
Certifiable Java for Embedded Systems

Martin Schoeberl
Technical University of

Denmark
masca@dtu.dk

Andreas Engelbredt
Dalsgaard, René Rydhof

Hansen
Dept. of Computer Science

Aalborg University
{andrease, rrh}@cs.aau.d

Stephan E. Korsholm
VIA University College,

Horsens
sek@via.dk

Anders P. Ravn
Dept. of Computer Science

Aalborg University
apr@cs.aau.dk

Juan Ricardo Rios Rivas,
Tórur Biskopstø Strøm

Technical University of
Denmark

jrri@dtu.dk,
torur.strom@gmail.com

Hans Søndergaard
VIA University College,

Horsens
hso@viauc.dk

ABSTRACT
The Certifiable Java for Embedded Systems (CJ4ES) project
aimed to develop a prototype development environment and
platform for safety-critical software for embedded applica-
tions. There are three core constituents: A profile of the
Java programming language that is tailored for safety-critical
applications, a predictable Java processor built with FPGA
technology, and an Eclipse based application development
environment that binds the profile and the platform together
and provides analyses that help to provide evidence that can
be used as part of a safety case. This paper summarizes
key contributions within these areas during the three-year
project period. In the conclusion the overall result of the
project is assessed.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

Keywords
Safety-critical Java

1. INTRODUCTION
Embedded systems are increasingly becoming part of our

daily life. Some of these systems, for example the control
of the Copenhagen Metro, are safety-critical, as our real life
can depend on it. Such systems need to be certified to be
used safely.

There are an increasing number of such systems in the
world and even more are planned. Therefore, a restricted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
JTRES’14, October 13–14 2014, Niagara Falls, NY, USA
Copyright 2014 ACM 978-1-4503-2813-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2661020.2661025.

version of Java [10] is considered as a new platform to de-
velop certifiable software for future safety-critical and real-
time applications. This subset is called Safety-Critical Java
and specified under the Java Community Process as Java
Specification Request (JSR) 302 [17].

However, a Java profile, although an important part, is
not enough to build trustworthy systems. It has to have a
dependable platform, and a development environment that
binds the profile and the platform together and provides
analyses that help to provide evidence that can be used as
part of a safety case.

The objective of the Certifiable Java for Embedded Sys-
tems (CJ4ES) project was to investigate these areas and
in this way consolidate and integrate a number of results
from previous research by members of the team. Key previ-
ous results include development of a time-predictable Java
processor [34, 36], contributions to profiles for predictable
Java [5,10,43], and development of analysis tools [6,41]. As
most of the previous results are open-source,1 the results
from this project are available as open-source as well.

The safety-critical Java (SCJ) standard needs to be eval-
uated by implementing it and using it in example applica-
tions. Within the CJ4ES project we have explored the stan-
dard, provided two implementations of it, built example ap-
plications, investigated the programability of SCJ, and last
but not least, given valuable feedback to the expert group
of JSR 302.

This paper summarizes and reflects on the work and is or-
ganized in 11 sections. The following section presents related
work and Section 3 provides background on safety-critical
Java. Section 4 presents two JVMs, the Java processor JOP
and the hardware near VM (HVM), used as platforms for our
SCJ implementations, while Section 5 describes the two SCJ
implementations. Section 6 describes two tools: the memory
safety analysis tool and the worst-case memory consumption
analysis tool. Section 7 describes the testing framework for
SCJ. Section 8 presents hardware support for SCJ within
JOP. Section 9 and Section 10 explore the expressiveness
of SCJ with implementations of libraries and applications.
Section 11 concludes the paper.

1see https://github.com/jop-devel/jop and http://
www.icelab.dk/download.html

https://github.com/jop-devel/jop
http://www.icelab.dk/download.html
http://www.icelab.dk/download.html

2. RELATED WORK
Java for real-time systems started with work on PERC

Pico [22]. Later on, the Real-Time Specification for Java
(RTSJ) [7] was defined. RTSJ initiated the Java Community
Process and is therefore the first Java specification request
(JSR 1). However, RTSJ is considered too complex to build
safety-critical systems. Therefore, work started to simplify
RTSJ.

The SCJ specification is based on early attempts to sim-
plify the RTSJ for high integrity applications. Puschner and
Wellings presented the first proposal of a subset of the RTSJ
classes [26]. They introduced the concept of an initialization
and mission phase into real-time Java. All threads, event
handlers, and shared objects are set up in the initializa-
tion phase. The restrictions (e.g., static priorities, no call
of sleep, no wait/notify, and no dynamic class loading) are
very similar to the restrictions of the level 1 of SCJ.

The work was refined and renamed to Ravenscar Java [15]
to emphasize the heritage of the concepts from the Ada
Ravenscar tasking profile [8]. Later proposals for a safety-
critical Java profile argue for an API that is independent
of the RTSJ [33, 43]. The argument is that all approaches
that inherit from RTSJ classes introduce additional com-
plexity. Furthermore, two versions of the RTSJ classes (the
original and the restricted) may confuse real-time Java pro-
grammers. The issue comes from the fact that the RTSJ
is more expressive than SCJ, but SCJ classes extend the
RTSJ classes. Therefore, the RTSJ classes in the SCJ ver-
sion need to be restricted. To model this inverse relation
between RTSJ and SCJ it has been proposed to build the
class hierarchy the other way round: RTSJ shall inherit from
classes as defined in SCJ [5].

Søndergaard et al. provide an implementation of the Raven-
scar Java profile [46]. The implementation targets industrial
applications and uses an aJ-100 processor developed by aJile
Systems [1]. The aJ-100 is a 32-bit microprocessor that di-
rectly executes JVM bytecodes (implemented in microcode)
as its native instruction set. In addition, it provides a mi-
crocode programed real-time kernel that provides, among
others, support for scheduling, context switching and object
synchronization.

Plsek et al. present one of the first implementations of
SCJ on an embedded platform [24]. They provide an im-
plementation of SCJ’s Level 0 running on the OVM vir-
tual machine [4]. The OVM is a framework that enables
alternate implementations of core VM functionality (e.g.,
different versions of priority inheritance monitors) in order
to build and test VMs with different features. OVM uses
an ahead-of-time compiler to translate Java code to C++
and then it uses the GCC compiler to obtain machine code.
SCJ’s implementation on OVM runs on an FPGA board ex-
ecuting the RTEMS real-time operating system on a LEON3
processor.

In the work presented by Bøgholm et al. in [5] a different
approach is taken. Instead of using the classes defined by
the SCJ profile, their implementation is based on a profile
called Predictable Java (PJ). PJ is a Java profile suitable for
the development of high-integrity real-time embedded sys-
tems that builds on the ideas of [15, 26, 43] and [46]. The
profile is based on the execution of event handlers grouped
in missions, which in turn are also considered event han-
dlers. Furthermore, the profile considers that, as PJ classes
are more restricted in functionality than RTSJ classes, PJ

should be a generalization and not a specialization of RTSJ.
In contrast, SCJ classes as defined by JSR-302 are a special-
ization of RTSJ classes.

The upcoming version of PERC Pico [3] will be SCJ com-
pliant. However, Atego considers implementing SCJ in addi-
tion to the current PERC Pico notion of safety-critical Java.
The intention is to support both APIs and memory models
in a single JVM [21]. That paper also describes the differ-
ences between the SCJ memory model and the PERC Pico
memory model.

3. SAFETY CRITICAL JAVA
Safety-critical Java (SCJ) [17] was developed, within the

Java Community Process (JCP) as Java specification re-
quest number JSR 302. SCJ shall be a high-level platform
for future safety-critical real-time systems, with special fo-
cus on systems that require formal certification. In order to
achieve this, the SCJ is defined as a restricted subset of the
Real-Time Specification for Java (RTSJ) [7], with additional
classes defined. It is defined in such a way that it can be im-
plemented and run directly on top of RTSJ, which is indeed
how the SCJ reference implementation is made. However,
for certification purposes this is not recommended since that
would also require certification of the full RTSJ.

To facilitate the use of SCJ across a wide spectrum of
applications covering a great variety of safety requirements,
three levels are defined by the SCJ, with increasing com-
plexity and expressive power for the application program-
mer, at the cost of increased effort needed for safety certi-
fication. At the most restrictive level, termed level 0, only
single threaded applications running under a cyclic executive
are supported.

A level 0 application can use all the memory areas defined
by the SCJ: immortal, mission, and private (see below for
more details on the SCJ memory areas). Since every handler
instance is allowed to run to completion, i.e., it is not pre-
empted, the backing store for a handler’s private memory can
be reused by other handler instances. Level 1 introduces pre-
emptive scheduling with ceiling based locks. Furthermore,
interrupt handlers, written in Java, are allowed in level 1.
In level 2 nested missions are introduced, allowing for more
dynamic systems to be implemented in SCJ, in which It is
possible to keep part of the system running and starting and
stopping other parts during runtime. Level 2 also introduces
an adapted version of RTSJ’s NoHeapRealtimeThread.

For all three levels, the specific size of the needed backing
store must be explicitly given by the application program-
mer as part of the SCJ program. Taking the complexity
of an SCJ implementation and the underlying (hardware)
platform into account, it is a non-trivial task to correctly
estimate the (worst-case) memory consumption of a given
SCJ application. In Section 6.2 a tool for automating this
task is discussed. The SCJ memory model is discussed in
more detail in Section 3.2.

Managed schedulable objects (MSO) represent concurrent
activities in SCJ. MSOs are objects that are managed by a
mission and scheduled for execution by the system’s sched-
uler. In level 1 applications, MSOs are called handlers, sim-
ilar to RTSJ-style event handlers. In fact the SCJ handlers
are a subclass of RTSJ’s BoundAsyncEventHandler. Handlers
come in two flavors: (1) periodic event handlers (PEH) that
are released in a time-triggered fashion and (2) aperiodic
handlers (AEH) that are released by specific events. The

event to release an AEH can be a software event or an in-
terrupt.

3.1 Missions and Scheduling
One or more missions that are executed in a sequence

controlled by a mission sequencer comprise an SCJ appli-
cation. Missions can be used to represent different phases
or operational modes of an application. The mission itself
consists of a set of MSOs along with its mission memory.

A mission has three phases: initialization, execution, and
cleanup. In the initialization phase the mission memory is
created by the SCJ implementation, all MSOs belonging to
the mission (during the entire lifetime of the mission) are cre-
ated, and data created during initialization is by default allo-
cated in the mission memory. Data shared between handlers
must be allocated in mission memory, while data shared be-
tween missions must be allocated in immortal memory.2

The application itself is started upon transitioning from
the initialization phase to the execution phase. Once the
application is executing, no new MSOs can be registered or
started and temporary objects are allocated in the MSO’s
private memory. While it is still possible to allocate space
in mission memory, it is strongly discouraged. After the
cleanup phase, the mission memory is cleared and a new
mission can be started.

In order to implement an SCJ application, an implementa-
tion of the Safelet interface must be provided and, in addi-
tion, at least one class that extends the Mission class. Simple
applications, consisting of a single mission, can use one class
that extends Mission and implements Safelet.

3.2 The Memory Model
In an effort to make the execution time behavior of an

application more predictable, the SCJ memory model does
not include a traditional heap with a garbage collector. As
hinted at in the preceding sections, SCJ instead uses a mem-
ory model based on scoped memory areas. These are mem-
ory areas that are explicitly, and thus manually, managed
by the application programmer and thus free of garbage col-
lector interference. The SCJ memory model defines three
different scoped memory areas: immortal memory, mission
memory, and private memories. Immortal memory contains
the static fields, objects created during class initialization,
and application data that may be needed throughout the
application’s lifetime. This is similar to the RTSJ notion
of immortal memory. Unsurprisingly, mission memory only
exists for the duration of the mission (in any of the three
mission phases). Finally, private memories are used by a
single MSO and cannot contain shared objects.

While private memory areas in the SCJ memory model
may be nested, they cannot be shared between different
threads of execution. Consequently, the memory scopes
that are used by an MSO, at any point during execution,
are structured as a simple stack of scopes. In this scope
stack recently allocated and shorter-lived memory areas can
be found near the top and longer-lived memory areas are
conversely located nearer the bottom of the stack. This
is in contrast to the scoped memory model of the RTSJ,
where memory areas may be nested and shared in complex
patterns, leading to a so-called “cactus stack” structure for

2For a level 2 application, data shared between missions
can also be allocated in the mission memory of an enclosing
mission.

memory scopes.
With the introduction of programmer managed memory

areas, and thus the lack of garbage collection, also comes
the risk of dangling references. A dangling reference is the
result of (unintentionally) deallocating a memory area that
is still in use, i.e., there are still references pointing inside
the memory area. In order to avoid dangling references, the
SCJ memory model dictates that reference assignments are
allowed only when the reference points to an object stored
in a memory area at a deeper level in the scope stack, i.e.,
references from the current memory are only allowed to point
to objects that live in a memory area with a longer life-time
than the current one. For an application programmer, it can
be very difficult to keep track of the current scope stack and
thus may inadvertently introduce an illegal reference to a
shorter-lived memory area. In Section 6.1 we describe how
an automated tool can be used by programmers to verify
that a program does not contain any (potentially) illegal
references.

4. JAVA VIRTUAL MACHINES FOR SCJ
Within the CJ4ES project we developed and used two dif-

ferent Java virtual machines: (1) the JOP processor [36] as
a hardware implementation in an FPGA, and (2) the hard-
ware near virtual machine [14] as a software VM targeting
small embedded processors with small memory constraints.

Both JVMs share ideas of how a hardware abstraction
layer in Java can be implemented [39]. Access to IO de-
vices is supported by so called hardware objects, where ob-
ject fields are mapped to device registers. Larger, memory
mapped IO areas can be mapped to Java arrays. The other
interaction with IO devices, interrupts, is supported by first
level interrupt handlers in Java, where the interrupt han-
dler object is used for synchronization between Java threads
and the interrupt handler. The interrupt handlers support
the notion of hardware priorities, which are above software
priorities.

4.1 The Java Optimized Processor
The Java optimized processor (JOP) [36] is a hardware

implementation of the JVM, a Java processor. The JVM
bytecodes are mapped to a fixed sequence of microcode in-
structions. The main benefit of this hardware implemen-
tation of the JVM is the well-known and mostly constant
execution time of individual bytecodes. JOP also contains
three special forms of caches: (1) a method cache to cache
whole methods, (2) a stack cache for stack allocated data,
and (3) on object cache for heap allocated objects.

All three caches are intended to lower the worst-case exe-
cution time (WCET) and simplify the WCET analysis. The
method cache loads methods only on method invocation or
on a method return. Therefore, all other bytecodes are guar-
anteed hits in the cache. WCET analysis needs only consider
the call tree.

In the JVM the stack is used for return information, local
variables, and as operand stack. Almost all bytecodes access
data allocated on the stack. Therefore, the stack area needs
caching. Stack addresses are relative simple to track and
therefore a stack cache is easy to analyze. In the current
version of JOP this is even further simplified as all stack
allocated data of a task need to fit into the stack cache.
Therefore, it can be ignored by WCET analysis, as all ac-
cesses are hits by design. The stack content is exchanged

with the main memory at task switch only.
Addresses of heap allocated data are known only at run-

time. Therefore, address based cache analysis fails for this
type of data. With JOP’s object cache [38] objects are
tracked symbolically with a high associativity. This enables
WCET analysis even of heap-allocated data [12].

The time-predictability of bytecode execution and the spe-
cial caches enable static analysis of the WECT of Java pro-
grams [41]. Therefore, JOP is a good platform for safety-
critical applications where the WCET needs to be statically
determined.

JOP is available as single core or a multicore version. The
multicore version includes time-predictable memory arbi-
tration [23]. Therefore, even on a multicore processor the
WCET of tasks can be analyzed. In former work we ex-
plored SCJ level 0 on a multicore version of JOP [27]. The
current SCJ specification does not allow a level 0 application
on multicores, as synchronization between multiple, truly
concurrent, handlers on several cores undermines the sim-
plicity of a cyclic executive. However, in [27] we used static
scheduling of the application including the constraints due
to resource sharing. Therefore, we are confident that a cyclic
executive on a multicore platform is an attractive SCJ exe-
cution environment.

JOP is distributed in open source and includes the WCET
analysis tool WCA [41] and a method inlining optimizer [11]
working at bytecode level. JOP has been ported to many
different FPGA platforms and has been used in various in-
dustrial applications [35] and research projects.

4.2 The Hardware near Virtual Machine
The Hardware near Virtual Machine (HVM) [14] is a low

footprint software VM intended for resource constrained plat-
forms. It is a Java-to-C compiler, but supports interpreta-
tion as well, and a mix of the two execution styles. It pro-
duces self-contained ANSI-C compatible C code that can
be compiled with most embedded compilers and included
in existing C based embedded source trees, thus facilitat-
ing an incremental addition of Java software components.
The HVM interpreter is implemented in a time-predictable
manner, thus enabling WCET analysis of Java programs ex-
ecuted on the HVM.

The “write-once, run anywhere” principle of Java can be a
significant advantage for embedded developers, as it enables
development and debugging of large parts of a projects code
base on a PC host platform. The debugging facilities tend
to be better and the turn-around times shorter in the con-
text of a desktop operating system. It is clear that real-time
issues and hardware interaction can only be executed and
debugged on the device itself, but this may be a smaller part
of the full code base. To facilitate the principle of doing as
much development as possible on a hosted platform a de-
sign goal of the HVM is to enable the use of standard Java
libraries like OpenJDK and the Java libraries from Oracle.
The HVM supports the components of a standard JDK, or
indeed any JDK. It is still possible to use special purpose
libraries targeted at the specific embedded device. There is
a challenge here for the developer to only include minimal
parts of standard JDKs that can run on the embedded de-
vice. For example, writing to files on a desktop host that
contains file system makes perfect sense, but may not be
possible on a resource constrained embedded device.

The HVM has been used as execution environment to ex-

periment with various ideas on resource constrained devices.
As an example, the concept of hardware objects and 1st
level interrupt handlers [40] is supported by the HVM. Re-
search within WCET and schedulability analysis has also
used the HVM as execution platform [18, 19]. Finally the
development of a Technology Compatibility Kit (TCK) for
SCJ Level 0 + 1 runs on top of the HVM (see Section7).

Currently work is ongoing to add support of Java 8 and
implementation of SCJ Level 2.

5. SCJ IMPLEMENTATIONS
We have two different JVMs and as well two different im-

plementations of SCJ in Java on top of those JVMs. Some
concepts are shared between the two implementations, but
they are mostly independent.

Both SCJ implementations use s single, implementation
private, class [37] that supports all SCJ based memory areas:
immortal memory, mission memory, and private memory.
Those classes form a nesting hierarchy and each memory
area can be reserved from the parent memory.

Both JVMs support first level interrupt handlers [39].
Such a first level interrupt handler is attached to a pro-
grammable timer interrupt, which is then simple the fixed-
priority preemptive scheduler for SCJ handlers. A first level
interrupt handler can also be used to release an AEH.

5.1 SCJ on JOP
Our SCJ implementation on JOP [42] is coded in Java.

There is no underlying operating system and hence func-
tionality typically provided by the operating system (e.g,
scheduling, priority inversion control) and access to low-level
features (e.g., memory and JVM structures) are provided by
JOPs runtime. We have implemented level 0 and level 1 of
SCJ.

To implement SCJ’s concurrency model, we reuse JOP’s
real-time threading API [33]. In JOP, real-time activities are
supported through two classes, namely RtThread and SwEvent
whose execution is done according to their priority. The Rt-
Thread class enables the implementation of periodic activ-
ities and the SwEvent class is used for aperiodic activities
that need to be explicitly released by a calls to their fire()
method. It is therefore natural to implement SCJ’s PEHs
and AEHs with RtThreads and SwEvents respectively.

JOP’s real-time threads are executed under the control
of a fixed-priority preemptive scheduler. Every thread is
assigned a unique priority in order to avoid FIFO queues
within priorities. Executing a synchronized method or state-
ment disables all interrupts, including the timer interrupt
that triggers the scheduler. In this way, critical sections are
executed at the highest possible priority of all threads, thus
effectively implementing a priority ceiling protocol where the
ceiling is set to the maximum priority that any thread can
possibly have.

On the multicore version of JOP each core executes its
own scheduler. Handlers are pinned to a core at initializa-
tion phase and cannot migrate to a different core. This im-
plements the partitioned scheduler for multicore platforms
as defined by SCJ.

SCJ’s memory API is implemented using a single sys-
tem class Memory, as described in [37]. SCJ’s ManagedMemory
class delegates functionality to that system class. All the
memory-related classes inherited from the RTSJ are empty
classes with the exception of the ImmortalMemory class, which

�

S
�

S

�

�

�

H
�

H

SCJ�applicati

SCJ:����������������

HVM�

Hardware�

vm�Interfa
������������������
������������������
������������������

on�

�����MemoryA

ace�{�����Memory
��������������������������
��������������������������
��������������������������

Memory

Area,�����Sche

y,���������Process,
������������Schedul
������������Interrup
������������Monitor

y� C

edulers,�����Re

,�������������������������R
er,��
ptHandler,�
r �������������������������

CPU�

ealtimeClock

RealtimeClock

������������ ��������������

Clock�

���}�

Figure 1: SCJ architecture with the vm Interface to
HVM.

however also delegates to the system’s Memory class.
Our current implementation still has following restrictions:

(1) we do not yet implement the OneShotEventHandler class,
(2) only a variation of priority ceiling emulation, where all
lock objects have the maximum priority, is implemented,
(3) happenigs and POSIX-related classes are not needed in
our embedded platform, and (4) we do not yet fully support
user-defined clocks [51]. An evaluation of our implementa-
tion can be found in [32].

5.2 SCJ on HVM
The SCJ implementation on top of HVM [14, 45] has the

architecture, shown in Figure 1, with a minimal hardware
interface layer specified in the vm Interface.

This interface is divided into three parts:

• Memory that controls the memory allocation;

• Process, Scheduler, InterruptHandler, and Monitor that
define the interface to process, process scheduling, con-
text switch, and synchronization; and

• RealtimeClock that defines clock specific methods.

The SCJ implementation on HVM is a bare metal im-
plementation, which takes advantages of hardware objects
and other hardware near features. Thus, it has no native
function layer. Currently, level 0 and level 1 have been
implemented, because they target applications running on
resource constrained embedded platforms.

The implementation strategy for the SCJ classes that use
classes from the vm Interface is the same. Here delegation is
used, e.g.,

• class MemoryArea has a field delegate of type vm.Memory,

• class ManagedEventHandler uses an infrastructure class
ScjProcess that has a field delegate of type vm.Process,
and

• class PriorityScheduler delegates to an infrastructure
class PrioritySchedulerImpl that implements vm.Scheduler.

SCJ supports method synchronization for shared resources.
This is implemented in an SCJ infrastructure class Monitor
which extends the abstract vm.Monitor class. This infrastruc-
ture class is also used for implementing the priority ceiling
emulation that SCJ requires to avoid priority inversion.

6. ANALYSIS TOOLS
During the CJ4ES project, two tools have been developed

to support programmers developing for the SCJ specifica-
tion. In particular, both tools aim at helping programmers
with some of the issues arising from the scoped memory
model of SCJ: avoiding runtime exceptions due to memory
safety violations and providing a sound estimate of the maxi-
mum amount of memory needed for a given SCJ application.
The former is essential for certification of safety-critical ap-
plications and the latter is needed for proper sizing of mem-
ory scopes.

Both tools are based on the T.J. Watson Libraries for
Analysis (WALA) [50]. WALA provides highly scalable and
extensible libraries for several state-of-the-art pointer anal-
yses for Java bytecode, including user definable context sen-
sitive analyses, as well as good integration with the Eclipse
development environment.

6.1 Memory Safety
The scoped memory model, as described in Section 3, al-

lows programmers to store references to an object in another
scope. This potentially introduces dangling pointers to ob-
jects that no longer exist. There are several approaches for
dealing with this problem, the two main approaches being
annotations and static analysis. In the former approach,
annotations are added to key elements of the program, in-
dicating the intended scope for those elements. Based on
the annotations, an automated tool can then verify that the
indicated scope use will not lead to a memory safety vio-
lation [20, 49]. The latter approach does not require, but
may make use of, programmer defined annotations in the
application. Instead a memory safety analysis is performed
over the entire program, in order to verify that no reference
can ever point to an object in a shorter lived memory area
and thus, that no memory safety violations can occur in the
program.

In spirit with the compiler mantra to provide feedback
to programmers as soon as possible we have followed the
latter approach described above, and implemented a mem-
ory safety analysis that is able to identify illegal memory
assignments (assignments that may lead to a dangling ref-
erence) [9]. The analysis was designed as a special context-
sensitive points-to analysis, using memory scopes as con-
texts. Using the built-in points-to analysis in the WALA
framework [50], which can be parameterised over user-defined
contexts, it was relatively straightforward to implement our
analysis. The analysis is sound but may report false posi-
tives, i.e., false warnings of potential memory safety viola-
tions. However, on the suite of applications the analysis was
tested on, only few false positives were reported.

In addition to statically verifying that a program cannot
violate memory safety, the results of our memory safety anal-
ysis can also be used for generating scope annotations that
can be added to the program. This is useful, e.g., for docu-
menting the results of the analysis in a fashion that can be
automatically checked by other tools [20,49], or even be used
for understanding a program developed by a third party.

Our analysis is closely related to the data-flow analysis
developed by Siebert [44] for the RTSJ, but exploits the sim-
pler structure of the SCJ memory model (see Section 3.2) to
achieve both high precision and good performance. A hard-
ware implementation of the scope checking was presented
by Rios et al. [31], showing that such checking can be done
very efficiently for SCJ in hardware due to the simple stack
structure of the memory scopes in use.

6.2 Worst-Case Memory Consumption
As described in Section 3.2, the programmer has to explic-

itly provide memory bounds for the backing store needed,
e.g., for event handlers and memory areas in general. Man-
ually calculating these bounds is, in general, difficult and
error prone, since the programmer has to take all possible
program paths into account while also keeping track of the
current scope stack and map all of this onto a platform with
particular memory usage and requirements for alignment,
etc.

To help the programmer with the task of calculating mem-
ory bounds, we have developed a fully automated worst-case
memory consumption analysis [2]. Our analysis is similar in
spirit to the analysis described in [25], but has been adapted
to the simpler memory model of SCJ. Similar to [25] the tool
is also based on the well-known IPET method used for trans-
forming WCET analysis into an integer linear programming
problem. However, the tool is based on the SCJ memory
model described in [37] and also shares some commonality
with the tool for memory safety analysis described in the
previous subsection; in particular the memory consumption
analysis was also implemented in the WALA framework [50]
combined with an ILP solver.

7. TESTING
A Java specification request must include a Technology

Compatibility Kit (TCK) that contains a suite of tests check-
ing whether an implementation conforms to the specifica-
tion. Also, a TCK is supposed to have tools to run the tests
and report the results. Since the project aims at certifi-
able applications, tests are crucial for achieving the results.
Without thorough testing, there is little chance of an ap-
plication being certified. Of course this testing is for the
application as a whole, but the software platform on which
it relies should be tested as well.

For SCJ, we have seen one previous proposal for a TCK [53];
it is from Purdue University and treats a somewhat dated
version of SCJ. It uses a top down approach and tests central
concepts by executing a number of missions initiated from a
Safelet interface. We aim at a bottom up approach, where
individual classes are subjected to unit tests. Thus the two
may be aligned to complement each other.

Essentially, it is not complicated to write tests. Con-
sider for example a test of RelativeTime add (long millis,
int nanos), it could be the simple program:

rel = new RelativeTime();
res = rel.add(0,1000001);

It may be tedious to write tests for the different interesting
argument values, but it is even more tedious to compute the
result and check it with an assertion. In this case:

assert res.getMilliseconds()==1
&& res.getNanoseconds()==0;

An alternative is to give general specification of the re-
sult as a post-condition in the Java Modeling Language
(JML) [16] which annotates the Java source code for the
method:

ensures \result != null
ensures \result.getMilliseconds() - getMilliseconds()

- millis
+ (\result.getNanoseconds()

- getNanoseconds() - nanos)/1000000
== 0;

ensures (\result.getNanoseconds()-getNanoseconds()
- nanos) % 1000000 == 0;

With suitable test execution tools, this will do all the
checking needed for the result. This approach with test-
ing supported by formal specifications is further elaborated
in [28].

Besides the effort saved in checking concrete results, the
JML specifications could form the basis for actually formally
verifying an implementation of the SCJ profile. This would
add much assurance to the trustworthiness of the implemen-
tation.

8. HARDWARE SUPPORT
As we use one JVM as a Java processor in an FPGA we

also explored possibilities to enhance that processor with
hardware units to support SCJ specific functions. The in-
tention is to perform operations faster and especially more
time-predictable in hardware. We explored pointer assign-
ment checks for scopes and locking support for a multicore
version of JOP.

8.1 Scope Checks
As mentioned in Section 6.1, the use of the scoped mem-

ory model can lead to dangling pointers. As a consequence,
the JVM must check the referential integrity by ensuring
that objects allocated in a memory area only store refer-
ences to objects allocated either in the same or in a longer-
lived memory area. Enforcing this referential integrity on
every reference assignment becomes a source of execution
time overhead for an application.

Given the simplified memory model of SCJ, the scope
nesting level (see Section 3.2) can be used to check the le-
gality of every reference assignment. In JOP’s SCJ imple-
mentation, the scope level of where an object is allocated is
associated with the object itself when the object is created.
This information is stored in the object’s reference and re-
covered during the execution of the putfield, putstatic, and
aastore bytecodes, i.e., the reference assignment bytecodes.

Reference assignment checks require only a simple com-
parison between the scope levels of the source and destina-
tion objects and this comparison can be efficiently performed
in hardware. The scope level information is available dur-
ing the execution of the mentioned bytecodes and therefore
the check itself is included in JOP’s memory management
unit (MMU) as part of the execution of those bytecodes.
The check shall only be done when it is an assignment of
a reference, so the hardware needs to know if the operation
involves a reference or a primitive data type. Such informa-
tion is available on special versions of the putfield/putstatic
bytecodes and in the aastore bytecode. A new microcode
instruction is used to signal to the MMU that a reference
assignment will take place and the scope nesting levels need

to be checked. An interrupt is generated inside the MMU
when an illegal assignment occurs. This flag is used to throw
an IllegalAssignmentError.

The overhead of this operation is of one clock cycle com-
pared to the execution of the mentioned bytecodes with-
out the reference assignment checks. This hardware imple-
mented scope check is around 14 times faster than a software
solution. There is an extra timing overhead that comes from
adding the scope level information at object creation time.
However, object creation is an operation with low frequency
of execution [34]. The hardware cost is of approximately a
4% increase in the MMU size.

8.2 Multi-Core Locking Unit
In Java, every object can serve as a lock, either explicitly

through a synchronized block or implicitly using an object’s
synchronized methods. This is also the case in SCJ, al-
though synchronized blocks are forbidden. Java locks are
usually implemented in the JVM using an underlying syn-
chronization mechanism, such as compare-and-swap (CAS).
In JOP a global lock is used, which in effect reduces all indi-
vidual locks to a single global lock. If locks are implemented
using CAS they are not reduced to a single lock, however
CAS uses shared memory, which leads to memory arbitra-
tion. Furthermore to track locks either a software hash-map
is used, which is inappropriate for real-time systems, or po-
tential lock objects need an extra header field, increasing
objects size. This inspired our work on a multi-core hard-
ware locking-unit.

Our first attempt [47] uses a content-addressable mem-
ory (CAM) to store the address of an object used as a lock.
Whenever a core supplies an object’s address it is checked
against all existing entries. In the case where the entry al-
ready exists, the core is enqueued and blocked until the lock
becomes available. Otherwise a new entry is created for the
supplied address and the core is allowed to continue execu-
tion.

Using the CAM enables the address-to-queue mapping to
be done without the need for a lock entry in objects or the
need for a software hash-map. However, the queuing is still
done in software, which means that this solution still suffers
from memory arbitration.

Our second attempt merges the CAM, the queues, and
the global lock into a single unit. Moving the queues to
hardware enables the unit to be accessed through core local
microcode, instead of Java code in shared memory. This
removes any memory arbitration in the locking procedure.
Serializing lock requests is still necessary, however merging
the global lock with the unit means that only a single unit
has to be accessed, reducing the number of software steps.

9. SCOPE USAGE AND LIBRARIES
Correct use of the scoped memory model is perhaps SCJ’s

most difficult feature to use. Passing arguments and return-
ing results without the use of static fields is not obvious.
In [30] we analyzed the expressive power of SCJ’s memory
model and proposed patterns for its safe use. We provided
a collection of seven scoped-memory use patterns specific to
SCJ that vary in complexity and that can be used for simple
subroutines, sequences of subroutine calls, and nested calls.
The patterns avoid memory leaks, unnecessary copying of
values, and are illustrated with an implementation in the
SCJ profile.

In addition to scope-aware patterns, we explored the topic
of scope-aware Java libraries. In [29] we have: (1) iden-
tified programming patterns and idioms in the standard
Java class libraries that make them not suitable for SCJ,
(2) provided different ways to mitigate the impact of the
identified problematic patterns, and (3) implemented rep-
resentative scope-safe classes with minimal changes in the
standard Java libraries. We implemented a total of five
scope-safe classes from commonly used libraries having as
a starting point the reference implementation of OpenJDK
6 and the restrictions imposed by the already defined class
libraries in SCJ [17]. Our developed classes maintain ref-
erential integrity (between objects created within the li-
brary class), have predictable memory consumption, and
predictable worst-case execution time.

Those characteristics were achieved by combining differ-
ent techniques such as an explicit change of allocation con-
text, restricting the maximum number of elements that in-
ternal arrays can have, changing the exit condition in loops
(to automate the loop bound detection), and removing con-
structors where we cannot guarantee the execution time or
memory consumption.

We have tested our libraries using a combination of tools.
Referential integrity was tested using the private memory
analysis tool described in Section 6.1, memory consumption
was both measured and analyzed with the tool described in
Section 6.2, and the WCET was tested using JOP’s WCET
analysis tool.

10. APPLICATIONS
To explore the expressiveness of SCJ and also to have test

cases, we have implemented several applications and small
test cases on top of SCJ.

10.1 RepRap
A lack of SCJ use-cases motivated the development of a

RepRap 3D printer in SCJ [48]. A RepRap printer melts
plastic and extrudes it in 3 dimensional space according to
printing instructions (G-codes). This enables it to construct
or “print” 3D objects in plastic. Figure 2 shows the RepRap
hardware, an FPGA board containing JOP, and the cos-
tume made interface board between the FPGA board and
the electronics of the RepRap printer.

The printer uses stepper motors for movement and a resis-
tor as a heating element. We consider the printer a safety-
critical application as it employs physical movement and
heating above 200◦C.

The system consists of the physical printer, an electronic
interface board, a SCJ RepRap controller running on JOP
on an FPGA, and a PC. The PC generates printing instruc-
tions from a 3D image that are sent over a serial line to
the controller. The controller enqueues and executes the in-
structions and controls the motors and the heating element
in the process through the interface board.

The controller consists of the periodic event handlers Host-
Controller, CommandParser, CommandController, and Rep-
RapController. The HostController handles all communi-
cation with the host (PC). When the HostController sees
an instruction delimiter, the previously received characters
are sent to the CommandParser, which parses the instruc-
tion and enqueues the corresponding Command object in
the CommandController. The CommandController executes
the commands in FIFO order, with some commands modify-

Figure 2: RepRap setup without the host

ing control parameters in the RepRapController and others
writing back to the host through the HostController. The
RepRapController controls the motors and temperature ac-
cording to control parameters. The motors are stepped to-
wards a position in a timed manner, ensuring that all motors
reach their goal at the same time regardless of the distance.

10.2 CSP Watchdog
Another application developed to test our implementation

is a CSP-based watchdog [2]. CSP stands for Cubesat space
protocol, which is a network-layer protocol developed at Aal-
borg University and used in small space-research satellites
called Cubesats. This watchdog application uses two PEHs
and one managed interrupt service routine (MISR). One of
the PEHs is in charge of sending ping packets to a set of CSP
nodes while the other functions as a router, distributing CSP
packets from its packet queue to an appropriate destination.
The MISR is triggered upon reception of a complete CSP
packet, processes the incoming packet (e.g., reads relevant
fields of the CSP header), and puts the packet into the router
queue for later distribution. Connecting our JOP-based SCJ
implementation to an on-board Cubesat computer board,
provided by GomSpace ApS, tested the application.

10.3 External Applications
Within the project we also searched for and explored SCJ

example applications from other research groups. When
needed, we adapted them to the current version of the spec-
ification. The updated code is available at the project’s
repository.

10.3.1 miniCDj
The miniCDj benchmark is a reduced version of the CDx

benchmark that is described in [13]. This benchmark gen-
erates simulated radar frames containing airplane positions
and calculates possible collisions between those simulated
radar frames. We have used two versions of it: the original
implementation which uses a cyclic-executive (level 0), and
a parallel version (level 1) [52] adapted at the University of
York, which divides the task of looking for collisions into a
fixed number of AEHs. In both cases we have updated the
benchmarks to the current version of the SCJ specification
as both of them were based on version 0.76.

10.3.2 Purdue’s SCJ TCK
The technology compatibility kit described in [53] is an

early work done to develop a TCK for SCJ. It is however
based on version 0.76 of the specification. We have updated
that TCK to the current version and used it to test the level
0 and level 1 features of the SCJ implementation of JOP.

11. CONCLUSIONS
The paper summarizes the research and development work

of the three-year project Certifiable Java for Embedded Sys-
tems (CJ4ES). With the project we developed two indepen-
dent versions of safety-critical Java (SCJ) on two different
Java virtual machines. We explored and assessed SCJ by
investigating design patterns for libraries under the scoped
memory model of SCJ, implementing whole applications on
top of SCJ, and developing tools for scope usage and a test
framework for SCJ implementations. All results are pro-
vided in open-source to enable exploration of our results
and simplify future cooperation. One of the questions of
CJ4ES was, if SCJ is suitable for future safety-critical ap-
plications. Our conclusion is that SCJ is not easy to use for
programmer trained in general purpose Java programming.
However, in our opinion exactly those restrictions within
SCJ, which make it hard to use in the first place, make SCJ
a good choice for building future safety-critical applications
with a safe programming language.

Acknowledgment
This work is part of the project “Certifiable Java for Embed-
ded Systems”(CJ4ES) and has received partial funding from
the Danish Research Council for Technology and Production
Sciences under contract 10-083159.

Source Access
The two presented JVMs and the SCJ implementations on
top of them are available in open source. The Java processor
JOP and the SCJ implementation are available from GitHub
at https://github.com/jop-devel/jop. The hardware near
virtual machine is available from http://www.icelab.dk/
download.html, which includes a version of SCJ as well.
The source of SCJ for HVM is also available from GitHub
at https://github.com/scj-devel/hvm-scj.

12. REFERENCES
[1] aJile. aj-100 real-time low power Java processor.

preliminary data sheet, 2000.

[2] J. L. Andersen, M. Todberg, A. E. Dalsgaard, and
R. R. Hansen. Worst-case memory consumption
analysis for SCJ. In Proceedings of the 11th

https://github.com/jop-devel/jop
http://www.icelab.dk/download.html
http://www.icelab.dk/download.html
https://github.com/scj-devel/hvm-scj

International Workshop on Java Technologies for
Real-time and Embedded Systems, pages 2–10. ACM
Press, 2013.

[3] Aonix. Perc pico 1.1 user manual.
http://research.aonix.com/jsc/pico-manual.4-19-
08.pdf, April
2008.

[4] A. Armbruster, J. Baker, A. Cunei, C. Flack,
D. Holmes, F. Pizlo, E. Pla, M. Prochazka, and
J. Vitek. A real-time Java virtual machine with
applications in avionics. Trans. on Embedded
Computing Sys., 7(1):1–49, 2007.

[5] T. Bøgholm, R. R. Hansen, A. P. Ravn, B. Thomsen,
and H. Søndergaard. A predictable java profile:
rationale and implementations. In JTRES ’09:
Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems,
pages 150–159, New York, NY, USA, 2009. ACM.

[6] T. Bogholm, H. Kragh-Hansen, P. Olsen, B. Thomsen,
and K. G. Larsen. Model-based schedulability analysis
of safety critical hard real-time Java programs. In
Proceedings of the 6th international workshop on Java
technologies for real-time and embedded systems
(JTRES 2008), pages 106–114, New York, NY, USA,
2008. ACM.

[7] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, June 2000.

[8] A. Burns, B. Dobbing, and G. Romanski. The
Ravenscar tasking profile for high integrity real-time
programs. In Proceedings of the 1998 Ada-Europe
International Conference on Reliable Software
Technologies, pages 263–275. Springer-Verlag, 1998.

[9] A. E. Dalsgaard, R. R. Hansen, and M. Schoeberl.
Private memory allocation analysis for safety-critical
Java. In Proceedings of the 10th International
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2012), pages 9–17,
Copenhagen, DK, October 2012. ACM.

[10] T. Henties, J. J. Hunt, D. Locke, K. Nilsen,
M. Schoeberl, and J. Vitek. Java for safety-critical
applications. In 2nd International Workshop on the
Certification of Safety-Critical Software Controlled
Systems (SafeCert 2009), York, United Kingdom,
Mar. 2009.

[11] S. Hepp and M. Schoeberl. Worst-case execution time
based optimization of real-time Java programs. In
Proceedings of the 15th IEEE International
Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2012), pages
64–70, Shenzhen, China, April 2012. IEEE.

[12] B. Huber, W. Puffitsch, and M. Schoeberl. Worst-case
execution time analysis driven object cache design.
Concurrency and Computation: Practice and
Experience, 24(8):753–771, 2012.

[13] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek,
B. Titzer, and J. Vitek. Cdx: a family of real-time
java benchmarks. In JTRES ’09: Proceedings of the
7th International Workshop on Java Technologies for
Real-Time and Embedded Systems, pages 41–50, New
York, NY, USA, 2009. ACM.

[14] S. Korsholm, H. Søndergaard, and A. Ravn. A

real-time java tool chain for resource constrained
platforms. Concurrency and Computation: Practice &
Experience, 2013:1–25, September 2013.

[15] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A
high integrity profile for real-time Java. In Proceedings
of the 2002 joint ACM-ISCOPE conference on Java
Grande, pages 131–140. ACM Press, 2002.

[16] Leavens. The Java Modeling Language (JML).

www.eecs.ucf.edu/̃leavens/JML/index.shtml, Visited
June 2014.

[17] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton,
T. Henties, J. J. Hunt, J. O. Nielsen, K. Nilsen,
M. Schoeberl, J. Tokar, J. Vitek, and A. Wellings.
Safety-critical Java technology specification, public
draft, 2011.

[18] K. S. Luckow, T. Bøgholm, and B. Thomsen.
Supporting development of energy-optimised java
real-time systems using tetasarts. In Work-in-Progress
Proceedings of the 19th Real-Time and Embedded
Technology and Application Symposium, 2013.

[19] K. S. Luckow, T. Bøgholm, B. Thomsen, and K. G.
Larsen. Tetasarts: A tool for modular timing analysis
of safety critical java systems. In Proceedings of the
11th International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’13, 2013.

[20] K. Nilsen. A type system to assure scope safety within
safety-critical java modules. In Proceedings of the 4th
international workshop on Java technologies for
real-time and embedded systems, JTRES ’06, pages
97–106, New York, NY, USA, 2006. ACM.

[21] K. Nilsen. Harmonizing alternative approaches to
safety-critical development with Java. In Proceedings
of the 9th International Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2011), pages 54–63, 2011.

[22] K. Nilsen and S. Lee. Perc real-time api (draft 1.3).
newmonics, July 1998.

[23] C. Pitter and M. Schoeberl. A real-time Java
chip-multiprocessor. ACM Trans. Embed. Comput.
Syst., 10(1):9:1–34, 2010.

[24] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera,
and J. Vitek. Developing safety critical Java
applications with oSCJ/L0. In Proceedings of the 8th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2010),
pages 95–101, New York, NY, USA, 2010. ACM.

[25] W. Puffitsch, B. Huber, and M. Schoeberl. Worst-case
analysis of heap allocations. In Proceedings of the 4th
International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation
(ISoLA 2010), 2010.

[26] P. Puschner and A. Wellings. A profile for high
integrity real-time Java programs. In 4th IEEE
International Symposium on Object-oriented Real-time
distributed Computing (ISORC), 2001.

[27] A. P. Ravn and M. Schoeberl. Safety-critical Java with
cyclic executives on chip-multiprocessors. Concurrency
and Computation: Practice and Experience,
24:772–788, 2012.

[28] A. P. Ravn and H. Søndergaard. A test suite for
Safety-Critical Java using JML. In Proceedings of the
11th International Workshop on Java Technologies for

Real-time and Embedded Systems, JTRES ’13, pages
80–88, New York, NY, USA, 2013. ACM.

[29] J. Rios and M. Schoeberl. Reusable Libraries for
Safety-Critical Java. In
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on, pages 188–197, June
2014.

[30] J. R. Rios, K. Nilsen, and M. Schoeberl. Patterns for
safety-critical Java memory usage. In Proceedings of
the 10th International Workshop on Java Technologies
for Real-time and Embedded Systems, page 1–8, 2012.

[31] J. R. Rios and M. Schoeberl. Hardware support for
safety-critical Java scope checks. In Proceedings of the
15th IEEE International Symposium on
Object/component/service-oriented Real-time
distributed Computing (ISORC 2012), pages 31–38,
Shenzhen, China, April 2012. IEEE.

[32] J. R. Rios and M. Schoeberl. An evaluation of
safety-critical Java on a Java processor. In Proceedings
of the 10th Workshop on Software Technologies for
Embedded and Ubiquitous Systems (SEUS 2014),
Reno, Nevada, USA, June 2014.

[33] M. Schoeberl. Restrictions of Java for embedded
real-time systems. In Proceedings of the 7th IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2004),
pages 93–100, Vienna, Austria, May 2004. IEEE.

[34] M. Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[35] M. Schoeberl. Application experiences with a real-time
Java processor. In Proceedings of the 17th IFAC World
Congress, pages 9320–9325, Seoul, Korea, July 2008.

[36] M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[37] M. Schoeberl. Memory management for safety-critical
Java. In Proceedings of the 9th International
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2011), pages 47–53, York,
UK, September 2011. ACM.

[38] M. Schoeberl. A time-predictable object cache. In
Proceedings of the 14th IEEE International
Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2011), pages
99–105, Newport Beach, CA, USA, March 2011. IEEE
Computer Society.

[39] M. Schoeberl, S. Korsholm, T. Kalibera, and A. P.
Ravn. A hardware abstraction layer in Java. ACM
Trans. Embed. Comput. Syst., 10(4):42:1–42:40,
November 2011.

[40] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P.
Ravn. Hardware objects for Java. In Proceedings of the
11th IEEE International Symposium on
Object/component/service-oriented Real-time
distributed Computing (ISORC 2008), pages 445–452,
Orlando, Florida, USA, May 2008. IEEE Computer
Society.

[41] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and
B. Huber. Worst-case execution time analysis for a
Java processor. Software: Practice and Experience,

40/6:507–542, 2010.

[42] M. Schoeberl and J. R. Rios. Safety-critical Java on a
Java processor. In Proceedings of the 10th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
pages 54–61, Copenhagen, DK, October 2012. ACM.

[43] M. Schoeberl, H. Sondergaard, B. Thomsen, and A. P.
Ravn. A profile for safety critical Java. In 10th IEEE
International Symposium on Object and
Component-Oriented Real-Time Distributed
Computing (ISORC’07), pages 94–101, Santorini
Island, Greece, May 2007. IEEE Computer Society.

[44] F. Siebert. Proving the absence of RTSJ related
runtime errors through data flow analysis. In
Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems
(JTRES 2006), pages 152–161, New York, NY, USA,
2006. ACM Press.

[45] H. Søndergaard, S. E. Korsholm, and A. P. Ravn.
Safety-Critical Java for low-end embedded platforms.
In Proceedings of the 10th International Workshop on
Java Technologies for Real-time and Embedded
Systems, JTRES ’12, pages 44–53, New York, NY,
USA, 2012. ACM.

[46] H. Søndergaard, B. Thomsen, and A. P. Ravn. A
Ravenscar-Java profile implementation. In Proceedings
of the 4th international workshop on Java technologies
for real-time and embedded systems, page 38–47.
ACM, 2006.

[47] T. B. Strøm, W. Puffitsch, and M. Schoeberl.
Chip-multiprocessor hardware locks for safety-critical
Java. In Proceedings of the 11th International
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2013), pages 38–46,
Karlsruhe, DE, October 2013. ACM.

[48] T. B. Strøm and M. Schoeberl. A desktop 3d printer
in safety-critical Java. In Proceedings of the 10th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
pages 72–79, Copenhagen, DK, October 2012. ACM.

[49] D. Tang, A. Plsek, and J. Vitek. Static checking of
safety critical java annotations. In Proceedings of the
8th International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’10, pages
148–154, New York, NY, USA, 2010. ACM.

[50] T.J. Watson libraries for analysis (WALA).
http://wala.sf.net/.

[51] A. Wellings and M. Schoeberl. User-defined clocks in
the real-time specification for Java. In Proceedings of
the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES 2011),
pages 74–81, York, UK, September 2011. ACM.

[52] F. Zeyda, A. Cavalcanti, A. Wellings, J. Woodcock,
and K. Wei. Refinement of the Parallel CDx.
Technical report, University of York, 2012.

[53] L. Zhao, D. Tang, and J. Vitek. A technology
compatibility kit for safety critical java. In Proceedings
of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems,
JTRES ’09, pages 160–168, New York, NY, USA,
2009. ACM.

http://wala.sf.net/

