
Modeling the Function Cache for Worst-Case Execution
Time Analysis∗

Raimund Kirner
Real-Time Systems Group

Institut fuer Technische Informatik
Technische Universitaet Wien, Austria
raimund@vmars.tuwien.ac.at

Martin Schoeberl
System-on-a-Chip Group

Institut fuer Technische Informatik
Technische Universitaet Wien, Austria
mschoebe@mail.tuwien.ac.at

ABSTRACT
Static worst-case execution time (WCET) analysis is done
by modeling the hardware behavior. In this paper we de-
scribe a WCET analysis technique to analyze systems with
function caches, a special kind of instruction cache that
caches whole functions only. This cache was designed with
the aim to be more predictable for the worst-case than ex-
isting instruction caches. Within this paper we developed a
cache analysis technique for the function cache. One of the
new concepts of this analysis technique is the local persis-
tence analysis, which allows to precisely model the function
cache.

Categories and Subject Descriptors
B.4 [Memory Structures]: Performance Analysis and De-
sign Aids; B.8 [Performance and Reliability]: Perfor-
mance Analysis and Design Aids

General Terms
Performance,Verification

Keywords
worst-case execution time, WCET, cache analysis, function
cache

1. INTRODUCTION
The analysis of the worst-case execution time (WCET) is

mandatory to reason about the timing behavior of safety-
critical real-time systems.

In this paper we describe the WCET analysis for systems
with a function cache [8], a special type of instruction cache
that stores complete functions. This cache organization is

∗This work has been partially supported by the Austrian
Science Fund (Fonds zur Förderung der wissenschaftlichen
Forschung) under contract P18925-N13.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

motivated by the fact that, for example, Java programs usu-
ally consists of short methods and this organization is a bet-
ter predictable choice for real-time systems.

The idea of a function cache is to load complete functions
into the cache instead of filling the cache with individual
blocks on a miss during program execution. The cache is
filled on function calls and returns. This means that all
cache misses are lumped together with a known miss penalty.
All other instructions inside a function are guaranteed hits.
This property also simplifies, and speeds up, the instruction
fetch path in the processor. It is not necessary to access the
tag memory for each instruction. The tag memory is usually
the critical path in a cache access.

The miss penalty depends on the size of the function to
be loaded. For the call instruction the size of the called
function and for the return instruction the size of the caller
determine the cache load time.

The motivation for the function cache is, besides the sim-
pler hardware, to provide a predictable instruction cache
solution for real-time systems. In [11] a simple version of
the function cache has been included into a WCET analy-
sis tool. The miss penalty on a call or return is added to
the control flow graph (CFG) as additional vertices before
the call instruction and after the call instruction. The al-
gorithm considered a function cache that can hold only two
functions. In that case only the leaves of the call tree can
result in a cache hit. This reduction allowed to perform the
cache analysis function local in the CFG.

In this paper we extend WCET analysis to a function
cache that is called variable block cache in [8]. The cache
consists of several blocks similar to cache lines in a tradi-
tional cache. Still whole functions are loaded into the cache.
A function in the cache has to be loaded into consecutive
blocks. A function loaded over the cache end to the cache
start is considered continuous as the cache is addressed with
a modulo counting program counter.

The replacement policy on a cache miss is as follows: A
next pointer indicates the start block for a new function.
After loading the new function the pointer is incremented
by the number of blocks the new loaded functions consumes.
Once a function is partially overwritten, all remaining cache
blocks of this function are marked as empty. This replace-
ment strategy provides an age ordering with respect to the
load time of a function.

The implemented cache can be configured with respect
to the cache size and the block size. A smaller block size
results in a better hit to miss relation, but consumes either
more hardware or more time for the hit detection. In our

A2

access(B)
(miss)

access(B)
(hit)

B1

B2

C1

C2

C3

B1

B2

C1

C2

C3younger

older

age

A1

A2

B1

B2

C1

C2

C3

A1

Figure 1: Update of the function cache. The left scenario shows the cache state update in case that the
access to function B is a hit (no change). The right scenario shows the cache state update in case that the
access to function B is a miss (function C is removed).

example we use a 4 KB function cache with 16 blocks.
The proposed cache was first introduced by Schöberl and

already implemented in hardware for the Java processor
JOP [9] and named method cache [8]. However, the con-
cept can also be applied to a standard RISC processor pro-
grammed in C/C++. The only restrictions are that no
jumps into a function and out of a function are allowed.
The cache handling is part of the call and return instruc-
tion. Furthermore, the length of the function needs to be
stored in the executable. A convenient place to store this
information is one word before the function.

2. MODELLING THE FUNCTION CACHE
In this section we describe how we model the function

cache for WCET analysis. Lets assume that the function
cache has n cache lines; L is the set of cache lines. F is
the set of functions of the program to be analyzed. Each
function f ∈ F is divided into a set Cf of code fractions

by the size of a cache line: |Cf | = � size(f)
size(cache line)

�. The

set of all code fractions of the program is denoted as C:
C =

S
f∈F Cf .

A function reference is a function that maps a function
identifier to its memory blocks: FR : ID �→ F .

2.1 Concrete Cache Semantics
To compare the cache model with the informal descrip-

tion given in Section 1, we first discuss the concrete cache
semantics more formally. To enable a cache analysis algo-
rithm that is similar to others described in the literature, we
represent the cache in a different, but logically equivalent,
form: instead of using a next pointer to determine the posi-
tion where replacement is done, we arrange the cache blocks
according to their age of loading. Thus, when a replacement
is done, the new blocks are added at the place of youngest
age. All already loaded blocks are shifted towards the oldest
age.

To model the cache state we define C′ as the set of
code fractions C extended with the element ⊥ to indicate
a cache line with no valid content: C′ = C ∪ ⊥. Now
we define the concrete state of the cache as Sc : L �→
C′ | ∀�∈L,∀f∈F. Sc(�)∈Cf → (∀m∈Cf ,∃�′∈L. m = Sc(�

′)).
The condition of the concrete cache state expresses the fact

that a function is either loaded completely into the cache or,
in the other case, none of its blocks are loaded.

The state of the function cache is updated each time a
function reference FR occurs (call or return instruction).
The update is described by the update function U : Sc ×
FR �→ Sc, which uses least recently loaded (LRL) as replace-
ment policy. The LRL replacement of also called FIFO (first
in, first out). An intuitive understanding of how U is defined
is intended by the examples of cache updates given in Fig-
ure 1.

2.2 Abstract Cache Semantics
To analyze the cache behavior we use an abstraction of

the concrete cache semantics. In the abstract cache state we
are able to express that multiple blocks may be potentially

loaded at a certain cache line. The abstract cache state eSc is
defined as: eSc : L �→ 2C | ∀�∈L, ∀f∈F,∀m∈eSc(�). m∈Cf →
(∀m′∈Cf , ∃�′∈L. m′∈eSc(�

′)). As with the concrete cache
state, a function may be only loaded completely into the
cache or, in the other case, none of its blocks are loaded.

Depending on the function reference FR, the abstract up-

date function eU transforms an abstract cache state into an-

other one: eU : eSc × FR �→ eSc.
To get a more compact representation of the cache state,

we represent all memory blocks of a function by a single
block, extended with a length attribute. Figure 2 shows an
example of the update of an abstract cache state. As the
function D has a length of 2, the previous cache content is
shifted two steps towards the older age of the cache. As
function A does not fit completely into the cache anymore,

it gets removed from eSc when loading function D.

2.3 Categorization of Cache Behavior
Before doing the path analysis to calculate the WCET we

analyze the cache behavior to classify it into five categories.
These categories are described in Table 1. We do the classi-
fication of the cache behavior by data-flow analysis [1]. The
classification we use is similar to the four categories of [13],
but our cache analysis is different in the sense that only few
instructions update the cache state (function call/return).
The cache analysis in [13] is called abstract interpretation,
but it is also a data-flow analysis.

Category Name Meaning
ah always hit Each access to the cache is a hit.
am always miss Each access to the cache is a miss.
gp globally persistent For the whole program execution, the first access is not classified, but the second all

further accesses are a hit.
lp(ϑ) locally persistent For each entering of a context ϑ, the first access is not classified, but the second all

further accesses are a hit.
nc not classified The access is not classified as one of the categories above.

Table 1: Categorizations of Function Cache behavior

younger

older

age

access(D)
(miss)

{ }

{ }

{ }

{ C/1 }

{ }

{ B/2 }

{ C/1 }

{ D/2 }

{ }{ B/2, A/3 }

Figure 2: Update of abstract function cache.

The data domain of our data-flow analysis is a lattice of

finite height (derived from the abstract cache state eSc). The
abstract update function as well as the join function, which
is described below, are monotonic. Thus, it is guaranteed
that this data-flow analysis will always terminate.

The program contexts for which we do data-flow analysis
are described in Section 3. Data-flow analysis uses at each
node four instances of the data domain: IN, OUT, GEN,
and KILL. The content of GEN and KILL is defined by the
abstract cache semantics, OUT is initialized as ⊥ (empty
cache). The global fixpoint solution of the data-flow analy-
sis is obtained by solving the equations of Equation 1 and
Equation 2 iteratively:

OUT i = (IN i / KILLi) ∪ GEN i (1)

Note that for all nodes i that do not contain a function
reference (all nodes, except function calls and its return lo-
cations) we get KILLi=GEN i=∅ and thus OUT i=IN i.

Besides the update function eU we have to define a join

function eJ to merge two or more abstract cache states:eJ : eSc×eSc �→ eSc. The extension to join more than two states

is defined as follows: eJ (s1, . . . , sn) = eJ (eJ (s1, . . .), sn). As-
suming a node i has n predecessors 1 . . . n, the following
equation is used:

IN i = eJ (OUT1, . . . , OUTn) (2)

As in [13], to obtain the categorization of Table 1 we use

four data-flow analyzes (with different definitions of eJ). To
obtain the cached functions of the combined abstract state,eJ uses either intersection or union operation. The new age
of each cached function is either the maximum or the min-
imum age of the function. The four analyzes are defined as
follows:

Must Analysis: calculates the function references that are

guaranteed to be a cache hit. eJmust uses intersection
and maximum. Each f ∈ FR is categorized as always

hit (ah), if ∃�∈L. (eSc(�)∩Cf) = ∅, where eSc is the set
IN i at the concrete program context i of the function
reference.

May Analysis: calculates the function references that may

be a cache hit. eJmay uses union and minimum.
Each f ∈ FR is categorized as always miss (am), if

∀�∈L. (eSc(�) ∩ Cf) = ∅.

Global Persistence Analysis: calculates the function
references where the first access of the whole program
execution cannot be classified as hit or miss, but each

subsequent access is guaranteed to be a hit. eJgp uses
union and maximum. Global persistence analysis
uses an additional virtual cache line �⊥, which holds
those memory blocks of functions that could have
been removed from the cache [13]. Each f ∈ FR is
categorized as globally persistent (gp), if“
∃� = �⊥. (eSc(�) ∩ Cf) = ∅

”
∧

“
(eSc(�⊥) ∩ Cf) = ∅

”

Local Persistence Analysis: The local persistence anal-
ysis is a generalization of the global persistence analy-
sis. Local persistence analysis calculates the function
references where the first access for each entering of
a context ϑ cannot be classified as hit or miss, but
each subsequent access within the same context ϑ or a
nested context ϑ◦ϑ′ is guaranteed to be a hit, as long
as ϑ is not left. Thus, global persistence analysis is
the special case where the only context ϑ considered
by the analysis is the whole program. There is no spe-
cial constraint of what a program context should be,
as long as the contexts can be hierarchically nested.
For example, a context ϑ◦ϑ′ is a nested context of ϑ.
Defining T as the set of contexts and τ as the set
of context specifiers, a context ϑ ∈ T is thus a chain
(τ1, τ2, τ3, . . .) with τi ∈ τ . The length of a context ϑ is
denoted as |ϑ|, two contexts ϑ1 and ϑ2 are chained to-
gether by ϑ1◦ϑ2. If a chain of context specifiers starts
with the program entry, it is called an absolute context;
otherwise it is called a relative context.

eJlp , the join operation for local persistence analysis,
also uses union and maximum.

Similar to global persistence analysis, local persistence
analysis uses a set of additional cache lines {�ϑ

⊥ | ϑ ∈
Tlp}, where Tlp is the context categorization for finding
local persistency. Note that Tlp may be much coarser
than the contexts of the cache analysis itself (described
in Section 3), especially in the case of having many
contexts for the cache analysis. For example, the pro-
gram representation for data-flow analysis may have

100.000 contexts, but one models Tlp with only 500
different context categories.

An example of an abstract cache state for local persis-
tence analysis is shown in Figure 3. The bars in the
area labelled “removal contexts” represent the cache
lines �ϑ

⊥. For example, �1 .1 .1
⊥ shows that the function

D has been removed from the cache in context 1 .1 .1 .

Each f ∈ FR at context ϑ′ is categorized as locally
persistent within context ϑ (denoted as lp(ϑ)), if

∀ϑ1, ϑ2 ∈ Tlp . ((|ϑ2| ≥ 0) ∧ (ϑ1 = ϑ′◦ϑ2)) →
(Cf ∩ �ϑ1

⊥ = ∅)

Above definition says that a memory reference f is
only locally persistent relative to context ϑ if there is
no inner scope of ϑ where the content of this memory
reference could be removed from the cache.

Furthermore, we require a local persistency to be opti-
mal, i.e., there is no outer scope of ϑ that also classifies
for local persistence:

∀ϑ1, ϑ2 ∈ Tlp . ((|ϑ2| ≥ 1) ∧ (ϑ = ϑ1◦ϑ2)) →
(∃ϑ3 ∈ Tlp . (|ϑ3| ≥ 0) ∧ (Cf ∩ �ϑ1

⊥ = ∅))

1.1.1 1.1.2 1.2.1 1.2.2

1.1 1.2

1

{ }

{ B/2 }

{ }

{ }

{ }

{ }

{D/1} {E/3} { } { }

{F/2}

{ C/3, G/4 }

inner

outer

younger

older

age

context
removal

Figure 3: Abstract cache state for local persistence
analysis.

3. CONTEXTS OF THE CACHE ANALY-
SIS

In Section 2.3 we have discussed how to classify the cache
behavior for different program contexts. What these pro-
gram contexts are is discussed in this section.

The behavior of the function cache depends on the con-
trol flow of the program and may also differ with the call
context of a function. Thus a super graph [6], which is the
combination of the control flow graph (CFG) and the call
graph (CG) of a program, is an interesting start for our pur-
pose of cache analysis. However, to distinguish different call
contexts, inlining is a common technique. To distinguish
different instances of function calls within a loop, unrolling
is used. With inlining and unrolling the result is a so-called
extended super graph (ESG).

In practice, the unrolling and inlining is not done by sim-
ply duplicating the nodes of the super graph, as this explodes
the program size dramatically. Instead, the super graph is
virtually extended by copying only those data elements used
for data-flow analysis. Further, in cache analysis it is not

effective to use techniques like the call-string approach [12]
to distinguish different call contexts [5]. Instead, the typical
technique for cache analysis is to distinguish between the
first access and all remaining accesses [13, 2]. This tech-
nique can be applied for both, separation of loop contexts
and separation of call contexts (in case of direct recursion)
[13].

For a (direct) recursive function call c at context ϑ we
represent the context of the first call as ϑ◦C[c] and all of
its recursive calls as ϑ◦R[c]. Similarly, we denote the con-
text of the first iteration of a loop in context ϑ as ϑ◦F[�]
and for all other iterations as ϑ◦O[�]. Thus each context ϑ
of a node is a sequence of local contexts ϑ1, . . . , ϑn | ϑi ∈
{ C[c], R[c], F[�], O[�] }. The only reason of using different
letters to specify the contexts of loops and the contexts of
function calls is to improve readability.

4. IPET-BASED PATH ANALYSIS
After we have categorized the function cache behavior,

we perform the path analysis by translating the extended
super graph (ESG) of the program into a set of integer linear
programming (ILP) constraints. This technique is called
implicit path enumeration technique (IPET) and is already
described in Puschner et al. for CFGs having control-flow
edges of constant execution time [7]. To solve the constraints
and calculate the WCET bound we use the tool lp solve1.
The unfolded ESG is basically a graph 〈E, N, s〉 where E
is the set of control-flow edges, N is the set of nodes (e.g.,
basic blocks), and s is the distinguished start node. The
goal function to be maximized is of the form

P
e∈E

t(e) · c(e),

where t(e) is a constant that represents the execution time
of edge e and c(e) is one of the flow variables that have to
be calculated from the flow constraints. A simple kind of
flow constraints is of the formX

e∈IN(n)

c(e) =
X

e∈OUT(n)

c(e) (3)

where IN (n), OUT (n) are the incoming and outgoing
control-flow edges of a node n ∈ N .

4.1 Modeling the Function Cache
For modeling the function cache we have to treat a subset

EFR ⊆ E separately, which represents the call edges and
return edges of a function call. For each edge e ∈ EFR we
actually use two edges in the goal function, eh and em, where
em represents a function reference in case of a cache miss
and eh in case of a cache hit. The additional flow constraint
c(em) + c(eh) = c(e) links the cache hits and misses to the
control flow.

Depending on the function cache categorization we have to
generate extra cache constraints. If the edge e of a function
reference is categorized as am respectively ah, we generate
the extra constraint ’c(eh) = 0’ respectively ’c(em) = 0’. If
e is categorized as gp, we generate the additional constraint
’c(eh) ≥ c(e) − 1’, which is in fact a simplified coding of
’c(eh) = c(e) = 0∨(c(e) > 0∧c(eh) = c(e)−1)’, when search-
ing for the maximum of the goal function (WCET bound).
In case of a local persistency lp(ϑ) of an edge e we generate
the additional constraint ’c(eh) ≥ c(e) − (

P
e′∈EIN (ϑ)

c(e′))’,

91freely available at http://groups.yahoo.com/group/lp
solve/files/

Result Measured CalcNC CalcDB CalcVB

Cycles 12340 16238 12988 12468
Rel. +0 % +31.6 % +5.3 % +1.0 %

Table 2: Results of WCET analysis

where EIN (ϑ) describes the set of CFG edges leading from
an outer context into the context ϑ. If e is categorized as
nc, no additional cache constraint is generated.

Maximizing the goal function given in Equation 3 together
with the flow constraints described above, delivers an upper
bound of the WCET.

5. CASE STUDY
We evaluate our function cache analysis on the Java pro-

cessor JOP. JOP is a processor designed to be predictable
with respect to WCET. In [10] it was shown that the WCET
analysis at the microcode level and showed that the exe-
cution time of the bytecode, the instruction set of a Java
virtual machine, can be predicted cycle accurate. There
are no shared processor resources over bytecode boundaries.
Therefore, the processor is free of timing anomalies as found
in current RISC processors [4].

We evaluate our analysis on a small, synthetic benchmark,
consisting of a few functions, two loops and a if statement.
This case study is small enough to precisely measure the
WCET. However, it is still complex enough to show the
benefit of the proposed function cache analysis.

Table 2 compares the results of three different WCET
analyzes absolutely and relatively with the measured WCET
value:

• Column CalcNC shows the WCET value if we assume
that the cache behavior is always a miss (a function
cache that can cache only a single function would be-
have like this).

• Column CalcDB shows the result using a simple mod-
eling of a function cache consisting of only two blocks.
This simple analysis by Schöberl and Perdersen has
been described in [11].

• The result of the WCET analysis using the cache
modeling described in this paper is shown in column
CalcVB .

Even this is a simple case study, allowing us to generate the
ILP constraints manually, it already shows that the function
cache modeling of this paper is superior than the previous
one. The local persistence analysis of this paper will provide
further improvements with case studies of larger size. How-
ever, to analyze the performance of the function cache in
general, and the performance of the local persistence analy-
sis, additional experiments have to be done.

6. RELATED WORK
There exist several approaches of modeling direct-mapped

or set-associative instruction caches for WCET analysis.
Müller et al. used data-flow analysis to mark each instruc-

tion with an instruction cache category. The analysis was
first done for direct-mapped caches [2]. The authors intro-
duced the cache categories first miss, first hit, always miss,

first hit. Caches with unknown behavior where also clas-
sified as always miss. In subsequent research the authors
extended their analysis to set-associative caches.

The implicit path enumeration technique (IPET) based
on integer-linear programming (ILP) was introduced by
Puschner et al. to analyze programs of arbitrary shape [7].

Li et al. combined the path analysis based on the IPET
approach directly with additional ILP constraints describing
the cache behavior. The result was an elegant analysis of
systems with direct-mapped or set-associative instruction
caches [3]. Unfortunately, this combination resulted in quite
high analysis times for real-size caches and programs.

Ferdinand et al. describe an instruction cache analysis,
whose results are used for path analysis based on ILP [13].
The approach of the authors is quite similar to our approach,
as we use a similar cache categorization and a graph un-
folding that is comparable to their VIVU (virtual inlining,
virtual unrolling) approach. The main new concept of our
cache analsis is the local persistence analsis, which has been
developed especially for the function cache.

7. SUMMARY AND CONCLUSION
In this paper we have described an analysis technique to

statically calculate the WCET of systems with a function
cache, a special type of instruction cache that stores whole
functions only. Compared to other methods of instruction
cache modeling we included a special cache categorization,
called local persistency, denoted as lp(ϑ). The local persis-
tency cache categorization has been developed especially to
model the function cache, however, it could be also applied
to the analysis of commonly used cache architectures like
set-associative caches. A first evaluation with a synthetic
case study was done to check that the function cache anal-
ysis method works. The WCET analyzability shown in this
paper provides evidence that the novel function cache is a
promising concept of instruction caching.

Future work is to finish the implementation of the de-
scribed analysis method and then compare it on a collec-
tion of benchmarks with existing methods of modeling set-
associative instruction caches.

8. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,

Principles, Techniques, and Tools. Addison-Wesley,
June 1997. ISBN 0-201-10088-6.

[2] R. D. Arnold, F. Mueller, D. Whalley, and
M. Harmon. Bounding Worst-Case Instruction Cache
Performance. In Proc. 15th Real-Time Systems
Symposium (RTSS), pages 172–181, Brookline,
Massachusetts, Dec. 1994.

[3] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling
for real-time software: Beyond direct mapped
instruction caches. In Proc. 17th Real-Time Systems
Symposium, pages 254–263. IEEE, Dec. 1996.

[4] T. Lundqvist and P. Stenström. Timing anomalies in
dynamically scheduled microprocessors. In RTSS ’99:
Proceedings of the 20th IEEE Real-Time Systems
Symposium, page 12, Washington, DC, USA, 1999.
IEEE Computer Society.

[5] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand.
Experimental comparison of call string and functional
approaches to interprocedural analysis. In Proc. 7th

International Conference on Compiler Construction,
LNCS 1383. Springer, 1998.

[6] E. E. Myers. A precise inter-procedural data flow
algorithm. In Proc. 8th ACM Symposium on Principles
of Programming Languages, pages 219–230, 1981.

[7] P. Puschner and A. V. Schedl. Computing maximum
task execution times – a graph-based approach.
Journal of Real-Time Systems, 13:67–91, 1997.

[8] M. Schoeberl. A time predictable instruction cache for
a Java processor. In On the Move to Meaningful
Internet Systems 2004: Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2004), volume 3292 of LNCS, pages 371–382,
Agia Napa, Cyprus, October 2004. Springer.

[9] M. Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[10] M. Schoeberl. A time predictable Java processor. In
Proceedings of the Design, Automation and Test in
Europe Conference (DATE 2006), pages 800–805,
Munich, Germany, March 2006.

[11] M. Schoeberl and R. Pedersen. WCET analysis for a
Java processor. In Proceedings of the Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2006), Paris, France, October 2006.

[12] M. Sharir and A. Pnueli. Program Flow Analysis:
Theory and Application, chapter 7, Two approaches to
interprocedural data flow analysis, pages 189–233.
Prentice Hall, 1981.

[13] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise WCET prediction by separate cache and path
analyses. Real-Time Systems, 18(2/3), 2000.

