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Abstract 

This paper describes design decisions for JOP, a Java 
Optimized Processor, implemented in an FPGA. FPGA 
density-price relationship makes it now possible to con-
sider them not only for prototyping of processor designs 
but also as final implementation technology. However, 
using an FPGA as target platform for a processor dif-
ferent constraints influence the CPU architecture. Digi-
tal building blocks that map well in an ASIC can result 
in poor resource usage in an FPGA. Considering these 
constraints in the architecture can result in a tiny soft-
core processor. 

1 Introduction 

Common design praxis for embedded systems is us-
ing an of the shelf microcontroller and programming in 
C on top of a small RTOS (real-time operating system). 
The approach of JOP, a Java Optimized Processor, dif-
fers in two ways: 
• The processor is a soft core for an FPGA. FPGAs are 

still expensive compared to microcontroller. Howev-
er, if the processor core is small enough to fit in a 
low-cost FPGA and leaving enough resources free 
for periphery components, chip count can be reduced 
and overall cost will be lower. Combining processor 
and periphery in one FPGA also adds flexibility, 
which is not possible with conventional processors 
(for an example see [1]). This can result in shorter 
development time further reducing cost for low to 
medium volume systems. 

• Java is still seldom used as programming language 
for embedded systems although it offers features in 
the language (like object-oriented, threads and impli-
cit memory protection) that ease application devel-
opment. Threads and synchronization, as part of the 
language, can even result in systems without an un-
derlying RTOS. The main disadvantage of Java on 
small processors is that the JVM (Java Virtual Ma-
chine) [2] has to be implemented as interpreter result-
ing in low performance. JOP implements the instruc-
tion set of the JVM (the so called bytecodes) in 
hardware, minimizing the performance gap between 
C and Java. 

 

The paper is organized as follows: Section 2 gives an 
overview of the architecture of JOP. In section 3 some 
design decisions for the implementation in an FPGA are 
described. One example of the flexibility of an FPGA 
based architecture is given in section 4. 

2 Overview of JOP 

Figure 1 shows the datapath of JOP. In the first pipe-
line stage Java bytecodes, the instructions of the JVM, 
are fetched. These bytecodes are translated to addresses 
in the micro code. Bytecode branches are also decoded 
and executed in this stage. A fetched bytecode results in 
an absolute jump in the micro code (the second stage). If 
the bytecode has a 1 to 1 mapping with a JOP instruc-
tion, a new bytecode is fetched, resulting in a jump in 
the micro code in the next cycle. If the bytecode is a 
complex one JOP continues to execute micro code. At 
the end of this instruction sequence the next bytecode is 
requested. 

The second pipeline stage fetches JOP instructions 
form the internal micro code memory and executes mi-
cro code branches. 

The third pipeline stage performs, besides the usual 
decode function, address generation for the stack ram. 
Since every instruction of a stack machine has ether a 
pop or push characteristics it is possible to generate the 
address for fill or spill for the following instruction in 
this stage.  

In the execution stage operations are performed with 
two discrete registers: TOS and TOS-1. Data between 
stack ram and TOS-1 is also moved (fill or spill) in this 
stage. A stack machine with two explicit registers for the 
two topmost stack elements and automatic fill/spill needs 
neither an extra write back stage nor any data forward-
ing. 

Through full pipelining every JOP instruction takes 
one cycle. Two branch delay slots are available after a 
conditional branch. 

3 Design Decisions 

Every design is influenced by the available tools. The 
same is true for CPU architecture. The first and primary 
implementation of JOP is in an FPGA. 



 
Figure 1: Datapath of JOP

An FPGA consists of two basic building blocks: logic 
elements and memory. A logic element (LE) consists of 
a 4-bit LUT (Look Up Table) and a flip-flop. Memory 
blocks (ESB) are usually small (e.g. 0.5 KB) with inde-
pendent read and write ports of configurable size. These 
two basic elements influence resource usage and speed 
of different design variants. 

3.1 Memory 
Current FPGAs (e.g. from Altera, Xilinx and Actel) 

provide memory blocks with two ports and usually syn-
chronous access. These fast memory blocks are an ideal 
candidate for the register file of a processor. However, a 
pipelined RISC CPU with two operands and a different 
destination register needs two read and one write port. 
This can only be solved by doubling the memory for the 
second read port. A stack, on the other hand, needs only 
one read and one write port. Using a stack architecture 
for JOP has some additional benefits: 
• The JVM is a stack machine resulting in a better 

mapping between JOP instructions and bytecodes. 
• Instruction set is simpler and can be reduced to eight 

bits. This reduces the number of memory blocks ne-
cessary to store micro code  

• No data forwarding is necessary. 
 
The main disadvantage is that all operands have to be 
explicit loaded on the stack. 

3.2 Micro Code 
There is a great variation of Java bytecodes. Simple 

instructions like arithmetic and logic operations on the 
stack are easy to implement in hardware. However, the 
semantics of bytecodes like new or invokestatic can re-
sult in class loading (even over a network) and verifica-

tion. These bytecodes have to be implemented in some 
kind of subroutine. Suns picoJava-II [3] solves this prob-
lem by implementing only a subset of the bytecodes and 
generating a software trap on the more complex. This 
solution results in a constant execution overhead for the 
trap. 

A different approach is used in JOP.  JOP has its own 
instruction set (the so called micro code). Every byte-
code is translated to an address in the micro code that 
implements the JVM. If the bytecode has an equivalent 
JOP instruction, it is executed in one cycle and the next 
bytecode is translated. For more complex JOP just con-
tinues to execute micro code in the following cycles. The 
end of this sequence is coded in the instruction (as the 
nxt bit). This translation needs an extra pipeline stage but 
has zero overheads for complex JVM instructions. 

The example in Figure 2 shows the implementation of 
a single cycle bytecode and a bytecode as a sequence of 
JOP instructions. In this example, ineg takes 4 cycles to 
execute and after the last add the first instruction for the 
next bytecode is executed. 
 
iadd:    add nxt    // 1 to 1 mapping 
isub:    sub nxt 
 
ineg:    ldi –1     // there is no -val 
         xor        // function in the 
         ldi 1      // ALU 
         add nxt    // fetch next bc 

Figure 2: Implementation of iadd, isub and ineg 

The micro code is translated with an assembler to a 
memory initialization file, which is downloaded during 
configuration. No further hardware is needed to imple-
ment loadable micro code. 



3.3 JOP Instruction Fetch 
Figure 3 shows the second pipeline stage of JOP. Mi-

cro code that implements the JVM is stored in the eight 
bit wide memory labeled jvm rom. jpaddr is the starting 
address for the implementation of the bytecode to be 
executed. The table bcfetbl stores the micro code ad-
dresses where a new bytecode or operand has to be 
fetched in the first stage. 
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Figure 3: JOP Instruction Fetch 

Many branch destinations share the same offset. A ta-
ble (offtbl) is used to store these offsets. This indirection 
makes it possible to use only five bits in the instruction 
coding for branch targets and allow larger offsets. 

Three tables bcfetbl, offtbl and jtbl (from the bytecode 
fetch stage) are generated during assembly of the JVM 
code. The outputs are VHDL files. For an implementa-
tion in an FPGA it is no problem to recompile the design 
after changing the JVM implementation. For an ASIC 
with a loadable JVM implementation a more complex 
solution would be necessary. 

Current FPGAs don't allow asynchronous memory 
access. They force us to use the registers in the memory 
blocks. However, the output of these registers is not ac-
cessible. To avoid an additional pipeline stage just for a 
register-register move the read address register is 
clocked on the negative edge. 

A different solution for this problem would be to use 
the output of the multiplexer for pc and the read address 
register. This solution results in a longer critical path 
since the multiplexer cannot longer be combined with 
the flip-flops that form the pc in the same LEs. This is 
another example how implementation technology 
(FPGA) influences architecture. 

4 Utilizing FPGA Flexibility  

Using a hardware description language and loading 
the design in an FPGA the former strict border between 
hardware and software gets blurred. Is configuring an 
FPGA not more like loading a program for execution? 

This looser distinction makes it possible to move 
functions easy between hardware and software resulting 
in a high configurable design. If speed is an issue, more 
functions are realized in hardware. If cost is the primary 
concern these functions are moved to software and a 
smaller FPGA can be used. Let us examine these possi-
bilities on a relative expensive function: multiplication.  

In Java bytecode imul performs a 32 bit signed mul-
tiplication with a 32 bit result. There are no exceptions 
on overflow. Since 32 bit single cycle multiplications are 
far beyond the possibilities of current FPGAs the first 
solution is a sequential multiplier.  

4.1 Sequential Booth Multiplier in VHDL 
Figure 4 shows the VHDL code of the multiplier. 

 
process(clk, wr_a, wr_b) 
 
    variable count  : integer range 0 to width; 
    variable pa     : signed(64) downto 0); 
    variable a_1    : std_logic; 
    alias p         : signed(32 downto 0) is 
                      pa(64 downto 32); 
begin 
    if rising_edge(clk) then 
        if wr_a='1' then 
            p := (others => '0'); 
            pa(width-1 downto 0) := 
signed(din); 
 
        elsif wr_b='1' then 
            b <= din; 
            a_1 := '0'; 
            count := width; 
        else 
            if count > 0 then 
                case std_ulogic_vector'(pa(0), 
a_1) is 
                    when "01" => 
                        p := p + signed(b); 
                    when "10" => 
                        p := p - signed(b); 
                    when others => 
                        null; 
                end case; 
                a_1 := pa(0); 
                pa := shift_right(pa, 1); 
                count := count - 1; 
            end if; 
        end if; 
    end if; 
    dout <= std_logic_vector(pa(31 downto 0)); 
end process; 

Figure 4: Booth Multiplier 

Three JOP instructions are used to access this func-
tion: stopa stores the first operand and stpob stores the 
second operand and starts the sequential multiplier. After 
33 cycles, the result is loaded with ldmul. Figure 5 
shows the micro code for imul. 



imul: 
      stopa   // first operand 
      stopb   // second and start mul 
 
      ldi 5   // 6*5+3 cycles wait 
imul_loop: 
      dup 
      nop 
      bnz imul_loop 
      ldi -1   // decrement in branch slot 
      add 
 
      pop    // remove counter 
      nop    // wait 
      nop    // wait 
 
      ldmul nxt 

Figure 5: Micro Code to Access the Multiplier 

4.2 Multiplication in Micro Code 
If we run out of resources in the FPGA, we can move 

the function to micro code. The implementation of imul 
is almost identical with the Java code in Figure 6 and 
needs 73 JOP instructions. 

4.3 Bytecode imul in Java 
JOP micro code is stored in an embedded memory 

block of the FPGA. This is also a resource of the FPGA. 
We can move the code to external memory by imple-
menting imul in Java bytecode. Bytecodes not imple-
mented in micro code result in a static Java method call 
from a special class (com.jopdesign.sys.JVM). The class 
has prototypes for every bytecode ordered by the byte-
code value. This allows us to find the right method by 
indexing the method table with the value of the byte-
code. Figure 6 shows the Java method for imul. 
public static int imul(int a, int b) { 
 
    int c, i; 
    boolean neg = false; 
    if (a<0) { 
        neg = true; 
        a = -a; 
    } 
    if (b<0) { 
        neg = !neg; 
        b = -b; 
    } 
    c = 0; 
    for (i=0; i<32; ++i) { 
        c <<= 1; 
        if ((a & 0x80000000)!=0) c += b; 
        a <<= 1; 
    } 
    if (neg) c = -c; 
    return c; 
} 

Figure 6: imul in Java 

The additional overhead for this implementation is a 
call and return with cache refills. 

4.4 Implementations Compared 
Table 1 lists the resource usage and execution time 

for the three implementations. Executions time is meas-

ured with both operands negative, the worst-case execu-
tion time for the software implementations. The imple-
mentation in Java loads bytecodes from a slow memory 
interface (8 bit, 3 cycle per byte) into the bytecode 
cache. 
 
 Hardware 

[LE]
Micro code 

[Byte] 
Time 

[Cycle]
VHDL 300 12 37
Micro code 0 73 750 
Java 0 0 ~2300

Table 1: Different implementations of imul 

Only a few lines of code have to be changed to select 
one of the three implementations. The showed principle 
can also be applied to other expensive bytecodes like: 
idiv, ishr, iushr and ishl. As a result, the resource usage 
of JOP is highly configurable and can be selected for 
every application. 

5 Conclusion 

This paper presented an overview of the architecture 
of a Java Optimized Processor. JOP is implemented in 
the low-cost ACEX FPGA [4] from Altera. Memory 
blocks are used to implement the stack, store micro code 
and for caching of Java bytecode. The processor core 
needs less than 2000 LEs and 6 memory blocks. It fits in 
an EP1K50 leaving enough LEs for IO devices. 

Taking the architecture of the FPGA into account 
during VHDL coding, the resulting design can be opti-
mized for an FPGA but can result in poor resource usage 
and speed on a different target platform. Dismissing the 
possibility to transfer the design to silicon leads to new 
options: e.g. generating VHDL code from assembler 
code for an embedded processor. Treating VHDL like a 
software language allows easy movement of function 
blocks between hardware and software. Further informa-
tion, VHDL and Java sources can be found in [5]. 
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