds.

1 Introduction

In this paper we investigate Java code generation from a model-based design. Specifi-
cally we use Ptolemy II [4] for the modeling and code generation and target the embed-
ded Java platform JOP [12]. Ptolemy II is extended with run-time modeling actors to
represent low-level I/O operations of the target platform in the simulation environment.
The Ptolemy II code generation framework is extended with code generating actors to
implement the low-level I/O operations.

The target platform includes a worst-case execution time (WCET) analysis tool.
Therefore, we are able to analyze the WCET of various actors provided by Ptolemy II
and the WCET of the generated application. Comparing WCET analysis with measured
execution time on the target shows that code generated from Ptolemy II models results
in Java code where a tight WCET bound can be derived. WCET analysis also reveals
that modeling of applications without considering the execution time (e.g., using double
data type when not necessary) can result in surprisingly high execution time.

The paper is organized as follows: in the remainder of this section we give some
background information on Ptolemy II and JOP. In Section 2 code generation from
models and the implications for low-level I/O operations on an embedded platform
are described. Implementation details on the embedded platform with a few example
applications is given in Section 3. In Section 4 we show that the generated code is
WCET analyzable and usually leads to tight WCET bounds. We discuss our findings in
Section 5. The paper is concluded in Section 6.

1.1 Ptolemy II

Ptolemy II [4] is a modeling and simulation tool for heterogenous embedded systems.
Ptolemy II allows generation of C and Java code from the models. We use the latter
feature to build embedded applications targeted for a Java processor.



Ptolemy II is a Java-based component assembly framework with a graphical user
interface called Vergil. The Ptolemy project studies modeling, simulation, and design of
concurrent, real-time, embedded systems. The principle in the project is the use of well-
defined models of computation that give the individual models execution semantics.

In Ptolemy II, models of computations are also known as domains. In this paper we
focus on the synchronous dataflow (SDF) domain [9] combined with modal models [5].
The Giotto [7] and the synchronous/reactive [3] domain are also interesting code gen-
eration targets and we assume they would work with the presented infrastructure. As
target platform we have chosen an embedded real-time Java processor.

The building blocks of a Ptolemy II model are actors. Actors exchange data by
passing tokens between ports that connect actors. The actual execution semantics of
connected actors is defined by the model of computation or execution domain. In our
evaluation, the synchronous data-flow (SDF) domain is explored. SDF handles compu-
tations on streams. An SDF model constructs a network of actors that are then scheduled
for execution. The schedule of the firings can be computed statically [9], making this
domain an easy target for generation of efficient code.

The modal model [5] domain adds finite state machines (FSM) to the computing
power of the SDF domain. Modal models can represent simple FSMs or provide an
abstraction of mode changes. In the later case the FSM represents different modes in
the applications and the states are refined by submodels for each mode.

1.2 The Java Processor JOP

We target embedded Java systems with our code generation framework. As a first ex-
ample we use JOP [12], a Java processor especially designed for real-time systems. JOP
implements the Java virtual machine (JVM) in hardware. That means bytecode, the in-
struction set of the JVM, is the instruction set of JOP. The main feature of JOP is the
ability to perform WCET analysis at bytecode level. This feature, and a special form
of instruction caching, simplify the low-level part of the WCET analysis. Furthermore,
performing WCET analysis at the bytecode level is simpler than performing it at the
executable level for compiled C/C++ programs. In Java class files more information is
available, e.g., receiver types, than in a normal linked executable.

The runtime environment of JOP is optimized for small embedded applications with
real-time constraints. JOP includes a minimal version of the Java library (JDK) and
provides a priority based thread scheduler. Real-time threads on JOP are either peri-
odic (time-triggered) or software driven event triggered. Hardware events can trigger
an interrupt handler. The whole system, including the scheduler and interrupt handlers,
is written in Java. In the context of code generated from Ptolemy II we use periodic
threads to execute the models.

2 Code Generation from Models

Code generation for embedded systems is challenging due to several constraints. Em-
bedded systems have severe resource limitations in processing power and in memory
size. Although Java is known to have quite a large memory footprint (counted in MB),



JOP’s memory footprint is in the range of several KB. As a consequence, only a small
part of the Java library is available. Code generated from Ptolemy II models is conser-
vative enough to target small embedded Java systems.

2.1 Code Generation with Ptolemy II

Within Ptolemy II several approaches for code generation have been evaluated.
Copernicus: A code generation framework that included “deep code generation”,

where Java bytecode of the actors is analyzed and specialized for use in the particular
model [11]. Copernicus deep code generation generated code for non-hierarchical, syn-
chronous dataflow (SDF) models. JHDL [10] used Copernicus to generate FPGA code.
However, one drawback of the deep code generation approach is that it is affected by
changes to the Ptolemy II runtime kernel.

Codegen: A template based approach [20] where we define adapter classes associ-
ated with Ptolemy II actors. The adapter classes define the C or Java implementation
or the corresponding Ptolemy II actor. The code generator performs type and width
inference on the model and generates optimized code.

CG: Another template based approach that is currently under development. The CG
effort is focused on composite code generation [19], where reusable code is generated
for each group of actors. Composite code generation will allow model developers to
modify the model and generate code only for changed portions. Composite code gener-
ation also allows generation of Java code for very large models.

For the experiments targeting JOP we use the Codegen and the CG code generation
frameworks. Support for the low-level I/O with JOP has been added to both systems.

2.2 Runtime Support on JOP

Code generated for the SDF model of computation is usually executed periodically. The
period is defined in the SDF director of the model. On JOP we leverage the available
real-time scheduler and execute the SDF model in a periodic thread. Multiple periodic
threads can be used to combine the SDF model with other code, written in Java or
generated from a model. To reason about the timing properties of the whole system, all
(periodic) threads need to be WCET analyzable. Given the periods and the execution
time, schedulability analysis gives an answer if all deadlines will be met.

If the application consists of just an SDF model, then a simple, single threaded ap-
proach, similar to a cyclic executive, is also possible. The release to execute an iteration
of the SDF model can be synchronized via an on-chip clock. At the end of one itera-
tion the processor performs a busy wait, polling the clock, until the next release time.
Cycle accurate periods can be obtained by performing this wait in hardware. We have
implemented this hardware support, called deadline instruction, in JOP [16].

As Ptolemy II is mainly used for simulation, it lacks actors for interfacing low-
level I/O. Within JOP we use so called hardware objects [14] to represent I/O ports
as standard Java objects. We have implemented input and output actors for several I/O
devices on JOP. Details on the I/O actors are given in the next subsections.



Listing 1.1. Implementation of a low-level output actor

public class JopSerialWrite extends Sink {

public JopSerialWrite(...) {}

private int lastVal;
private int val;

// Save the value for the output port.
public void fire() {
super.fire();
lastVal = val;
if (input.hasToken(0)) {
lastVal =
((IntToken) input.get(0)).intValue();

}
}

// Write the saved value to the output port.
public boolean postfire() {
val = lastVal;
writePort(val);
return super.postfire();

}
}

2.3 Semantics of an Actor

Actors are the components in Ptolemy II that represent computation, input, and out-
put. Details of actor semantics can be found in [10]. The two methods central to an
actor are fire() and postfire(): The fire() method is the main execution method.
It reads input tokens and produces output tokens. In some domains, fire() is invoked
multiple times, e.g., to find a fixpoint solution in the synchronous/reactive domain. The
postfire() method is executed once and shall update persistent state. The main points
an actor developer has to consider are when to calculate the output (fire()) and when
to update state (postfire()).

2.4 Input/Output Actors

An I/O operation often updates persistent state, e.g., output of a character to a terminal
updates persistent state. Therefore, fire() is not the method where the I/O operation
shall happen. For output the output data (token) needs to be saved in fire(), but the
actual output action has to happen in postfire().

It is less obvious, but reading an input value can also change the state of the system.
As an example, reading from the input buffer of a communication channel (the serial
line), consumes that value. Therefore, the actual read operation has to happen exactly
once. The input value is read in the first in invocation of fire() per iteration and saved
in a local variable. The output token for the read actor uses the value of that local
variable on each invocation in one iteration. The start of a new model iteration is marked
within the postfire() method and an actual I/O read is performed at the next fire().

In the following we give examples of I/O actors for the serial port on JOP. For the
access to the device registers we use hardware objects that represent I/O devices as plain



Listing 1.2. Java code template for a low-level output actor

/***preinitBlock***/
int $actorSymbol(val) = 0;
int $actorSymbol(lastVal);
static com.jopdesign.io.SerialPort
$actorSymbol(ser) =
com.jopdesign.io.IOFactory.
getFactory().getSerialPort();

/**/

/*** fireBlock($channel) ***/
$actorSymbol(lastVal) = $actorSymbol(val);
// no check on available input token here
// so above assignment is useless
$actorSymbol(lastVal) = $get(input#$channel);
/**/

/*** postfireBlock ***/
$actorSymbol(val) = $actorSymbol(lastVal);
if (($actorSymbol(ser).status &
com.jopdesign.io.SerialPort.MASK_TDRE)!=0) {

$actorSymbol(ser).data = $actorSymbol(val);
}
/**/

Java objects [15]. The hardware objects are platform specific as they are representing
platform specific I/O devices. However, the hardware object that represents a serial port
interface, used in this section, has been used without alteration in five different JVMs
(CACAO, OVM, SimpleRTJ, Kaffe, and JOP [14]).

Output Actor Listing 1.1 shows the anatomy of a low-level output actor. The code
shows how the output actor is implemented for the simulation mode in Ptolemy II.
Within fire() an input token is read and stored in an actor private variable. The actual
output, the state changing action, is performed in postfire(), which is guaranteed to
be executed only once and after fire().

The code generator can remove most of the overhead involved in methods calls.
Therefore, the code template, shown in Listing 1.2, contains only the core logic. Block
markers, within the /*** ***/ style comment, delimit a code block. Macros (symbols
starting with $) in the code template are substituted by the code generator. The macro
$actorSymbol(val) generates a static variable with a unique name for the actor local
variable val. $get(input#$channel) reads a token from a channel of the input port. Ac-
tor parameters, attributes assigned at design time, can be accessed with $param(name).

The code example shows the usage of a hardware object to access the serial port.
The hardware object, which represents the serial port registers, is created by a factory
method. As hardware, and the representing objects, cannot be just created with new,
a system specific factory is used to return an instance of a hardware object. In the
postfireBlock the device is accessed via this hardware object.



Listing 1.3. Implementation of a low-level input actor

public class JopSerialRead extends Source {

public JopSerialRead(...) {}

private boolean firstFire = true;
private IntToken val = new IntToken(0);

// Read the input port on the first
// invocation of fire(). Send the value
// on each fire().
public void fire() {
super.fire();
if (firstFire) {
int v = readSerialPort();
val = new IntToken(v);
firstFire = false;

}
output.send(0, val);

}

// Enable read for the next fire().
public boolean postfire() {
firstFire = true;
return super.postfire();

}
}

Although the template code looks a little bit verbose, the generated code using this
template is quite short. The fire() and postfire() methods are inlined to avoid the
overhead of the method invocation.

Input Actor Listing 1.3 shows the concept of an input actor. This code example shows
how an input actor is implemented for the simulation. An actor private Boolean variable
is used to detect the first invocation of fire() to perform the actual I/O read function
and save the value. On future invocations of fire() that value is returned. The flag to
indicate the first firing of the actor is reset in postfire(). The code template for the
input actor is similar to the one shown for the output actor.

3 Implementation

Models are executed on the target platform periodically. The period can be configured
in the SDF director. We changed the code generator to output the configured period
as a constant. On the target platform the model class is instantiated, initialized, and
executed. For the periodic execution we use the periodic real-time threads available in
the JOP runtime. The code in Listing 1.4 shows the execution of the model.

For the periodic execution of the generated model we had to change the Java code
generator to provide access to the period of the SDF director. If the period of the SDF
director is set to 0 the model is executed in a tight loop – in fact it is running at the
maximum possible frequency.1

1 In the implementation all values less than 100 microseconds are treated as period 0.



Listing 1.4. Execution of the model in a periodic thread

final Model model = new Model();
model.initialize();

int us = (int) (model.PERIOD * 1000000);
// If there is a useful period, run it in a periodic thread.
// If not, just in a tight loop.
if (us >= 100) {
new RtThread(1, us) {
public void run() {
for (;;) {
try {
model.run();

} catch (Exception e) {
e.printStackTrace();

}
waitForNextPeriod();

}}};
RtThread.startMission();

} else {
for (;;) {
try {
model.run();

} catch (Exception e) {
e.printStackTrace();

}}}

Fig. 1. A simple Ptolemy II model generating the watchdog trigger

3.1 Embedded Hello World

The first low-level I/O actor we implemented was the interface to the watchdog LED.
With output to a single LED the embedded version of Hello World – a blinking LED
– can be designed with Ptolemy II. Figure 1 shows a simple model that toggles the
watchdog LED. The rightmost block is a sink block that sets the LED according to the
received Boolean token. With a Ramp block and an Expression block the LED blinks
at half of the frequency of the SDF director when executing the generated code on the
target.



Fig. 2. A Ptolemy II model with a serial interface, an FSM, and the watchdog LED with the inner
FSM shown

3.2 An SDF Example with a State Machine

Besides data flow actors that are driven by the synchronous data flow director, finite
state machines (FSM) are needed to build meaningful embedded applications. We have
ported the FSM code generator for C to the Java based code generation.

Figure 2 shows an example containing all ingredients to build embedded programs
with Ptolemy II for JOP. The serial port actor reads commands from a host and forwards
them to the state machine, which itself generates the output for the watchdog LED. The
LED can be turned on with a ‘+’ and turned off with a ‘-’ character received on the
serial line.

3.3 Lego Robot

As an example for an application we have modeled a line following robot. The hardware
for this experiment is a LEGO Mindstorms robot with an interface of a JOP based FPGA
board to the LEGO sensors and actuators. The interface contains several analog inputs,
switch inputs, and pulse width modulated (PWM) output for the motors. Furthermore,
the motor interface provides an input to read the actual speed of the motors. During
the off cycles of the PWM the motor acts as generator and the produced voltage (also
called back EMV), which is proportional to the actual revolving speed, can be read. The
application periodically samples the input of the light sensor, calculates the control law,
and puts out the drive values for the two motors.

4 WCET Analysis

JOP provides a simple low-level timing model for WCET analysis. As almost all Java
bytecodes execute in constant time, the WCET analysis can be performed at bytecode
level. Due to this simplification, several WCET analysis projects target JOP [6, 8, 17].



For our experiments we use the WCET analysis tool WCA [18], which is part of
the JOP distribution. WCA implements two modes of WCET analysis: the implicit path
enumeration technique (IPET) and WCET analysis based on model checking [8]. The
results presented in this paper are based on the faster IPET mode of WCA.

Static WCET analysis gives an upper bound on the execution time of a program
on a specific target platform. Programs are WCET analyzable when all loops and the
recursion depths are bound. It is usually impossible to derive the real WCET due to two
factors: (1) the analysis has not enough knowledge of impossible execution paths and
(2) the processor cannot be modeled in full detail. The first issue is usually attacked by
annotations in the source code of possible paths, whereas the second issue is solved by
a simpler, but safe, model of the hardware. Within the JOP project we try to minimize
the overestimation of the WCET bounds by providing an execution pipeline that is
simple enough to be modeled for the analysis. However, it has to be noted that WCET
analysis will almost always (except for trivial programs) give a conservative estimate,
the WCET bound. Furthermore, when comparing WCET values given by the analysis
with measurements one has to keep in mind that the measurement usually will not
provide the real WCET value. If this would be the case, we would not need to statically
analyze the program.

4.1 Model Examples

We have evaluated different models with WCET analysis and execution time measure-
ments on the target. Table 1 shows the analyzed and measured execution time in clock
cycles. The WatchDog example is the embedded hello world model, as shown in Fig-
ure 1. With such a simple model the measured execution time is almost the same as the
analyzed time. The WCET for the FSM example SimpleFSM, which is the model from
Figure 2, contains more control code and during the measurement the data dependent
WCET path was not triggered. This model is an example where simple measurement
does not give the correct WCET value.

Table 1. WCET bounds and measured execution time for different models on JOP

WCET Measured
Model (cycles) (cycles)

WatchDog 277 244
SimpleFSM 9539 3843
Filter 1818 1734
Follower 3112 2997

Add (int) 656 604
Add (double) 19545 12092

The third application, Filter, represents a digital signal processing task with a finite
impulse response filter. The source for the filter is a pulse generating actor. As the



generated code is basically straight line code, the measured execution time and the
WCET bound are almost identical.

The Follower example is the line following LEGO robot. Again, the generated code
is easy to analyze and the WCET bound is tight. From the examples without data de-
pendent control flow we see that the WCET bound is close to the measured execution
time.

4.2 Data Types

The four examples use integer data types in the models. For an embedded system with-
out a floating point unit this is the preferable coding style. JOP does not contain a
floating point unit (FPU).2 Floating point operations on JOP are supported via a soft-
ware emulation of the floating point bytecodes. To demonstrate how expensive double
operations (the default floating point type in Java) are, we compare a model with two
ramp sources, an adder, and a sink actor for 32-bit integer data with the same model
for 64-bit double data. In Ptolemy II the models are identical. Only the port type needs
to be changed for the requested data type. The code generation framework then auto-
matically instantiates the correct type of the actor. The example model (Add (double))
with double data type executes in the worst case about 30 times slower than the integer
version. This illustrates the importance of choosing the right data type for the compu-
tation on an embedded platform. A developer, educated on standard PCs as computing
platform is usually not aware of this issue, which is typical for a resource constraint em-
bedded platform. Using WCET analysis, right from the beginning of the development,
is important for economic usage of computing resources.

5 Discussion

The integration of JOP into Ptolemy II was relative straightforward. One of the authors
had no real knowledge on the usage of Ptolemy II in general and the code base specif-
ically. The documentation of Ptolemy II [2] and the source code are well organized.
Getting used to design a few simple test models was a matter of hours. Adding new
actors in the simulation and in the Java code generation base took less than two days,
including familiarizing with the Ptolemy II sources.

On the JOP side we had to update the provided library (JDK) to better support
double data types. As double operations are very expensive on JOP, their support was
quite limited.

5.1 Low-level I/O

Java, as a platform independent language and runtime system, does not support direct
access to low-level I/O devices. One option to access I/O registers directly is to access
them via C functions using the Java native interface. Another option is to use so called

2 An FPU for 32-bit float is available in the source distribution. As that unit is twice as large as
JOP, the FPU is disabled per default.



hardware objects [14], which represent I/O devices as plain Java objects. The hardware
objects are platform specific (as I/O devices are), but the mechanism to represent I/O
devices as Java objects can be implemented in any JVM. Hardware objects have been
implemented so far in five different JVMs: CACAO, OVM, SimpleRTJ, Kaffe, and JOP.
Three of them are running on a standard PC, one on a microcontroller and one is a Java
processor. It happened that the register layout of the serial part was the same for all
three hardware platforms. Therefore, the hardware object for the serial device, and the
serial port actor, can be reused for all five JVMs without any change.

5.2 Memory Management

One of the most powerful features of Java is automatic memory management with a
garbage collector. However, the runtime implications of garbage collection in a real-
time setting are far from trivial. The real-time specification for Java [1] provides scoped
memory as a form of predictable dynamic memory management. The actors we used in
our examples do not allocate new objects at runtime. For more complex actors, which
use temporary generated objects, scoped memory can be used.

Another source of created objects are the tokens for the communication between
the actors. In our examples we used only primitive data types and the code generation
framework maps those token to primitive Java types. For complex typed tokens a so-
lution for the generated objects need to be found, either using (and trusting) real-time
garbage collection or provide a form of token recycling from a pool of tokens.

6 Conclusion

In this paper we have evaluated code generation for embedded Java from Ptolemy II
models. The code generation framework can generate C and Java code. For our embed-
ded Java target, the real-time Java processor JOP, we explored the Java code generation.
Code generation in Ptolemy is template based and generates simple enough code that
is WCET analyzable. The combination of the time-predictable Java processor as target
and the generated code from Ptolemy enables WCET analysis of model-based designs.
We argue that this combination is a step towards model-based design of hard real-time
systems.

Both projects, Ptolemy II and JOP, used in the paper are available in source form; see
http://chess.eecs.berkeley.edu/ptexternal and http://www.jopdesign.com/. The
build instructions for JOP are available in Chapter 2 of the JOP Reference Hand-
book [13]. An example for the execution of code generated from Ptolemy models in
a periodic thread can be found in java/target/src/test/ptolemy/RunIt.java.
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