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ABSTRACT
Accessing shared resources in multicore systems is usually pro-
tected by a software locking mechanism, which itself is imple-
mented through atomic operations. This can result in a large syn-
chronization overhead, which, in the context of real-time systems,
increases the worst-case execution time and may void a task set’s
schedulability. In this paper we present a hardware locking mech-
anism to reduce the synchronization overhead. The solution is
implemented for the chip-multiprocessor version of the Java Op-
timized Processor in the context of safety-critical Java. The im-
plementation is compared to a software solution. The performance
and the hardware cost are evaluated.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

Keywords
Safety-critical Java, hardware locks, synchronization

1. INTRODUCTION
The Java model of computation is multithreading with shared

data on a heap. Locks enforce mutually exclusive access to the
shared data. In Java each object (including class objects) can serve
as a lock. Protecting critical sections with a lock on a uniprocessor
system is relatively straightforward. For real-time systems, priority
inversion avoidance protocols are well established. Especially the
priority ceiling emulation protocol is simple to implement, limits
the blocking time, and avoids deadlocks.

However, on multicore systems with their true concurrency there
are more options for the locking protocol and a best solution is not
(yet) established. Locks have different properties: (1) they can be
used only locally on one core or be used globally; (2) they can
protect short or long critical sections; (3) they can have a priority
assigned. The question is if the user has to know about these prop-
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erties and set them for the locks, or if one default behavior can be
found that fits most situations.

In this paper we examine the options for chip-multicore locking
in the context of safety-critical Java (SCJ) [13]. SCJ itself is based
on the Real-Time Specification of Java (RTSJ) [4]. Therefore, it
inherits many concepts of the RTSJ. SCJ defines some of the prop-
erties for locking (e.g., priority ceiling protocol on uniprocessors),
but leaves some details for multicore systems unspecified. In this
paper we examine possible solutions and found that executing at
maximum priority while waiting for a lock and holding a lock leads
to a reasonable solution for multiprocessor locking.

For the implementation we start with an existing locking mecha-
nism on the Java Optimized Processor (JOP) [18], which we extend
by introducing a more flexible lock implementation in software.
We then extend this further by adding hardware support for locks.
The benefits and drawbacks of each lock type are also explored.

The paper is organized as follows. The next section presents
background and related work on synchronization, safety-critical
Java, and the Java processor JOP. Section 3 describes our two mul-
ticore lock implementations, a software only version and a version
with hardware support. We evaluate both designs with respect to
hardware consumption and performance in Section 4. The evalu-
ation section also describes a use case, the RepRap controller, to
explore the lock implementation. In Section 5 we discuss our find-
ings and some aspects of the SCJ definitions related to locks. The
paper is concluded in Section 6.

2. BACKGROUND AND RELATED WORK
Our work is in the context of shared memory systems with locks

to provide mutual exclusion for critical sections. We are especially
interested in multicore systems in the context of safety-critical Java.
In this section we provide background information on those topics,
including references to related work.

2.1 Synchronization
When a resource is shared between two or more threads, it is

necessary to serialize the access in order to prevent corruption of
the data/state. A commonly used mechanism is locking, where a
thread acquires a lock before accessing the shared resource. The
code segment that is accessing the shared data and that is protected
by a lock is also called critical section.

Other threads that wish to acquire the lock and access the re-
source have to wait until the current owner has released the lock.
While locking mechanisms guarantee mutual exclusion, the more
detailed behavior varies greatly depending on the environment and
implementation.



One problem with locking is that, depending on the usage and
implementation, priority inversion can occur, as described in [12].
An example of the problem is as follows: given three threads L,
M, and H with low, medium, and high priorities and a lock shared
between L and H. Priority inversion may arise when L acquires the
lock and H has to wait for it. Since M has a higher priority than
L and does not try to acquire the lock, it can preempt L, thereby
delaying H further.

This problem can be solved by priority inversion avoidance pro-
tocols [24]. With priority inheritance the lock holding thread in-
herits the priority of a higher priority thread when that thread tries
to acquire the lock. Another protocol, called priority ceiling proto-
col, assigns a priority to the lock. That priority must be higher or
equal than the priority of each thread that might acquire the lock. A
simplified version of this protocol is the priority ceiling emulation
(PCE) protocol [8], also called immediate ceiling priority protocol.
In PCE a thread taking a lock is immediately assigned the priority
of the lock. When the thread releases the lock its priority is reset to
the original priority. If threads are prohibited from self-suspending,
PCE ensures that the blocking is bounded and that deadlocks do not
occur on uniprocessor systems.

These properties also apply for multiprocessor systems when
threads are pinned to processors and when locks are not shared by
threads executing on different processors. However, if locks are
shared over processor boundaries, deadlocks can occur. To keep
blocking bounded, individual priorities need to be set carefully.

2.2 Multicore Synchronization
While the impact of locking on real-time systems is well under-

stood for uniprocessors, the multiprocessor case raises new issues.
There are several decisions to be made when designing a multi-
processor locking protocol. Should blocked threads be suspended
or should they spin-wait? Should the queue for entering the crit-
ical section be ordered according to priorities or a FIFO policy?
Can threads be preempted while holding a lock? These decisions
influence the system behavior with regard to blocking times and
schedulability.

Spinning seems to be beneficial for schedulability according to
an evaluation by Brandenburg et al. [6], but of course wastes pro-
cessor cycles that could be used for more useful computations.
Whether priority queuing or FIFO queuing performs better depends
on the properties of the thread set [5].

The flexible multiprocessor locking protocol (FMLP) [3]
provides the possibility to adapt to the application’s characteristics
by distinguishing “long” and “short” resource requests. Some
multiprocessor locking protocols also distinguish local and global
locks [9].

The SCJ specification does not require a particular locking pro-
tocol for multiprocessors. On the one hand, this solomonic non-
decision is understandable, given that there does not seem to be
a “best” solution. On the other hand, different SCJ implemen-
tors may choose different protocols, leading to incompatibilities
between the respective SCJ execution environments.

An overview of different approaches of locking on multicore ver-
sions of RTSJ and SCJ systems is given in [26]. They find that
to bound blocking and prevent deadlocks, threads holding global
locks should be non-preemptible on both fully partitioned and clus-
tered systems, corresponding to a SCJ level 1 and level 2 imple-
mentation, respectively. All nested locking should be refactored
to follow FMLP or some other protocol that ensures access order-
ing. They note that FMLP introduces group locks, which have the
side effect of reducing parallelism. Any application that wants to
use RTSJ or SCJ for predictability must identify global locks and

set the locks’ ceiling higher than all threads on all processors where
the shared lock is reachable. Threads should spin non-preemptively
in a FIFO queue and should not self-suspend.

2.3 Java Locks
In Java each object can serve as a lock. There are two mech-

anisms to acquire this object lock: (1) executing a synchronized
method, where the object is implicitly the receiving object; or (2)
executing a synchronized code block, where the object serving as
lock is stated explicitly.

As each object can serve as lock, a straight forward solution is
to reserve a field in the object header of an object for a pointer to
a lock data structure. In practice only a very small percentage of
objects will be used as locks. Therefore, general purpose JVMs
perform optimizations to avoid this space overhead.

Bacon et al. [2] improve an existing Java locking mechanism
by making use of compare-and-swap instructions and encoding
the locking information in an existing object header field, thereby
avoiding a size increase for every object. Having the locking
information in an object’s header field means no time is spent
searching for the information. However, reusing existing header
fields is not always an option, which means an increase in size for
every object.

Another option to reduce the object header overhead is to use
a hash map to look up a lock object. According to [1], an early
version of Sun’s JVM implementation used a hash map. However,
looking up a lock in the hash table was too slow in practice. For
hard real-time systems, using hash maps would be problematic due
to their poor worst-case performance. Our proposed hardware sup-
port for locks is similar to a hash table, but avoids the performance
overhead. Furthermore, as our hardware uses a fully associative ta-
ble, there is no conflict for a slot between two different locks and
access is performed in constant time.

2.4 Safety-Critical Java
In this paper we consider a safety-critical Java (SCJ) [10, 13]

compliant Java virtual machine (JVM) as the target platform. SCJ
is intended for systems that can be certified for the highest critical-
ity levels. SCJ has the notion of missions. A mission is a collection
of periodic and aperiodic handlers1 and a specific memory area,
the mission memory. Each mission consists of three phases: a non-
time-critical initialization phase, an execution phase, and a shut-
down phase. In the initialization phase, handlers are created and
ceilings for locks are set. During the mission no new handlers can
be created or lock ceilings manipulated. An application might con-
tain a sequence of missions. This sequence can be used to restart
a mission or as a simple form of mode switching in the real-time
application.

SCJ defines three compliance levels: level 0 as the simplest run-
time and execution mode up to a level 2 supporting more dynamic
systems.

Level 0 is a single threaded cyclic executive. Within single
threaded execution no resource contention can happen. Therefore,
no lock implementation needs to be in place. A level 0 application
may omit synchronization for access to data structures that are
shared between handlers. However, it is recommended to have
the synchronization in place to allow execution of the level 0
application on a level 1 SCJ implementation.

Level 0 is defined for a uniprocessor only. If a multiprocessor
version of cyclic executives would be allowed, locking needs to
be introduced again or the static schedule has to consider resource

1A SCJ level 2 implementation also includes threads.



sharing. It has been shown that SCJ level 0 is a flexible but still
deterministic execution platform [16].

Level 1 is a static application with a single current mission that
executes a static set of threads. SCJ level 1 is very similar to the
Ravenscar tasking profile [7]. Level 2 allows for more dynamism
in the system with nested missions that can be started and stopped
while outer missions continue to execute.

The single most important aspect of SCJ is the unique memory
model that allows some form of dynamic memory allocation in Java
without the help of a garbage collector (GC). SCJ bases its memory
system on the concept of RTSJ memory areas such as immortal and
scoped memory.

SCJ supports immortal memory for objects living as long as the
JVM executes. Several missions are supported by a memory area
called mission memory. All data that is shared between handlers
and local to a mission may be stored here. This data is discarded
at the end of the mission and the next mission gets a ‘new’ mis-
sion memory. This memory area is similar to an RTSJ-style scoped
memory with mission lifetime. Handlers use this memory area for
communication. For dynamic allocation of temporal data structures
during the release of handlers, SCJ supports private memory areas.
An initial and empty private memory is provided at each release
and is cleaned up after finishing the current release. Nested private
memories can be entered by the handler to allow more dynamic
memory handling during a release.

For objects that do not escape a thread’s context, synchronization
does not require any measures to ensure mutual exclusion. Syn-
chronization on such objects becomes practically a noop-operation
and can be optimized away. In general, this optimization (also
known as lock elision) requires an escape analysis. In SCJ, ob-
jects allocated in private memory can by definition not be shared
between handlers. Consequently, lock elision can be applied for
such objects without further analysis.

2.5 Scheduling in SCJ
In SCJ scheduling is performed within scheduling allocation do-

mains. A domain encompasses one or more processors, depend-
ing on the implementation level. All domains are mutually exclu-
sive. The number of domains also varies according to the levels. At
level 0 only a single domain and processor is allowed. The domain
uses cyclic executive scheduling. At level 1 multiple domains are
allowed, however only a single processor is allowed per domain.
This is in fact a fully partitioned system. Level 2 allows more than
one processor per domain and scheduling is global within each do-
main. Both level 1 and 2 domains use fixed-priority preemptive
scheduling.

The PCE protocol is mandatory in SCJ. No approach is specified
for threads waiting for a lock, but it is required that all implemen-
tations are documented.

2.6 The Java Processor JOP
We implement the multicore locking and the hardware support

for it in the Java processor JOP [18]. We have chosen JOP because
the hardware is open source and relatively easy to extend. The
run-time of JOP also includes a first prototype of SCJ level 0 and
level 1 [22]. Furthermore, a chip-multiprocessor (CMP) version of
JOP is available [14]. It shall be noted that the hardware support
for locks is not JOP specific and might even be used in non-Java
multicore systems.

Figure 1 shows our configuration. Several JOP cores are con-
nected to the shared memory via an arbiter. The arbiter can be con-
figured to use round-robin arbitration or time division multiplexing
(TDM) arbitration. To enable worst-case execution time (WCET)

JOP core N−1

arbiter sync HW locks

external memory

JOP core 0 JOP core 1

FPGA

Figure 1: A JOP CMP system with the hardware lock unit

analysis [21] of threads running on a multicore version of JOP, we
use the TDM based arbitration.

In addition to the arbiter there is a synchronization unit, called
sync in the figure. This unit represents a single, global lock. This
global lock is acquired by a write operation to a device mapped
into the I/O space. If the lock is already held by another core, the
write operation blocks and the core automatically performs a spin-
ning wait in hardware. Requesting the global lock has very low
overhead and can be used for short critical sections. These critical
sections can be directly used for locking or serve as a base primitive
operation to implement a more flexible lock implementation.

Figure 1 also shows the hardware locks that are added to the mul-
ticore processor and are the topic of this paper. The hardware lock
unit itself is a shared resource. The access to this shared resource
is protected by using the single global lock.

2.7 Original Lock Implementation in JOP
For the uniprocessor version of JOP, locks were implemented

by manipulation of the interrupt and a single, JVM-local monitor
counter. On a monitorenter the interrupts are disabled and the mon-
itor counter is incremented. On a monitorexit the counter is decre-
mented. When the counter reaches 0, the interrupts are enabled
again.

This form of lock implementation can be seen as a degraded form
of priority ceiling emulation: all lock objects are set to the maxi-
mum priority and there is no possibility to reduce the priority. This
protocol is also called interrupt-masking protocol (IMP) [11]. This
locking protocol has two benefits: (1) similar to PCE it is guaran-
teed deadlock free and (2) it is simple to implement and also fast to
execute. This protocol is ideal for short critical section where reg-
ular locks would introduce considerable overhead. However, this
protocol has two drawbacks: (1) All locks are mapped to a single
one. Therefore, even different, uncontended locks may result in
blocking. (2) Even threads that are not accessing a lock, but have a
higher priority than the thread holding the lock, are blocked by the
lock holding thread.

The IMP does not work in multicore systems where there is true
concurrency. For the multicore version of JOP [14] we have intro-
duced a synchronization unit. That unit serves as a single, global
lock. To avoid artificially increasing the blocking time by an in-
terrupting thread, the core that tries to get the global lock turns off
interrupts. When the global lock is taken, a thread that tries to ac-
cess the lock blocks in that operation. That implements implicitly
spinning wait at top priority. To avoid the possible starvation of a
core (thread), the cores blocking on the lock are unblocked in round
robin order.



3. MULTICORE LOCKS
While JOP’s original locking solution is correct, it does have

some limitations. On the one hand, the single lock essentially se-
rializes all critical sections, even if they do not synchronize on the
same object. This severely limits the achievable performance in the
presence of synchronized methods. On the other hand, it is impos-
sible to preempt a thread that waits for the lock. Interrupts and other
high-priority events cannot be served until the thread is eventually
granted the lock and subsequently releases it again.

Like many Java processors, JOP does not implement all byte-
codes in hardware. The more advanced instructions are imple-
mented either as multiple microcodes or Java methods, and this
applies for monitorenter and monitorexit. Although synchronized
methods are called in the same manner as normal methods in Java,
the JOP implementation adds monitorenter and monitorexit to them.
Locking can therefore be handled almost entirely within the two
monitor routines, even in the context of SCJ where the use of the
synchronized statement is prohibited and all mutual exclusion is
achieved through synchronized methods.

Our implementations disables interrupts and makes use of JOP’s
global lock when executing monitorenter and monitorexit. This pre-
vents threads on the current processor from preempting the lock
handling and it also prevents threads on other processors from mod-
ifying the locks. This synchronization of our locking routine affects
the blocking time of all threads that use locks, as well as threads
that await being scheduled, so it is important to reduce the synchro-
nization time as much as possible. Threads currently executing on
other processors can still run until they finish or they try to access
the global lock.

3.1 Software Locks
In the course of implementing real-time GC on the multiproces-

sor version of JOP [15], the limitations of using the global lock
alone became too restrictive. For example, the GC thread notifies
other cores via an interrupt to scan their local stack, but a thread
that is blocked waiting for the global lock cannot respond to in-
terrupts. Consequently, a software solution on top of the original
locking mechanism was implemented. The key properties of the
software locks are:

• Threads spin-wait until they acquire the lock.

• The queue to enter the lock is organized as FIFO queue.

• Threads are raised to top priority as soon as they try to ac-
quire a lock (i.e., before starting to spin-wait), and remain at
top priority until they release all locks again.

The rationale of the SCJ scheduling section states:

The ceiling of every synchronized object that is acces-
sible by more than one processor has to be set so that
its synchronized methods execute in a non-preemptive
manner.

Therefore, our implementation conforms to the SCJ specification
with regard to shared locks. However, we do not differentiate be-
tween local and global locks. Therefore, the local lock handling is
more restrictive.

In order to avoid the allocation of lock objects during moni-
torenter, the software lock implementation uses an object pool.
Lock objects are taken from the pool when needed and returned
to the pool after all threads have exited the synchronized methods
guarded by the lock.

RtThread

level

queue

RtThread

level

queue

RtThread

level

queue

level

holder

Lock

tail

queue

Figure 2: Lock object with current lock holder and two en-
queued threads

Furthermore, all fields in the lock objects are integer values and
converted via a system intern method as needed. This avoids trig-
gering write barriers when manipulating the waiting queue. These
write barriers are used for scope checks in SCJ or for the GC when
JOP is used in a non-SCJ mode.

Figure 2 illustrates a lock object and an associated queue. The
lock object includes a pointer to the current lock holder and pointers
to the head and the tail of the waiting queue. As a thread2 can be
waiting for at most one lock, a single field in the thread object is
sufficient to build up the queue. The pointers to the head and the
tail of the waiting queue enable efficient enqueuing and dequeuing.

Both the lock and the thread object contain a level field. The level
field in the lock object is used to handle the case of multiple acqui-
sitions of the same lock by the one thread. It is incremented every
time a thread acquires the lock and decremented when it releases
the lock again. Only when this counter drops to zero the thread has
released the lock completely and the next thread can enter the crit-
ical section. The level field in the thread object is used to record if
the thread is inside a critical section. It is incremented/decremented
whenever the thread enters/exits a critical section. When the value
of this field is non-zero, the thread executes at top priority; when
the field is zero, the thread has released all locks and executes at its
regular priority.

An earlier evaluation showed that the worst-case timing for ac-
quiring a lock (excluding time spent for spinning) is in the order of
thousands of cycles for an 8-way CMP [15]. This large overhead
motivated the development of the hardware locks presented in this
paper.

3.2 Hardware Locks
The hardware locks are based on the software locks, meaning

that some of the principles are reused. It should be noted that nei-
ther version is of pure form, e.g., both implementations rely on the
low-level, global lock as well as software queuing and lock objects.

To track locks we have implemented a Content Addressable
Memory (CAM) as shown in Figure 3. The CAM consists of a
number of entries each containing an address field and an empty
flag. The address field contains (if not empty) the address of an
object that is used as lock. The index of the entry is used to index
into an array of preallocated lock objects. The CAM is used as
a lookup table that maps the address of a synchronized object to
the index of its lock object. When using the CAM, the address of
a synchronized object is supplied and compared to the content of
all entries simultaneously. The result of the comparison is sent to a
priority encoder that supplies the index of the matching entry. Each

2SCJ level 0 and 1 consist of handlers and not threads. The men-
tioned threads (RtThread) are JOP internal classes that are used to
implement SCJ handlers.



Input address

Empty 
index 

decoder

Entry0 Empty

=

Demux

EntryN Empty

=

Matched 
index 

decoder

Figure 3: Hardware locks as a CAM unit

entry also has an accompanying empty flag to specify whether the
entry is empty and usable. The empty flags are connected to a
priority encoder that supplies a single index for the entry that is to
be filled with the next, new address.

The CAM returns a word containing the result of a lookup. The
first bit specifies whether the address already existed in the CAM
or whether it was added. The rest of the bits represent the index of
either the existing lock or the index of the new lock.

The CAM is connected to all JOP cores through SimpCon [17]
and is accessed from software as a “hardware object” [20]. Using
the CAM from software is a two step operation: in the first step the
address cycle of the lock is written to the CAM and in the second
step the result is retrieved. When there are no threads waiting for a
lock, the corresponding entry in the CAM can be cleared in a single
cycle.

The index returned by the CAM is used in software to index into
an array of lock objects. The lock objects contain the current lock
owner, the front and back of the thread queue, as well as the entry
count, similarly to the software locks. Threads are enqueued in
FIFO order and threads waiting for a lock spin at top priority.

At system startup one immortal lock object is created for each
CAM entry. The results returned by the CAM are used to update
the lock objects. Each lock object can therefore represent many
different locks during an application’s runtime. However, the num-
ber of CAM entries/lock objects is fixed, so there is a limit to the
number of simultaneous locks that the locking system can handle.
If the lock limit is exceeded the system throws an exception. The
upside is that no space needs to be reserved for lock information in
object headers, potentially saving a word for every object.

The fixed size of the CAM restricts the number of active locks.
However, we assume that the number of different locks acquired
by a single thread is low (at least in carefully written safety-critical
applications). Therefore, e.g., when using a 32 entry table on a 8
core system, 4 concurrent active locks per processor core are sup-
ported. As the threads run at top priority when they own a lock,
only a single thread per core might use entries in the CAM.

Since the CAM is only accessed within the context of the global
lock, there is no need for an arbiter or other access synchronization
to the CAM unit.

Software HW, 16 Entries HW, 32 Entries

Cores LEs Regs LEs Regs LEs Regs

2 10,785 3,452 12,135 4,434 12,675 4,963
4 20,589 6,487 22,109 7,475 22,747 8,004
8 41,139 12,555 42,449 13,555 43,622 14,084

12 61,031 18,620 62,457 19,632 63,046 20,161

Table 1: The hardware cost for different configurations

4. EVALUATION
Evaluating the implementation can be done in a number of ways.

We have restricted ourselves to the following comparisons, which
we find the most relevant:

• Hardware comparison between the software locks and hard-
ware locks. The old locking mechanism has the same hard-
ware cost as the software locks, so its costs are implicitly
compared.

• Locking cost comparison between the single global lock, the
software locks, and the hardware supported locks.

• Scheduling test comparison of a SCJ use-case on the sin-
gle global lock with uniprocessor configuration and the new
hardware locks with a multiprocessor configuration.

All locks are tested on an Altera DE2-70 board, which among
other things includes a Cyclone-II FPGA with around 70k logic
elements (LEs), and 2 MB of synchronous SRAM.

4.1 Hardware Comparison
Table 1 shows the JOP hardware cost comparison between the

software locks, which do not use any extra hardware except the
global lock, and the hardware locks, using a CAM. The table in-
cludes all hardware resources (including the processor cores, the
shared memory arbiter, and the locking hardware). The table in-
cludes results for both a 16-entry and a 32-entry CAM. JOP is
compiled with a different number of cores specified in the Cores
column. The columns LEs and Regs show the number of logic ele-
ments and registers used on the FPGA for the different configura-
tions.

Although the number of elements and registers used is higher
when using a CAM, the added cost is constant regardless of the
number of cores used. This is due to that the CAM is a shared
structure that does not change in size with the number of cores, but
only the number signals that are merged and connected to it. The
cost of adding the CAM might seem high for a dual-core system,
but it should be noted that the CAM configuration also contains
hardware for the test use case. Additionally, the difference be-
comes negligible as the number of cores increases.

4.2 Locking Performance
Table 2 shows the WCET analysis of the two synchronization

instructions for the original locks, the software locks, and the hard-
ware locks. The WCET numbers are for a configuration of four
cores. Note that the memory access time changes with the number
of cores. The memory access arbitration is TDM.

It is clear that the original locks have by far the best performance
when acquiring or releasing a lock (the global lock), but since all
threads waiting for even unrelated locks will be blocked, the real
performance is very application specific. It can be argued that the
original locks are superior for applications where threads share few
locks or when critical sections are short.



monitorenter monitorexit

Original 19 20
Software 1448 848
Hardware 671 627

Table 2: WCET in clock cycles for locking routines of the three
lock types

The software locks are the slowest of the three.3 While they
are much slower than the original locks, they can actually perform
better in situations where two or more mutually exclusive locks are
held and at least one critical section has a longer execution time
than the locking time. The software locks on the multicore system
are so slow because following pointers in the main memory needs
several memory accesses. These memory accesses are slow due to
the sharing of the memory bandwidth on multiple cores.

Although the hardware locks are much slower than the original
locks, they outperform the software locks by a good margin. They
also have the same benefits as the software locks, as mutually ex-
clusive locks do not block each other. Additionally, there is no need
for locking information to be stored in every objects so they also
provide some memory benefits. The drawback of using hardware
locks is the additional hardware cost, although given the previously
shown costs this might be negligible.

It should be noted that the shown WCETs do not include spin-
ning, as this is always application specific and depends on the other
threads. WCET analysis only looks at single tasks. The waiting
time for a lock (the spinning) needs to be analyzed at the feasibility
analysis. The WCET of the critical sections of the other threads
that may access the lock is needed. Without further knowledge one
has to assume a maximum waiting time for one critical section on
each of the other cores (maximum n− 1 for n cores). However,
the spinning is deterministic as the queue of spinning threads is in
FIFO order.

4.3 Use Case
As a supplement to the performance comparisons we also test

the SCJ RepRap use case [25] with the hardware locks. The SCJ
RepRap applications controls a RepRap 3D printer and consists
of 4 periodic event handlers: RepRapController, HostController,
CommandController and CommandParser. The RepRapController
and HostController have short periods and communicate with ex-
ternal hardware (RepRap and UART respectively) and the other
two have longer periods and do slower internal command process-
ing. The event handlers are constructed as a pipeline for processing
printing instructions. This means that between each stage a lock is
shared to synchronize data. Additionally there is cyclic synchro-
nization between 3 of the handlers. The SCJ RepRap application
therefore presents a case where having multiple cores is desirable
and just using a single global lock is highly detrimental to perfor-
mance.

The SCJ RepRap paper tests the schedulability of the 4 periodic
event handlers on a single JOP core. In our schedulability test we
configure JOP with 4 cores and run each handler on a separate core.
We assume the same WCET but update the blocking times by ex-
changing the original lock acquisition time with the hardware lock-
ing time. These can be seen in Table 3. Note that the blocking time

3It might be argued that the software solution was developed by the
authors solely for comparison and not optimized. However, it was
developed within the work on real-time GC and optimized without
having a later hardware implementation in mind.

RepRapController

0.0718667
1 + 0.0217

1 ≤ 1⇔ 0.0935667≤ 1

HostController

0.42593
1 + 0.1730833

1 + 0.1730833
1 ≤ 1⇔ 0.7720966≤ 1

CommandController

0.9138333
20 + 0.1730833

20 + 0.1730833
20 ≤ 1⇔ 0.063≤ 1

CommandParser

3.5771167
20 + 0.1730833

20 + 0.1730833
20 ≤ 1⇔ 0.1961641≤ 1

Figure 4: SCJ RepRap utilization test for a multicore configu-
ration

includes monitorenter, monitorexit and the routine that the blocking
handler executes.

Priorities do not have any meaning when only a single event han-
dler executes on each core, so these are not considered. In the orig-
inal analysis, the WCET and blocking time of a higher priority han-
dler propagated to a lower priority handler. This does not apply for
our situation, so instead all potential blocking times are added to a
handler’s utilization test, e.g. the HostController can be blocked by
both the CommandController and the CommandParser so both of
their blocking times are added to the HostController’s utilization.

The utilization test is shown in Figure 4. All inequalities are
satisfied, so the set of handlers is schedulable. It is worth not-
ing that compared to the original test the individual blocking times
have all increased, but running the application on a multicore sys-
tem allows the slower handlers to be run at a shorter period. If
the old locking system was used the larger blocking times of the
other three handlers would have propagated to the RepRapCon-
troller. The RepRapController would still be schedulable with the
current period of 1 ms, but with the hardware locks the period could
be reduced to 0.1 ms.

5. DISCUSSION
Our exploration of multicore locking led to some open questions

with respect to the SCJ specification, which we will discuss in the
following.

5.1 Specification
Code blocks protected by the synchronized statement are not

allowed in SCJ. The reason for this is unclear as the specifica-
tion never addresses the problem. In our implementation of syn-
chronized methods, a preprocessing tool add the relevant moni-
torenter and monitorexit instructions into the methods and all lock
relevant code is in the implementation of monitorenter and moni-
torexit instructions. Therefore, synchronized blocks are implicitly
supported. We find that without proper reasoning the exclusion of
synchronization blocks is unwarranted, as it imposes unnecessary
restriction on developers. However, this restrictions might simplify
program analysis to find out which threads may compete for a lock
as all potential locking code is grouped within the class and super-
classes.

The SCJ specification states on multicore feasibility analysis:



PEH Period (ms) WCET (ms) Maximum time potentially blocked (ms)

RepRapController 1 0.0718667 0.0217
HostController 1 0.42593 0.1730833
CommandController 20 0.9138333 0.1730833
CommandParser 20 3.5771167 0.1730833

Table 3: The WCET for the PeriodicEventHandlers

At level one, each scheduling allocation domain is a
single processor and each processor is scheduled us-
ing fixed priority preemptive scheduling. The feasi-
bility analysis is equivalent to the well-known single
processor feasibility analysis, but would be carried out
for each scheduling allocation domain.

However, with multicore locking this is not true anymore. On
a n core system a thread might be blocked up to n− 1 times be-
fore entering a critical section instead of maximum 1 times on a
uniprocessor. This needs to be taken into account for the feasibility
analysis.

5.2 Multicore Locking in SCJ
The current4 SCJ specification is silent in the normative part on

the correct locking protocol and the priority inversion avoidance
protocol. Only the rationale gives some indication what version
could be implemented:

If schedulable objects on separate processors are shar-
ing objects and they do not self-suspend while holding
the monitor lock, then blocking can be bounded but
the absence of deadlock cannot be assured by the PCE
protocol alone.

The usual approach to waiting for a lock that is held
by a schedulable object on a different processor is to
spin (busy-wait). There are different approaches that
can be used by an implementation such as, for ex-
ample, maintaining a FIFO/Priority queue of spinning
processors, and ensuring that the processors spin non-
preemptively. SCJ does not mandate any particular ap-
proach but requires an implementation to document its
approach (i.e., implementation-defined).

This indicates that our implementation of spinning wait at top
priority and a FIFO queue is a valid implementation. Leaving the
details of the multicore locking open and implementation defined
will result in different scheduling behavior of the same SCJ appli-
cation on different SCJ implementations.

To avoid unbounded priority inversion, it is necessary
to carefully set the ceiling values.

This hint is for the application developer. However, with our
implementation we simplify the priority ceiling implementation by
having the ceiling always at top priority. The top ceilings allow less
concurrency, but enable correct execution.

On a level 1 system, the schedulable objects are fully
partitioned among the processors using the scheduling
allocation domain concept. The ceiling of every syn-
chronized object that is accessible by more than one

4The SCJ specification is still in public review. The latest version,
Version 0.94 25 June 2013, is available from https://github.
com/scj-devel/doc

processor has to be set so that its synchronized meth-
ods execute in a non-preemptive manner. This is be-
cause there is no relationship between the priorities in
one allocation domain and those in another.

This is the suggestion for the application developer to set the
ceiling of shared locks to top priority. It is not specified if violating
this suggestion is legal. With our simplified implementation of the
ceilings, execution of synchronized methods is non-preemptive.

5.3 Locks in Private Memory
Objects that are allocated in private memory are guaranteed

not to be accessible by others threads. Therefore, locks for
these objects never require a ceiling above the current thread’s
priority. In fact, the aspect of mutual exclusion vanishes, and
monitorenter/monitorexit could be eliminated through lock elision.
However, these objects can have a ceiling above the thread’s
priority. By default, an object’s ceiling is maximum priority, and
threads are raised to that priority even when they synchronize on
an object allocated in private memory. In our opinion, a useful
optimization would be to avoid any changes to a task’s priority
when synchronizing on a local object.

Another observation with regard to ceiling values is that threads
can allocate objects with different ceilings and then can change
their priority at will by synchronizing on a suitable object. Abuse of
this feature introduces dynamic priorities in a programming model
that otherwise assumes fixed priorities.

Related to this observation is the fact that third-party libraries
might lead to unintended priority changes of a handler. One does
not always know if locks are used within library functions. And
internal locks might not be accessible. In that case there is no way
to avoid the priority boosting to the top priority.

We went through all methods signatures specified in the SCJ li-
brary and found that the library is practically lock free. Only the
InterruptHandler class has a synchronized method, but that is on
purpose as locks are also used to provide mutual exclusion between
Java threads and interrupt handlers written in Java.

5.4 Future Work
Currently the hardware uses the global lock unit for internal

synchronization and the CAM unit to support several locks. This
global lock is only used for very short internal critical section.
The maximum competing requests is the number of cores in the
multicore systems. When this number becomes large, this might
become a bottleneck. It might be beneficial to merge those two
units. It will at least reduce the locking operation by a few clock
cycles.

After merging the two hardware units one could imagine to also
implement the FIFO queues for the waiting processors in hardware.
In that case, the request and release for a lock might be as fast (a
handful of clock cycles) as the original global lock implementation.

The locking unit has been motivated by the locking mechanism
of Java and SCJ. However, it might be useful also in a non-Java
context. We consider to explore the hardware lock unit within the



T-CREST multicore architecture [19], which is built out of VLIW
RISC processors [23].

6. CONCLUSION
While there is a well-established best practice for locking proto-

cols on uniprocessor real-time systems, this is not the case for mul-
ticore systems. True concurrency can increase the blocking time.
To bound this blocking time threads need to actively wait (spinning
wait) for locks. In this paper we explored different implementations
for locking on a multicore Java processor.

For short critical sections a single global lock is the cheapest
and fastest implementation, which however reduces possible con-
currency. With the help of this single global lock we implemented
a more flexible locking protocol in software. To reduce some of
the overhead from the software implementation we added hard-
ware support for the lock check. This hardware unit reduces the
size of all object headers by one word and speeds up monitorenter
by 115% and monitorexit by 35%.
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