
Chapter 1
Hardware Support for Embedded Java

Martin Schoeberl

1.1 Introduction

1.2 Java Processors

1.3 Support Technology for Java

1.4 Conclusions

The general Java runtime environment is resource hungry and unfriendly for real-
time systems. To reduce the resource consumption of Java in embedded systems,
direct hardware support of the language is a valuable option. Furthermore, an imple-
mentation of the Java virtual machine in hardware enables worst-case execution time
analysis of Java programs. This chapter gives an overview of current approaches to
hardware support for embedded and real-time Java.

1.1 Introduction

Embedded systems are usually resource constraint systems and often have to per-
form computations under time constraints. Although the first version of Java has
been designed for an embedded system, current implementations of Java are quite
resource hungry and the execution time of a Java application is hard to predict stati-
cally. One approach to reduce resource consumption for Java and enable worst-case
execution time (WCET) analysis is to provide hardware support for embedded Java.
In this chapter hardware implementations of the Java virtual machine (JVM), Java
processors, and hardware support for Java specific idioms (e.g., garbage collection)
are described.

Standard Java is not the best fit for embedded systems. Sun introduced the Java
micro edition and the Connected Limited Device Configuration (CLDC) [62] for
embedded systems. CLDC is a subset of Java resulting in a lower memory footprint.
Based on CLDC, the real-time specification for Java (RTSJ) [8] defines a new mem-
ory model and strengthens the scheduling guarantees to enable Java for real-time
systems. Safety-critical Java (SCJ) [30] defines a subset of RTSJ for safety-critical

Martin Schoeberl
Department of Informatics and Mathematical Modeling, Technical University of Denmark e-mail:
masca@imm.dtu.dk

1



2 Martin Schoeberl

Table 1.1: Relevant Java processors for embedded Java

Target Size Speed Year
technology Logic Memory (MHz) (pub.)

picoJava [38, 60] ASIC, Altera FPGA 27500 LC 38 KB 40 1997
Komodo [29, 28] Xilinx FPGA 2600 LC 33 1999
aJile aJ-100 [1, 18] ASIC 0.25µ 25 Kgates 48 KB 100 2000
Cjip [17, 26] ASIC 0.35µ 70 Kgates 55 KB 80 2000
jHISC [31, 63] Xilinx FPGA 15600 LC 14 KB 30 2002
FemtoJava [6] Xilinx FPGA 2700 LC 0.5 KB 56 2003
JOP [46, 50] Altera, Xilinx FPGA 3000 LC 4 KB 100 2003
jamuth [65] Altera FPGA 33 2007
BlueJEP [15] Xilinx FPGA 6900 LC 0 KB 85 2007
SHAP [72, 73] Altera, Xilinx FPGA 5600 LC 22 KB 80 2007
aJile aJ-102/200 [2] ASIC 0.18µ 80 KB 180 2009

systems. Most Java processors base the Java library on CLDC or a subset of it. Al-
though the RTSJ would be a natural choice for embedded Java processors, none of
the available processors support the RTSJ.

Embedded Java can be supported by a hardware implementation of the JVM
– a Java processor, or by extending a RISC processor with Java specific support
hardware. In the following section we provide an overview of current and most in-
fluential Java processors for embedded systems. Hardware support for low-level I/O
in Java, object oriented caches, and garbage collection is described in Section 1.3.
Most of the techniques for Java hardware support have been introduced in the con-
text of Java processors. However, they can also be used to enhance a standard RISC
processor, which executes compiled Java. The chapter is concluded in Section 1.4

1.2 Java Processors

In the late 90’s, when Java became a popular programming language, several com-
panies developed Java processors to speedup the execution of Java. Besides com-
mercial processors, research on Java processor architectures was also very active
at this time. With the introduction of advanced JIT compilers, the speed advantage
of Java processors diminished, and many products for general purpose computing
were cancelled. In the embedded domain, Java processors and coprocessors are still
in use and actively developed. In this section an overview of products and research
projects that survived or are still relevant are described. A description of some of
the disappeared Java processors can be found in [48].

Table 1.1 lists the relevant Java processors available to date. The entries are listed
in the order the processors became available. The last column presents the year
where the first paper on the processor has been published. The references in the



1 Hardware Support for Embedded Java 3

first column are to the first published paper and to the most relevant paper for the
processor.

The resource usage is given either in ASIC gates for an implementation in sil-
icon or in logic cells (LC) when implemented in a field-programmable gate array
(FPGA). The memory column gives the size of on-chip memory usage for caches
and microcode store. Cache sizes are usually configurable. The column lists the de-
fault configuration. When an entry is missing, there is no information available. One
design, the BlueJEP, uses Xilinx LCs for distributed RAM and therefore the LC
count is high, but no dedicated on-chip memory is used. The listed resource con-
sumptions of the processors are based on latest publications (most research projects
grew in size over time). However, most FPGA based projects are configurable and
the resource consumption depends on the concrete configuration.

Note, that the clock frequency does not give a direct indication of the perfor-
mance of the processors, it is more an indication of the pipeline organization. E.g.,
the implementation of picoJava in an Altera FPGA [44] clocked at 40 MHz performs
better than JOP in the same FPGA at 100 MHz.

1.2.1 picoJava

Sun introduced the first version of picoJava [38] in 1997. The processor was targeted
at the embedded systems market as a pure Java processor with restricted support of
C. picoJava-I contains four pipeline stages. A redesign followed in 1999, known as
picoJava-II that is now freely available with a rich set of documentation [60, 61].

Sun’s picoJava is the Java processor most often cited in research papers. It is used
as a reference for new Java processors and as the basis for research into improving
various aspects of a Java processor. Ironically, this processor was never released as
a product by Sun.

The architecture of picoJava is a stack-based CISC processor implementing 341
different instructions [38] and is the most complex Java processor available. The
processor can be implemented in about 440K gates [12]. An implementation of
picoJava in an Altera FPGA was performed by Puffitsch and Schoeberl [44]. As
seen in Table 1.1, picoJava is the biggest Java processor implemented in an FPGA.
Nevertheless, it provides a baseline for comparison with other research processors.

Simple Java bytecodes are directly implemented in hardware, most of them ex-
ecute in one to three cycles. Other performance critical instructions, for instance
invoking a method, are implemented in microcode. picoJava traps on the remaining
complex instructions, such as creation of an object, and emulates this instruction. To
access memory, internal registers and for cache management, picoJava implements
115 extended instructions with 2-byte opcodes. These instructions are necessary to
write system-level code to support the JVM.

Traps are generated on interrupts, exceptions, and for instruction emulation. A
trap is rather expensive and has a minimum overhead of 16 clock cycles. This min-
imum value can only be achieved if the trap table entry is in the data cache and the



4 Martin Schoeberl

Instruction
Cache Unit

Data Cache
Unit

Integer
Unit

Powerdown, Clock
and Scan Unit

Stack
Manager Unit

Floating Point
Unit and Control

Instruction
cache RAM/tag

Microcode
ROM
Stack cache

Data cache
RAM/tag

Megacells

Bus Interface Unit

Memory and I/O interface

Floating-
point ROM

Processor Interface

Figure 1.1: Block diagram of picoJava-II (from [60])

first instruction of the trap routine is in the instruction cache. The worst-case inter-
rupt latency is 926 clock cycles [61]. This great variation in execution times for a
trap hampers tight WCET estimates.

Figure 1.1 shows the major function units of picoJava. The integer unit decodes
and executes picoJava instructions. The instruction cache is direct-mapped, while
the data cache is two-way set-associative, both with a line size of 16 bytes. The
caches can be configured between 0 and 16 KB. An instruction buffer decouples the
instruction cache from the decode unit. The floating-point unit (FPU) is organized as
a microcode engine with a 32-bit datapath, supporting single- and double-precision
operations. Most single-precision operations require four cycles. Double-precision
operations require four times the number of cycles as single-precision operations.
For low-cost designs, the FPU can be removed and the core traps on floating-point
instructions to a software routine to emulate these instructions. picoJava provides a
64-entry stack cache as a register file. The core manages this register file as a circular
buffer, with a pointer to the top of stack. The stack management unit automatically
performs spill to and fill from the data cache to avoid overflow and underflow of
the stack buffer. To provide this functionality the register file contains five memory
ports. Computation needs two read ports and one write port, the concurrent spill and
fill operations need additional read and write ports. The processor core consists of
following six pipeline stages:

Fetch: Fetch 8 bytes from the instruction cache or 4 bytes from the bus interface
to the 16-byte-deep prefetch buffer.

Decode: Group and precode instructions (up to 7 bytes) from the prefetch buffer.
Instruction folding is performed on up to four bytecodes.

Register: Read up to two operands from the register file (stack cache).



1 Hardware Support for Embedded Java 5

A Java statement

c = a + b;

translates to the following bytecodes:

iload_1
iload_2
iadd
istore_3

Figure 1.2: A common folding pattern that is executed in a single cycle with instruc-
tion folding

Execute: Execute simple instructions in one cycle or microcode for multi-cycle
instructions.

Cache: Access the data cache.
Writeback: Write the result back into the register file.

The integer unit together with the stack unit provides a mechanism, called in-
struction folding, to speed up common code patterns found in stack architectures,
as shown in Figure 1.2. Instruction folding is a technique to merge several stack ori-
ented bytecode instructions into fewer RISC type instructions dynamically. When
all entries are contained in the stack cache, the picoJava core can fold these four
instructions to one RISC-style single cycle operation.

Instruction folding was implemented in picoJava and proposed in several re-
search papers. However, none of the current Java processors implements instruction
folding. The theoretical papers on instruciton folding ignored the complexity of the
folding pattern detection and the influence on the maximum clock frequency (be-
sides the larger chip space). Gruian and Westmijze evaluated the instruction folding
by implementing the proposed algorithms in an FPGA [16]. Their result shows that
the reduced cycle count due to folding is more than offset by the decreased clock
frequency.

picoJava contains a simple mechanism to speed-up the common case for monitor
enter and exit. The two low order bits of an object reference are used to indicate the
lock holding or a request to a lock held by another thread. These bits are examined
by monitorenter and monitorexit. For all other operations on the reference,
these two bits are masked out by the hardware. Hardware registers cache up to two
locks held by a single thread.

To efficiently implement a generational or an incremental garbage collector pi-
coJava offers hardware support for write barriers through memory segments. The
hardware checks all stores of an object reference if this reference points to a dif-
ferent segment (compared to the store address). In this case, a trap is generated and
the garbage collector can take the appropriate action. Additional two reserved bits
in the object reference can be used for a write barrier trap to support incremental
collection. The hardware support for write barriers can also be used for assignment



6 Martin Schoeberl

checks of RTSJ based memory areas [21]. A combination of GC support and RTSJ
assignment checks with the picoJava hardware support is presented in [22].

The distribution of picoJava does not contain a complete JVM and no Java li-
braries. It is expected that picoJava is just the base platform for different variants of
an embedded JVM.

1.2.2 aJile’s JEMCore

aJile’s JEMCore is a Java processor that is available as both an IP core and a stand
alone processor [1, 18]. It is based on the 32-bit JEM2 Java chip developed by
Rockwell-Collins. JEM2 is an enhanced version of JEM1, created in 1997 by the
Rockwell-Collins Advanced Architecture Microprocessor group. Rockwell-Collins
originally developed JEM for avionics applications by adapting an existing design
for a stack-based embedded processor. Rockwell-Collins decided not to sell the chip
on the open market. Instead, it licensed the design exclusively to aJile Systems Inc.,
which was founded in 1999 by engineers from Rockwell-Collins, Centaur Tech-
nologies, Sun Microsystems, and IDT.

The core contains 24 32-bit wide registers. Six of them are used to cache the top
elements of the stack. The datapath consists of a 32-bit ALU, a 32-bit barrel shifter,
and support for floating point operations (disassembly/assembly, overflow and NaN
detection). The control store is a 4K by 56 ROM to hold the microcode that im-
plements the Java bytecode. An additional RAM control store can be used for cus-
tom instructions. This feature is used to implement the basic synchronization and
thread scheduling routines in microcode. This results in low execution overheads
with thread-to-thread yield of less than one µs (at 100 MHz). An optional Multi-
ple JVM Manager (MJM) supports two independent, memory protected JVMs. The
two JVMs execute time-sliced on the processor. According to aJile, the processor
can be implemented in 25K gates (without the microcode ROM). The MJM needs
additional 10K gates.

The first two silicon versions of JEM where the aJ-80 and the aJ-100. Both ver-
sions comprise a JEM2 core, the MJM, 48 KB zero wait state RAM and peripheral
components, such as timer and UART. 16 KB of the RAM is used for the writable
control store. The remaining 32 KB is used for storage of the processor stack. The
aJ-100 provides a generic 8-bit, 16-bit or 32-bit external bus interface, while the
aJ-80 only provides an 8-bit interface. The aJ-100 can be clocked up to 100 MHz
and the aJ-80 up to 66 MHz. The power consumption is about 1mW per MHz.

The third generation of aJile’s Java processor (JEMCore-II) is enhanced with a
fixed-point MAC unit and a 32 KB, 2-way set-associative, unified instruction and
data cache. The latest versions of the aJile processor (aJ-102 [2] and aj-200 [3]),
based on the JEMCore-II, are system-on-chips, including advanced I/O devices,
such as an Ethernet controller, a LCD panel interface, an USB controller, and a
hardware accelerator for encryption/decryption. Both processors are implemented
in 0.18µ and can be clocked up to 180 MHz. The aJ-102 is intended as a network



1 Hardware Support for Embedded Java 7

processor, whereas the aJ-200, with hardware support for image capturing and a
media codec, targets the real-time multimedia market.

The aJile processor is intended for real-time systems with an on-chip real-time
thread manager. The RTOS and all device drivers are written entirely in Java. Fur-
thermore, aJile Systems was part of the original expert group for the RTSJ. How-
ever, the aJile runtime system does not support the RTSJ, but implements their own
version of real-time threads. The aJile processor could be a reasonable platform for
WCET analysis, but no information about the bytecode execution times is disclosed.

1.2.3 Komodo and jamuth

Komodo [28] is a multithreaded Java processor with a four-stage pipeline. It is in-
tended as a basis for research on real-time scheduling on a multithreaded micro-
controller. The unique feature of Komodo is the instruction fetch unit with four
independent program counters and status flags for four threads. A priority manager
is responsible for hardware real-time scheduling and can select a new thread after
each bytecode instruction.

Komodo’s multi-threading is similar to hyper-threading in modern processors
that are trying to hide latencies due to cache misses and branch misspredictions.
However, this feature leads to very pessimistic WCET values if all threads are con-
sidered. For a real-time setting one thread can be given top priority in the hardware
scheduler. The other threads can use the stall cycles (e.g., due to a memory ac-
cess) of the real-time thread. Therefore, a single real-time thread can provide timing
guarantees and the other hardware threads can be used for soft real-time tasks or
for interrupt service threads. Multiple real-time threads are supported by a software
based real-time scheduler.

The Java processor jamuth is the follow-up project to Komodo [65], and is tar-
geted for commercial embedded applications with Altera FPGAs. jamuth is well in-
tegrated in the Alter’s System-on-a-Programmable-Chip builder. The memory and
peripheral devices are connected via the Avalon bus. The standard configuration of
jamuth uses a scratchpad memory for trap routines and the garbage collector. An
additional instruction cache is shared between all hardware threads.

1.2.4 Java Optimized Processor (JOP)

JOP [50] is an implementation of the JVM in hardware, especially designed for
real-time systems. To support hard timing constraints, the main focus of the devel-
opment of JOP has been on time-predictable bytecode execution. All function units,
and especially the interactions between them, are carefully designed to avoid any
time dependencies between bytecodes. This feature simplifies the low-level part of
WCET analysis, a mandatory analysis for hard real-time systems.



8 Martin Schoeberl

Control

JOP

Busy

BC Addr

BC Data

CPU

Scratchpad
memory I/O 

interface

Memory
interface

Data

Extension

Memory
controller
Method
cache

SimpCon

S
im

pC
on

S
im

pC
on

Data

Interrupt

Control

Core pipeline

Bytecode
fetch

Fetch

Decode

Stack

TOS

NOS

Object
cache

Figure 1.3: Block diagram of JOP (from [51])

Figure 1.3 shows the block diagram of JOP. The main components are: the
4-stage pipeline, the memory controller with the method cache [47] and object
cache [53], the extension module for hardware accelerators, and a scratchpad mem-
ory. Main memory and I/O devices are connected via the SimpCon interface to the
CPU core.

JOP dynamically translates the CISC Java bytecodes to a RISC, stack based in-
struction set (the microcode) that can be executed in a 3-stage pipeline. The transla-
tion takes exactly one cycle per bytecode and is therefore pipelined (adding a fourth
pipeline stage). Compared to other forms of dynamic code translation, the transla-
tion in JOP does not add any variable latency to the execution time and is there-
fore time-predictable. Interrupts are inserted in the translation stage as special in-
structions and are transparent to the microcode pipeline. All microcode instructions
have a constant execution time of one cycle. No stalls are possible in the microcode
pipeline. Loads and stores of object fields are handled explicitly. The absence of
time dependencies between bytecodes results in a simple processor model for the
low-level WCET analysis [58].

JOP contains a simple execution stage with the two topmost stack elements as
discrete registers. No write back stage or data forwarding logic is needed. The short
pipeline (4 stages) results in short conditional branch delays and therefore helps to
avoid any hard-to-analyze branch prediction logic or branch target buffer.

JOP introduced a special instruction cache, the method cache [47], which caches
whole methods. With a method cache, only invoke and return bytecodes can result
in a cache miss. All other bytecodes are guaranteed cache hits. The idea to cache



1 Hardware Support for Embedded Java 9

whole methods is based on the assumption that WCET analysis at the call graph
level is more practical than performing cache analysis for each bytecode. Further-
more, loading whole methods also leads to better average case execution times for a
memory with long latency but high bandwidth. The load time depends on the size of
the method. However, on JOP, the cache loading is done in parallel with microcode
execution in the core pipeline. Therefore, small methods do not add any additional
latency to the invoke or return bytecodes. The method cache is also integrated in
the embedded Java processor SHAP [42] and considered for jamuth [65] as a time-
predictable caching solution.1

JOP has it’s own notion of real-time threads that are scheduled with a preemp-
tive, priority based scheduler. In the multi-processor configuration of JOP [40], the
scheduling is partitioned. A thread is pinned to a core and each core has it’s own
scheduler based on a core local timer.

JOP is available in open-source under the GNU GPL. The open-source approach
with JOP enabled several research projects to build upon JOP: a hardware GC im-
plementation [13]; the BlueJEP processor architecture [15] and the first version of
SHAP [43]2 are based on JOP; and JOP has been combined with the LEON pro-
cessor for a real-time Agent computing platform targeting distributed satellite sys-
tems [9]. JOP is also in use in several industrial applications [49, 35]. Furthermore,
the WCET friendly architecture of JOP enabled development of several WCET anal-
ysis tools for Java [19, 7, 23]. The WCET analysis tool WCA is part of the JOP
source distribution [58].

1.2.5 BlueJEP

BlueJEP is a Java processor specified in Bluespec System Verilog (BSV) to evaluate
BSV for system design [15]. BlueJEP’s design starting point was the architecture
of JOP [50]. With respect to the Java build process and microcode, BlueJEP is JOP
compatible. However, the pipeline has a different structure. Six stages are connected
via searchable FIFOs and are as follows: fetch bytecode, fetch microcode, decode
and fetch register, fetch stack, execute, and write back. The last stages contain a
forwarding network. Quite unconventional is the bypass option where the execution
stage can be skipped by individual instructions. BlueJEP can be configured to use a
memory management unit that performs mark-compact based garbage collection in
hardware [14].

1 Personal communication with Sascha Uhrig.
2 The similarity can be found when comparing the microcode instructions of JOP and SHAP. The
microcode instructions of SHAP are described in the appendix of the technical report [43].



10 Martin Schoeberl

1.2.6 Java accelerators

Another approach to speedup Java programs in an embedded system is to enhance a
RISC core with a Java accelerator. The main idea is to support (legacy) C code and
Java code in a single chip. The accelerator can work as translation unit or as a Java
coprocessor. The translation unit substitutes the switch statement of an interpreting
JVM (bytecode decoding) through hardware and/or translates simple bytecodes to a
sequence of RISC instructions on the fly. A coprocessor is placed in the instruction
fetch path of the main processor and translates Java bytecodes to sequences of in-
structions for the host CPU or directly executes basic Java bytecodes. The complex
instructions are emulated by the main processor.

Nozomi’s JA108 [36], previously known as JSTAR, Java accelerator sits between
the native processor and the memory subsystem. JA108 fetches Java bytecodes from
memory and translates them into native microprocessor instructions. JA108 acts as
a pass-through when the core processor’s native instructions are being executed.
The JA108 is targeted for use in mobile phones to increase performance of Java
multimedia applications. The coprocessor is available as standalone package or with
included memory and can be operated up to 104 MHz. The resource usage for the
JSTAR is known to be about 30K gates plus 45 Kbits for the microcode.

Jazelle [4] is an extension of the ARM 32-bit RISC processor, similar to the
Thumb state (a 16-bit mode for reduced memory consumption). A new ARM in-
struction puts the processor into Java state. Bytecodes are fetched and decoded in
two stages, compared to a single stage in ARM state. Four registers of the ARM core
are used to cache the top stack elements. Stack spill and fill is handled automatically
by the hardware. Additional registers are reused for the Java stack pointer, the vari-
able pointer, the constant pool pointer, and locale variable 0 (the this pointer in
methods). Keeping the complete state of the Java mode in ARM registers simplifies
its integration into existing operating systems. The Jazelle coprocessor is integrated
into the same chip as the ARM processor. The hardware bytecode decoder logic is
implemented in less than 12K gates. It accelerates, according to ARM, some 95%
of the executed bytecodes. 140 bytecodes are executed directly in hardware, while
the remaining 94 are emulated by sequences of ARM instructions. This solution
also uses code modification with quick instructions to substitute certain object-
related instructions after link resolution. All Java bytecodes, including the emulated
sequences, are re-startable to enable a fast interrupt response time.

The Cjip processor [17, 26] supports multiple instruction sets, allowing Java,
C, C++ and assembler to coexist. Internally, the Cjip uses 72 bit wide microcode
instructions, to support the different instruction sets. At its core, Cjip is a 16-bit
CISC architecture with on-chip 36 KB ROM and 18 KB RAM for fixed and loadable
microcode. Another 1 KB RAM is used for eight independent register banks, string
buffer and two stack caches. Cjip is implemented in 0.35-micron technology and can
be clocked up to 80 MHz. The JVM of Cjip is implemented largely in microcode
(about 88% of the Java bytecodes). Java thread scheduling and garbage collection
are implemented as processes in microcode. Microcode instructions execute in two
or three cycles. A JVM bytecode requires several microcode instructions. The Cjip



1 Hardware Support for Embedded Java 11

Java instruction set and the extensions are described in detail in [25]. For example:
a bytecode nop executes in 6 cycles while an iadd takes 12 cycles. Conditional
bytecode branches are executed in 33 to 36 cycles. Object oriented instructions such
getfield, putfield or invokevirtual are not part of the instruction set.

1.2.7 Further Java processor projects

Several past and current research projects address execution of Java applications in
hardware. This section briefly introduces those projects.

FemtoJava [6] is a research project to build an application specific Java proces-
sor. The bytecode usage of the embedded application is analyzed and a customized
version of FemtoJava is generated in order to minimize the resource usage.

The jHISC project proposes a high-level instruction set architecture for Java [63].
The processor consumes 15600 LCs and the maximum frequency in a Xilinx Virtex
FPGA is 30 MHz. The prototype can only run simple programs and the performance
is estimated with a simulation.

The SHAP Java processor [72] contains a memory management unit for hard-
ware assisted garbage collection. An additional RISC processor, the open-source
processor ZPU, is integrated with SHAP and performs the GC work [41].

The research project JPOR [10] aims for a Java processor design that is optimized
for the execution of RTSJ programs. It is a typical implementation of a Java proces-
sor combining direct support for simple bytecodes and microcode instructions for
more complex bytecodes.

A Java processor (probably JOP) has been extended to support dual issue of byte-
codes [27]. To simplify the runtime on the Java processor, the system is extended
with a RISC processor [59]. The interface between the RISC processor and the Java
processor is based on cross-core interrupts. A few micro benchmarks provide a com-
parison of the Java processor with an interpreting JVM (Sun’s CVM).

1.2.8 Chip-multiprocessors

Several of the active research projects on Java processors explore chip-multiprocessor
(CMP) configurations. The main focus of the CMP version of JOP [39, 40] is to
keep the CMP time-predictable, even with access to shared main memory. Pitter
implemented a TDMA based memory arbiter and integrated the timing model of the
arbiter into the WCET analysis tool for JOP. Therefore, the JOP CMP is the first
time-predictable CMP that includes a WCET analysis tool.

The multi-threaded jamuth processor uses the Avalon switch fabric to build a
CMP system of a small number of cores [64]. As the jamuth core is already multi-
threaded, the effective supported concurrent threads if 4 times the number of cores.
The evaluation shows that increasing the number of cores provides a better per-



12 Martin Schoeberl

formance gain than increasing the number of threads in one core. For the jamuth
system, the optimum number of threads in one core is two. The second thread can
utilize the pipeline when the first thread stalls in a memory access. Adding a third
thread results only in a minor performance gain.

The CMP version of SHAP contains a pipelined memory arbiter and controller to
optimize average case performance [73]. By using a pipelined, synchronous SRAM
as main memory, the memory delivers one word per clock cycle. On a CMP system
the bottleneck is the memory bandwidth and not the memory latency. Therefore,
this pipelined memory delivers the needed memory bandwidth for the SHAP CMP
system.

With true concurrence on a CMP the pressure on efficient synchronization prim-
itives increases. A promising approach to simplify synchronization at the lan-
guage level and provide more true execution concurrency is transactional memory
(TM) [20]. A real-time TM (RTTM) has been implemented in the CMP version of
JOP [55]. The Java annotation @atomic on a method is used to mark the trans-
action. The code within the transaction is executed concurrent to other possible
transactions. All writes to the memory are kept in a core local transaction buffer
during the transaction. At the end of the transaction that buffer is written atomi-
cally to main memory. When a conflict between transactions occurs, a transaction
is aborted and the atomic section is retried. For real-time systems this retry count
must be bounded [54]. To enable this bound, RTTM is designed to avoid any false
conflict detections that can occur on a cache-based hardware TM.

1.2.9 Discussion

The basic architecture of all Java processors is quite similar: simple bytecodes are
supported in hardware and more complex bytecodes are implemented in microcode
or even in Java. JVM bytecode is stack oriented and almost all instructions oper-
ate on the stack. Therefore, all Java processor provide a dedicated cache for stack
content. The main difference between the architectures is the amount of bytecodes
that are implemented in hardware and the caching system for instructions and heap
allocated data. As the market for embedded Java processors is still small, only the
JEMCore is available in silicon. picoJava is discontinued by Sun/Oracle and the
other processor projects target FPGAs.

Standard Java is too big for embedded systems. The subset defined in the CLDC
is a starting point for the Java library support of embedded Java. JEMCore, jamuth,
JOP, and SHAP support the CLDC. As the CLDC is missing an API for low-level
I/O, all vendors provide their own Java classes or mechanism for low-level I/O (see
next section). CLDC is based on Java 1.1 and is missing important features, such
as collection classes. Therefore, most projects add some classes from standard Java
to the CLDC base. The results in libraries somewhere between CLDC and standard
Java, without being compatible. A new library specification for (classic) embedded
systems, based on the current version of Java, would improve this situation.



1 Hardware Support for Embedded Java 13

Most processors (JEMCore, jamuth, and JOP) target real-time systems. They
provide a real-time scheduler with tighter guarantees than a standard JVM thread
scheduler. As this real-time scheduling does not fit well with standard Java threads,
special classes for (periodic) real-time threads are introduced. None of the runtime
systems supports the RTSJ API. We assume that the RTSJ is too complex for such
resource constraint devices. It might also be the case that the effort to implement
a RTSJ JVM is too high for the small development teams behind the processor
projects. However, with the simpler SCJ specification there is hope that the embed-
ded Java processors will adapt their runtime to a common API.

For real-time systems the WCET needs to be known as input for schedulability
analysis. WCET is usually derived by static program analysis. As the presented pro-
cessor architectures are relative simple (e.g., no dynamic scheduling in the pipeline),
they should be an easy target for WCET analysis. However, only for three proces-
sors the execution time of bytecodes is documented (picoJava, Cjip, and JOP). JOP
is the only processor that is supported by WCET analysis tools.

1.3 Support Technology for Java

Several techniques to support the execution of Java programs have been proposed
and implemented. Most techniques have been introduced in the context of a Java
processor. However, the basic concepts can also be applied to a RISC processor to
enhance execution performance or time predictability of Java applications. In this
section we review support for low-level IO and interrupts, special cache organiza-
tions for heap allocated data, and support for garbage collection.

1.3.1 Low-level I/O and interrupts

Java, as a platform independent language and runtime system, does not support di-
rect access to low-level I/O devices. However, embedded Java systems often consist
only of a JVM without an underlying operations system. In that case, the JVM acts
as the operating system. The different solutions to interface I/O devices and imple-
ment interrupt handlers directly in Java on Java processors and embedded JVMs are
described in the following section.

The RTSJ defines an API for direct access to physical memory, including hard-
ware registers. Essentially one uses RawMemoryAccess at the level of primitive
data types. Although the solution is efficient, this representation of physical mem-
ory is not object oriented. A type-safe layer with support for representing individual
registers can be implemented on top of the RTSJ API. The topic of RTSJ support
for low-level I/O is discussed in detail in Chapter ??.

The RTSJ specification suggests that asynchronous events are used for interrupt
handling. Yet, it neither specifies an API for interrupt control nor semantics of the



14 Martin Schoeberl

handlers. Second level interrupt handling can be implemented within the RTSJ with
an AsyncEvent that is bound to a happening. The happening is a string constant
that represents an interrupt, but the meaning is implementation dependent.

The aJile Java processor [1] uses native functions to access devices. Interrupts are
handled by registering a handler for an interrupt source (e.g., a GPIO pin). Systronix
suggests3 to keep the handler short, as it runs with interrupts disabled, and delegate
the real handling to a thread. The thread waits on an object with ceiling priority
set to the interrupt priority. The handler just notifies the waiting thread through
this monitor. When the thread is unblocked and holds the monitor, effectively all
interrupts are disabled.

On top of the multiprocessing pipeline of Komodo [28] the concept of interrupt
service threads is implemented. For each interrupt one thread slot is reserved for
the interrupt service thread. It is unblocked by the signaling unit when an interrupt
occurs. A dedicated thread slot on a fine-grain multithreading processor results in a
very short latency for the interrupt service routine. No thread state needs to be saved.
However, this comes at the cost to store the complete state for the interrupt service
thread in the hardware. In the case of Komodo, the state consists of an instruction
window and the on-chip stack memory. Devices are represented by Komodo specific
I/O classes.

One option to access I/O registers directly in an embedded JVM is to access
them via C functions using the Java native interface. Another option is to use so
called hardware objects [56], which represent I/O devices as plain Java objects. The
hardware objects are platform specific (as I/O devices are), but the mechanism to
represent I/O devices as Java objects can be implemented in any JVM. Hardware
objects have been implemented so far in six different JVMs: CACAO, OVM, Sim-
pleRTJ, Kaffe, HVM, and JOP. Three of them are running on a standard PC, two on
a microcontroller, and one is a Java processor.

In summary, access to device registers is handled in both aJile and Komodo by
abstracting them into library classes with access methods. This leaves the implemen-
tation to the particular JVM and does not give the option of programming them at
the Java level. Exposing hardware devices as Java objects, as implemented with the
hardware objects, allows safe access to device registers directly from Java. Interrupt
handling in aJile is essentially first level, but with the twist that it may be interpreted
as RTSJ event handling, although the firing mechanism is atypical. Komodo has a
solution with first level handling through a full context shift.

1.3.2 Cache organizations for Java

Java releys heavily on objects allocated on the heap and the automatic memory
management with a garbage collector. The resulting data usage patterns are different

3 A template can be found at http://practicalembeddedjava.com/tutorials/
aJileISR.html



1 Hardware Support for Embedded Java 15

Tag Valid

=

Tag Valid

=

Reference Index

Enc

Hit

Data

Data

Figure 1.4: Object cache with associativity of two and four fields per object
(from [47])

from e.g., C programs. Therefore, a system optimized for the execution of Java
programs can benefit from a specialized cache, an object cache.

Figure 1.4 shows one possible organization of an object cache. The cache is ac-
cessed via the object reference and the field index. In this example figure the associa-
tivity is two and each cache line is four fields long. All tag memories are compared
in parallel with the object reference. Parallel to the tag comparison, the valid bits
for the individual fields are checked. The field index performs the selection of the
valid bit multiplexer. The output of the tag comparisons and valid bit selection is fed
into the encoder, which delivers the selected cache line. The line index and the field
index are concatenated and build the address of the data cache.

One of the first proposals of an object cache [68] appeared within the Mushroom
project [69]. The Mushroom project investigated hardware support for Smalltalk-
like object oriented systems. The cache is indexed by a combination of the object
identifier (the handle in the Java world) and the field offset. Different combinations,
including xoring of the two fields, are explored to optimize the hit rate. The most
effective generation of the hash function for the cache index was the xor of the upper
offset bits (the lower bits are used to select the word in the cache line) with the lower
object identifier bits. Considering only the hit rate, caches with a block size of 32
and 64 bytes perform best. However, under the assumption of realistic miss penalties
caches with 16 and 32 bytes lines size result in lower average access times per field
access.

With an indirection based access to an object two data structures need to be
cached: the actual object and the indirection to that object. In [68], a common cache
for both data structures and a split cache are investigated. As the handle indirection
cache is only accessed when the object cache results in a miss, a medium hit rate on



16 Martin Schoeberl

the handle indirection cache is sufficient. Therefore, the best configuration is a large
object cache and a small handle indirection cache.

Object oriented architecture support for a Java processor is proposed in [67],
including an object cache, extended folding, and a virtual dispatch cache. The object
cache is indexed by (part of) the object reference and the field offset. The virtual
method cache is motivated by avoiding a virtual dispatch table (a very common
implementation approach in OO languages) to save memory for embedded devices.
This cache assumes monomorphic call sites. The cache is indexed by some lower
bits of the PC at the call site. As polymorphic call sites trash the cache, an extension
as a hybrid polymorphic cache is proposed. The whole proposal is based on a very
high level simulation – running some Java applications in a modified, interpreting
JVM (Sun JDK 1.0.2). No estimates on the hardware complexity are given.

A dedicated cache for heap allocated data is proposed in [66]. The object layout
is handle based. The object reference with the field index is used to address the
cache – it is called virtual address object cache. Cache configurations are evaluated
with a simulation in a Java interpreter and the assumption of 10 ns cycle time of the
Java processor and a memory latency of 70 ns. For different cache configurations
(up to 32 KB) average case field access times between 1.5 and 5 cycles are reported.
For most benchmarks, the optimal block size was found to be 64 bytes, which is
quite high for the medium latency (7 cycles) of the memory system. The proposed
object cache is also used to cache arrays. Therefore, the array accesses favor a larger
block size to benefit from spatial locality.

Wright et al. propose a cache that can be used as object cache and as conventional
data cache [71]. To support the object cache mode the instruction set is extended
with a few object-oriented instructions such as load and store of object fields. The
object layout is handle based and the cache line is addressed with a combination of
the object reference (called object id) and part of the offset within the object. The
main motivation of the object cache mode is in-cache garbage collection [70]. The
youngest generation of objects in a generational GC is allocated in the object cache
and can be collected without main memory access.

The possible distinction between different data areas of the JVM (e.g., constant
pool, heap, method area) enables unique cache configurations for a Java processor. It
is argued that a split-cache design can simplify WCET analysis of data caches [52].
For heap allocated objects a time-predictable object cache has been implemented
in JOP [53]. The object cache is organized to cache single objects in a cache line.
The cache is highly associative to track object field accesses in the WCET analysis
via the symbolic references instead of the actual addresses. WCET analysis based
evaluation of the object cache shows that even a small cache with a high associativity
provides good hit rate analyzability [24].



1 Hardware Support for Embedded Java 17

1.3.3 Garbage collection

A real-time garbage collector has to fulfill two basic properties: ensure that pro-
grams with bounded allocation rates do not run out of memory and provide short
blocking times. Even for incremental garbage collectors, heap compaction can be
source of considerable blocking time. Chapter ?? discusses real-time garbage col-
lection in detailed. Here the focus is on hardware support for garbage collection

Nielsen and Schmidt [37] propose hardware support, the object-space manager
(OSM), for real-time garbage collector on a standard RISC processor. The concur-
rent garbage collector is based on [5], but the concurrency is of finer grain than the
original Baker algorithm as it allows the mutator to continue during the object copy.
The OSM redirects field access to the correct location for an object that is currently
being copied. [45] extends the OSM to a GC memory module where a local mi-
croprocessor performs the GC work. In the paper the performance of standard C++
dynamic memory management is compared against garbage collected C++. The au-
thors conclude that C++ with the hardware supported garbage collection performs
comparable with traditional C++.

One argument against hardware support for GC might be that standard processors
will never include GC specific instructions. However, Azul Systems has included a
read barrier in their RISC based chip-multiprocessor system [11]. The read barrier
looks like a standard load instruction, but tests the TLB if a page is a GC-protected
page. GC-protected pages contain objects that are already moved. The read barrier
instruction is executed after a reference load. If the reference points into a GC-
protected page a user-mode trap handler corrects the stale reference to the forwarded
reference.

Meyer proposes in [32, 33] a new RISC processor architecture for exact point-
ers. The processor contains a set of pointer registers and a set of data registers. The
instruction set guarantees correct handling of pointers. Furthermore, the object lay-
out and the stack are both split to pointer containing and data containing regions
(similar to the split stack). A microprogrammed GC unit is attached to the main
processor [34]. Close interaction between the RISC pipeline and the GC coproces-
sor allow the redirection for field access in the correct semi-space with a concurrent
object copy. The hardware cost of this feature is given as an additional word for the
back-link in every pointer register and every attribute cache line. It is not explicitly
described in the paper when the GC coprocessor performs the object copy. We as-
sume that the memory copy is performed in parallel with the execution of the RISC
pipeline. In that case, the GC unit steals memory bandwidth from the application
thread. The GC hardware uses an implementation of Baker’s read-barrier [5] for the
incremental copying algorithm. The cost of the read-barrier is between 5 and 50
clock cycles. The resulting minimum mutator utilization for a time quantum of 1 ms
was measured to be 55%. For a real-time task with a period of 1 kHz the resulting
overhead is about a factor of 2.

The Java processor SHAP [72] contains a memory management unit with a hard-
ware garbage collector. That unit redirects field and array access during a copy op-
eration of the GC unit.



18 Martin Schoeberl

During heap compaction, objects are copied. Copying is usually performed atom-
ically to avoid interference with application threads, which could render the state of
an object inconsistent. Copying of large objects and especially large arrays intro-
duces long blocking times that are unacceptable for real-time systems. In [57] an
interruptible copy unit is presented that implements non-blocking object copy. The
unit can be interrupted after a single word move. The evaluation showed that it is
possible to run high priority hard real-time tasks at 10 kHz parallel to the garbage
collection task on a 100 MHz Java processor.

1.4 Conclusions

To enable Java in resource constraint embedded systems, several projects implement
the Java virtual machine (JVM) in hardware. These Java processors are faster than
an interpreting JVM, but use fewer resources than a JIT compiler. Furthermore, the
direct implementation of the JVM enables WCET analysis at bytecode level.

Java also triggered research on hardware support for object-oriented languages.
Special forms of caches, sometimes called object cache, are optimized for the data
access pattern of the JVM. Garbage collection is an important feature of Java. As
the overhead of GC, especially for an incremental real-time GC, can be quite high
on standard processors, several mechanisms for hardware support of GC have been
proposed.

So far, Java processors failed in the standard and server computing domain. How-
ever, with the Azul system, hardware support for Java within a RISC processor has
now entered the server domain. It will be interesting to see whether hardware sup-
port for Java and other managed languages will be included in mainstream processor
architectures.

With the introduction of the safety-critical Java specification the interest in Java
processors might increase. Java processors execute bytecode, which itself is easier
to analyze. Certification of safety-critical applications will benefit from the direct
execution of Java bytecode as the additional translation steps to C and machine
code are avoided.



References

1. aJile Systems. aj-100 real-time low power Java processor. preliminary data sheet, 2000.
2. aJile Systems. aj-102 technical reference manual v2.4. Available at http://www.ajile.

com/, 2009.
3. aJile Systems. aj-200 technical reference manual v2.1. Available at http://www.ajile.

com/, 2010.
4. ARM. Jazelle technology: ARM acceleration technology for the Java platform. white paper,

2004.
5. H.G. Baker. List processing in real time on a serial computer. Commun. ACM, 21(4):280–294,

1978.
6. A. C. Beck and L. Carro. Low power Java processor for embedded applications. In Pro-

ceedings of the 12th IFIP International Conference on Very Large Scale Integration, pages
213–228, Darmstadt, Germany, December 2003.

7. T. Bogholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K.G. Larsen. Model-based schedu-
lability analysis of safety critical hard real-time Java programs. In Proceedings of the 6th
International Workshop on Java Technologies for Real-time and Embedded Systems (JTRES
2008), pages 106–114, New York, NY, USA, 2008. ACM.

8. G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull. The Real-Time Speci-
fication for Java. Java Series. Addison-Wesley, June 2000.

9. C.P. Bridges and T. Vladimirova. Agent computing applications in distributed satellite sys-
tems. In International Symposium on Autonomous Decentralized Systems, 2009. ISADS ’09,
pages 1 –8, march 2009.

10. Z. Chai, W. Zhao, and W. Xu. Real-time Java processor optimized for RTSJ. In Proceedings
of the 2007 ACM symposium on Applied computing, SAC ’07, pages 1540–1544, New York,
NY, USA, 2007. ACM.

11. C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In Michael Hind and Jan Vitek,
editors, Proceedings of the 1st International Conference on Virtual Execution Environments,
VEE 2005, Chicago, IL, USA, June 11-12, 2005, pages 46–56. ACM, 2005.

12. S. Dey, P. Sanchez, D. Panigrahi, L. Chen, C. Taylor, and K. Sekar. Using a soft core in a SOC
design: Experiences with picoJava. IEEE Design and Test of Computers, 17(3):60–71, July
2000.

13. F. Gruian and Z. Salcic. Designing a concurrent hardware garbage collector for small embed-
ded systems. In Proceedings of Advances in Computer Systems Architecture: 10th Asia-Pacific
Conference, ACSAC 2005, pages 281–294. Springer-Verlag GmbH, October 2005.

14. F. Gruian and M. Westmijze. Bluejamm: A bluespec embedded Java architecture with memory
management. In SYNASC ’07: Proceedings of the Ninth International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pages 459–466, Washington, DC, USA,
2007. IEEE Computer Society.

19



20 References

15. F. Gruian and M. Westmijze. Bluejep: a flexible and high-performance Java embedded pro-
cessor. In JTRES ’07: Proceedings of the 5th International Workshop on Java Technologies
for Real-time and Embedded Systems, pages 222–229, New York, NY, USA, 2007. ACM.

16. F. Gruian and M. Westmijze. Investigating hardware micro-instruction folding in a Java em-
bedded processor. In Proceedings of the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’10, pages 102–108, New York, NY, USA, 2010.
ACM.

17. T.R. Halfhill. Imsys hedges bets on Java. Microprocessor Report, August 2000.
18. D.S. Hardin. Real-time objects on the bare metal: An efficient hardware realization of the Java

virtual machine. In Proceedings of the Fourth International Symposium on Object-Oriented
Real-Time Distributed Computing, page 53. IEEE Computer Society, 2001.

19. T. Harmon. Interactive Worst-case Execution Time Analysis of Hard Real-time Systems. PhD
thesis, University of California, Irvine, 2009.

20. M. Herlihy and J.E.B. Moss. Transactional memory: Architectural support for lock-free data
structures. In Proceedings of the 20th Annual International Symposium on Computer Archi-
tecture, 1993, pages 289–300, 1993.

21. M.T. Higuera-Toledano. Hardware-based solution detecting illegal references in real-time
Java. In Proceedings. 15th Euromicro Conference on Real-Time Systems (ECRTS 2003), pages
229–337, july 2003.

22. M.T. Higuera-Toledano. Hardware support for detecting illegal references in a multiapplica-
tion real-time Java environment. ACM Trans. Embed. Comput. Syst., 5:753–772, November
2006.

23. B. Huber. Worst-case execution time analysis for real-time Java. Master’s thesis, Vienna
University of Technology, Austria, 2009.

24. B. Huber, W. Puffitsch, and M. Schoeberl. Worst-case execution time analysis driven
object cache design. Concurrency and Computation: Practice and Experience, doi:
10.1002/cpe.1763, 2011.

25. Imsys. ISAJ reference 2.0, January 2001.
26. Imsys. Im1101c (the Cjip) technical reference manual / v0.25, 2004.
27. H-J Ko and C-J Tsai. A double-issue Java processor design for embedded applications. In

IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007, pages 3502 –
3505, May 2007.

28. J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and T. Ungerer. Real-time event-handling
and scheduling on a multithreaded Java microcontroller. Microprocessors and Microsystems,
27(1):19–31, 2003.

29. J. Kreuzinger, R. Marston, T. Ungerer, U. Brinkschulte, and C. Krakowski. The komodo
project: thread-based event handling supported by a multithreaded Java microcontroller. In
EUROMICRO Conference, 1999. Proceedings. 25th, volume 2, pages 122 –128 vol.2, 1999.

30. D. Locke, B.S. Andersen, B. Brosgol, M. Fulton, T. Henties, J.J. Hunt, J.O. Nielsen, K. Nilsen,
M. Schoeberl, J. Tokar, J. Vitek, and A.J. Wellings. Safety-critical Java technology specifi-
cation, public draft. Available at http://www.jcp.org/en/jsr/detail?id=302,
2011.

31. M.P. Lun and A.S. Fong. Introducing pipelining technique in an object-oriented processor. In
TENCON ’02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communica-
tions, Control and Power Engineering, volume 1, pages 301 – 305 vol.1, oct 2002.

32. M. Meyer. A novel processor architecture with exact tag-free pointers. In 2nd Workshop on
Application Specific Processors, pages 96–103, San Diego, CA, 2003.

33. M. Meyer. A novel processor architecture with exact tag-free pointers. IEEE Micro, 24(3):46–
55, 2004.

34. M. Meyer. An on-chip garbage collection coprocessor for embedded real-time systems. In
RTCSA ’05: Proceedings of the 11th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’05), pages 517–524, Washington, DC,
USA, 2005. IEEE Computer Society.

35. G. Michel and J. Sachtleben. An integrated gyrotron controller. Fusion Engineering and
Design, In Press, Corrected Proof:–, 2011.



References 21

36. Nazomi. JA 108 product brief. Available at http://www.nazomi.com.
37. K. Nilsen and W.J. Schmidt. Cost-effective object space management for hardware-assisted

real-time garbage collection. ACM Letters on Programming Languages and Systems,
1(4):338–354, December 1992.

38. J. M. O’Connor and M. Tremblay. picoJava-I: The Java virtual machine in hardware. IEEE
Micro, 17(2):45–53, 1997.

39. C. Pitter and M. Schoeberl. Towards a Java multiprocessor. In Proceedings of the 5th Interna-
tional Workshop on Java Technologies for Real-time and Embedded Systems (JTRES 2007),
pages 144–151, Vienna, Austria, September 2007. ACM Press.

40. C. Pitter and M. Schoeberl. A real-time Java chip-multiprocessor. ACM Trans. Embed. Com-
put. Syst., 10(1):9:1–34, 2010.

41. T. B. Preusser, P. Reichel, and R.G. Spallek. An embedded GC module with support for mul-
tiple mutators and weak references. In Christian Müller-Schloer, Wolfgang Karl, and Sami
Yehia, editors, Architecture of Computing Systems - ARCS 2010, 23rd International Confer-
ence, Hannover, Germany, February 22-25, 2010. Proceedings, volume 5974 of Lecture Notes
in Computer Science, pages 25–36. Springer, 2010.

42. T. B. Preusser, M. Zabel, and R.G. Spallek. Bump-pointer method caching for embedded
Java processors. In Proceedings of the 5th International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES 2007), pages 206–210, New York, NY, USA, 2007.
ACM.

43. T.B. Preusser, M. Zabel, and P. Reichel. The SHAP microarchitecture and Java virtual ma-
chine. Technical Report TUD-FI07-02, Fakultaet Informatik, TU Dresden, April 2007.

44. W. Puffitsch and M. Schoeberl. picoJava-II in an FPGA. In Proceedings of the 5th Interna-
tional Workshop on Java Technologies for Real-time and Embedded Systems (JTRES 2007),
pages 213–221, Vienna, Austria, September 2007. ACM Press.

45. W.J. Schmidt and K. Nilsen. Performance of a hardware-assisted real-time garbage collector.
In ASPLOS-VI: Proceedings of the sixth international conference on Architectural support for
programming languages and operating systems, pages 76–85, New York, NY, USA, 1994.
ACM Press.

46. M. Schoeberl. JOP: A Java optimized processor. In On the Move to Meaningful Internet
Systems 2003: Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES
2003), volume 2889 of LNCS, pages 346–359, Catania, Italy, November 2003. Springer.

47. M. Schoeberl. A time predictable instruction cache for a Java processor. In On the Move to
Meaningful Internet Systems 2004: Workshop on Java Technologies for Real-Time and Em-
bedded Systems (JTRES 2004), volume 3292 of LNCS, pages 371–382, Agia Napa, Cyprus,
October 2004. Springer.

48. M. Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Systems. PhD
thesis, Vienna University of Technology, 2005.

49. M. Schoeberl. Application experiences with a real-time Java processor. In Proceedings of the
17th IFAC World Congress, pages 9320–9325, Seoul, Korea, July 2008.

50. M. Schoeberl. A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture, 54/1–2:265–286, 2008.

51. M. Schoeberl. JOP Reference Handbook: Building Embedded Systems with a Java Pro-
cessor. CreateSpace, August 2009. Available at http://www.jopdesign.com/doc/
handbook.pdf.

52. M. Schoeberl. Time-predictable cache organization. In Proceedings of the First International
Workshop on Software Technologies for Future Dependable Distributed Systems (STFSSD
2009), pages 11–16, Tokyo, Japan, March 2009. IEEE Computer Society.

53. M. Schoeberl. A time-predictable object cache. In Proceedings of the 14th IEEE International
Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC
2011), pages 99–105, Newport Beach, CA, USA, March 2011. IEEE Computer Society.

54. M. Schoeberl, F. Brandner, and J. Vitek. RTTM: Real-time transactional memory. In Proceed-
ings of the 25th ACM Symposium on Applied Computing (SAC 2010), pages 326–333, Sierre,
Switzerland, March 2010. ACM Press.



22 References

55. M. Schoeberl and P. Hilber. Design and implementation of real-time transactional memory.
In Proceedings of the 20th International Conference on Field Programmable Logic and Ap-
plications (FPL 2010), pages 279–284, Milano, Italy, August 2010. IEEE Computer Society.

56. M. Schoeberl, S. Korsholm, T. Kalibera, and A. P. Ravn. A hardware abstraction layer in Java.
ACM Trans. Embed. Comput. Syst., accepted, 2010.

57. M. Schoeberl and W. Puffitsch. Non-blocking real-time garbage collection. ACM Trans.
Embedded Comput. Syst., 10(1), 2010.

58. M. Schoeberl, W. Puffitsch, R.U. Pedersen, and B. Huber. Worst-case execution time analysis
for a Java processor. Software: Practice and Experience, 40/6:507–542, 2010.

59. K.N. Su and C.J. Tsai. Fast host service interface design for embedded Java application pro-
cessor. In IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009, pages
1357 –1360, May 2009.

60. Sun. picoJava-II Microarchitecture Guide. Sun Microsystems, March 1999.
61. Sun. picoJava-II Programmer’s Reference Manual. Sun Microsystems, March 1999.
62. Sun Microsystems. Connected limited device configuration 1.1. Available at http://jcp.

org/aboutJava/communityprocess/final/jsr139/, March 2003.
63. Y.Y. Tan, C.H. Yau, K.M. Lo, W.S. Yu, P.L. Mok, and A.S. Fong. Design and implementation

of a Java processor. Computers and Digital Techniques, IEE Proceedings-, 153:20–30, 2006.
64. S. Uhrig. Evaluation of different multithreaded and multicore processor configurations for

soPC. In Koen Bertels, Nikitas J. Dimopoulos, Cristina Silvano, and Stephan Wong, ed-
itors, Embedded Computer Systems: Architectures, Modeling, and Simulation, 9th Interna-
tional Workshop, SAMOS, volume 5657 of Lecture Notes in Computer Science, pages 68–77.
Springer, 2009.

65. S. Uhrig and J. Wiese. jamuth: an IP processor core for embedded Java real-time systems.
In Proceedings of the 5th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2007), pages 230–237, New York, NY, USA, 2007. ACM Press.

66. N. Vijaykrishnan and N. Ranganathan. Supporting object accesses in a Java processor. Com-
puters and Digital Techniques, IEE Proceedings-, 147(6):435–443, 2000.

67. N. Vijaykrishnan, N. Ranganathan, and R. Gadekarla. Object-oriented architectural support
for a Java processor. In Eric Jul, editor, ECOOP, volume 1445 of Lecture Notes in Computer
Science, pages 330–354. Springer, 1998.

68. I. Williams and M. Wolczko. An object-based memory architecture. In Proceedings of the
Fourth International Workshop on Persistent Object Systems, pages 114–130, Martha’s Vine-
yard, MA (USA), September 1990.

69. I.W. Williams. Object-Based Memory Architecture. PhD thesis, Department of Computer
Science, University of Manchester, 1989.

70. G. Wright, M.L. Seidl, and M. Wolczko. An object-aware memory architecture. Technical
Report SML–TR–2005–143, Sun Microsystems Laboratories, February 2005.

71. G. Wright, M.L. Seidl, and M. Wolczko. An object-aware memory architecture. Sci. Comput.
Program, 62(2):145–163, 2006.

72. M. Zabel, T.B. Preusser, P. Reichel, and R. G. Spallek. Secure, real-time and multi-threaded
general-purpose embedded Java microarchitecture. In Prceedings of the 10th Euromicro Con-
ference on Digital System Design Architectures, Methods and Tools (DSD 2007), pages 59–62,
Lübeck, Germany, Aug. 2007.

73. M. Zabel and R.G. Spallek. Application requirements and efficiency of embedded Java byte-
code multi-cores. In JTRES ’10: Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems, pages 46–52, New York, NY, USA, 2010.
ACM.


