
Design Decisions for a Java Processor

Martin Schoeberl

JOP.design
Strausseng. 2-10/2/55, A-1050 Vienna,

AUSTRIA
martin@jopdesign.com

Abstract

This paper describes design decisions for JOP, a Java
Optimized Processor, implemented in an FPGA. FPGA
density-price relationship makes it now possible to con-
sider them not only for prototyping of processor designs
but also as final implementation technology. However,
using an FPGA as target platform for a processor dif-
ferent constraints influence the CPU architecture. Digi-
tal building blocks that map well in an ASIC can result
in poor resource usage in an FPGA. Considering these
constraints in the architecture can result in a tiny soft-
core processor.

1 Introduction

Common design praxis for embedded systems is us-
ing an of the shelf microcontroller and programming in
C on top of a small RTOS (real-time operating system).
The approach of JOP, a Java Optimized Processor, dif-
fers in two ways:
• The processor is a soft core for an FPGA. FPGAs are

still expensive compared to microcontroller. Howev-
er, if the processor core is small enough to fit in a
low-cost FPGA and leaving enough resources free
for periphery components, chip count can be reduced
and overall cost will be lower. Combining processor
and periphery in one FPGA also adds flexibility,
which is not possible with conventional processors
(for an example see [1]). This can result in shorter
development time further reducing cost for low to
medium volume systems.

• Java is still seldom used as programming language
for embedded systems although it offers features in
the language (like object-oriented, threads and impli-
cit memory protection) that ease application devel-
opment. Threads and synchronization, as part of the
language, can even result in systems without an un-
derlying RTOS. The main disadvantage of Java on
small processors is that the JVM (Java Virtual Ma-
chine) [2] has to be implemented as interpreter result-
ing in low performance. JOP implements the instruc-
tion set of the JVM (the so called bytecodes) in
hardware, minimizing the performance gap between
C and Java.

The paper is organized as follows: Section 2 gives an
overview of the architecture of JOP. In section 3 some
design decisions for the implementation in an FPGA are
described. One example of the flexibility of an FPGA
based architecture is given in section 4.

2 Overview of JOP

Figure 1 shows the datapath of JOP. In the first pipe-
line stage Java bytecodes, the instructions of the JVM,
are fetched. These bytecodes are translated to addresses
in the micro code. Bytecode branches are also decoded
and executed in this stage. A fetched bytecode results in
an absolute jump in the micro code (the second stage). If
the bytecode has a 1 to 1 mapping with a JOP instruc-
tion, a new bytecode is fetched, resulting in a jump in
the micro code in the next cycle. If the bytecode is a
complex one JOP continues to execute micro code. At
the end of this instruction sequence the next bytecode is
requested.

The second pipeline stage fetches JOP instructions
form the internal micro code memory and executes mi-
cro code branches.

The third pipeline stage performs, besides the usual
decode function, address generation for the stack ram.
Since every instruction of a stack machine has ether a
pop or push characteristics it is possible to generate the
address for fill or spill for the following instruction in
this stage.

In the execution stage operations are performed with
two discrete registers: TOS and TOS-1. Data between
stack ram and TOS-1 is also moved (fill or spill) in this
stage. A stack machine with two explicit registers for the
two topmost stack elements and automatic fill/spill needs
neither an extra write back stage nor any data forward-
ing.

Through full pipelining every JOP instruction takes
one cycle. Two branch delay slots are available after a
conditional branch.

3 Design Decisions

Every design is influenced by the available tools. The
same is true for CPU architecture. The first and primary
implementation of JOP is in an FPGA.

Figure 1: Datapath of JOP

An FPGA consists of two basic building blocks: logic
elements and memory. A logic element (LE) consists of
a 4-bit LUT (Look Up Table) and a flip-flop. Memory
blocks (ESB) are usually small (e.g. 0.5 KB) with inde-
pendent read and write ports of configurable size. These
two basic elements influence resource usage and speed
of different design variants.

3.1 Memory
Current FPGAs (e.g. from Altera, Xilinx and Actel)

provide memory blocks with two ports and usually syn-
chronous access. These fast memory blocks are an ideal
candidate for the register file of a processor. However, a
pipelined RISC CPU with two operands and a different
destination register needs two read and one write port.
This can only be solved by doubling the memory for the
second read port. A stack, on the other hand, needs only
one read and one write port. Using a stack architecture
for JOP has some additional benefits:
• The JVM is a stack machine resulting in a better

mapping between JOP instructions and bytecodes.
• Instruction set is simpler and can be reduced to eight

bits. This reduces the number of memory blocks ne-
cessary to store micro code

• No data forwarding is necessary.

The main disadvantage is that all operands have to be
explicit loaded on the stack.

3.2 Micro Code
There is a great variation of Java bytecodes. Simple

instructions like arithmetic and logic operations on the
stack are easy to implement in hardware. However, the
semantics of bytecodes like new or invokestatic can re-
sult in class loading (even over a network) and verifica-

tion. These bytecodes have to be implemented in some
kind of subroutine. Suns picoJava-II [3] solves this prob-
lem by implementing only a subset of the bytecodes and
generating a software trap on the more complex. This
solution results in a constant execution overhead for the
trap.

A different approach is used in JOP. JOP has its own
instruction set (the so called micro code). Every byte-
code is translated to an address in the micro code that
implements the JVM. If the bytecode has an equivalent
JOP instruction, it is executed in one cycle and the next
bytecode is translated. For more complex JOP just con-
tinues to execute micro code in the following cycles. The
end of this sequence is coded in the instruction (as the
nxt bit). This translation needs an extra pipeline stage but
has zero overheads for complex JVM instructions.

The example in Figure 2 shows the implementation of
a single cycle bytecode and a bytecode as a sequence of
JOP instructions. In this example, ineg takes 4 cycles to
execute and after the last add the first instruction for the
next bytecode is executed.

iadd: add nxt // 1 to 1 mapping
isub: sub nxt

ineg: ldi –1 // there is no -val
 xor // function in the
 ldi 1 // ALU
 add nxt // fetch next bc

Figure 2: Implementation of iadd, isub and ineg

The micro code is translated with an assembler to a
memory initialization file, which is downloaded during
configuration. No further hardware is needed to imple-
ment loadable micro code.

3.3 JOP Instruction Fetch
Figure 3 shows the second pipeline stage of JOP. Mi-

cro code that implements the JVM is stored in the eight
bit wide memory labeled jvm rom. jpaddr is the starting
address for the implementation of the bytecode to be
executed. The table bcfetbl stores the micro code ad-
dresses where a new bytecode or operand has to be
fetched in the first stage.

pc ir

jvm rom

brdly

offtbl

jfetch,
br,
pcwait

jpaddr

bcfetbl
jfetch, jopdfetch

1

ir
rd

addr

Figure 3: JOP Instruction Fetch

Many branch destinations share the same offset. A ta-
ble (offtbl) is used to store these offsets. This indirection
makes it possible to use only five bits in the instruction
coding for branch targets and allow larger offsets.

Three tables bcfetbl, offtbl and jtbl (from the bytecode
fetch stage) are generated during assembly of the JVM
code. The outputs are VHDL files. For an implementa-
tion in an FPGA it is no problem to recompile the design
after changing the JVM implementation. For an ASIC
with a loadable JVM implementation a more complex
solution would be necessary.

Current FPGAs don't allow asynchronous memory
access. They force us to use the registers in the memory
blocks. However, the output of these registers is not ac-
cessible. To avoid an additional pipeline stage just for a
register-register move the read address register is
clocked on the negative edge.

A different solution for this problem would be to use
the output of the multiplexer for pc and the read address
register. This solution results in a longer critical path
since the multiplexer cannot longer be combined with
the flip-flops that form the pc in the same LEs. This is
another example how implementation technology
(FPGA) influences architecture.

4 Utilizing FPGA Flexibility

Using a hardware description language and loading
the design in an FPGA the former strict border between
hardware and software gets blurred. Is configuring an
FPGA not more like loading a program for execution?

This looser distinction makes it possible to move
functions easy between hardware and software resulting
in a high configurable design. If speed is an issue, more
functions are realized in hardware. If cost is the primary
concern these functions are moved to software and a
smaller FPGA can be used. Let us examine these possi-
bilities on a relative expensive function: multiplication.

In Java bytecode imul performs a 32 bit signed mul-
tiplication with a 32 bit result. There are no exceptions
on overflow. Since 32 bit single cycle multiplications are
far beyond the possibilities of current FPGAs the first
solution is a sequential multiplier.

4.1 Sequential Booth Multiplier in VHDL
Figure 4 shows the VHDL code of the multiplier.

process(clk, wr_a, wr_b)

 variable count : integer range 0 to width;
 variable pa : signed(64) downto 0);
 variable a_1 : std_logic;
 alias p : signed(32 downto 0) is
 pa(64 downto 32);
begin
 if rising_edge(clk) then
 if wr_a='1' then
 p := (others => '0');
 pa(width-1 downto 0) :=
signed(din);

 elsif wr_b='1' then
 b <= din;
 a_1 := '0';
 count := width;
 else
 if count > 0 then
 case std_ulogic_vector'(pa(0),
a_1) is
 when "01" =>
 p := p + signed(b);
 when "10" =>
 p := p - signed(b);
 when others =>
 null;
 end case;
 a_1 := pa(0);
 pa := shift_right(pa, 1);
 count := count - 1;
 end if;
 end if;
 end if;
 dout <= std_logic_vector(pa(31 downto 0));
end process;

Figure 4: Booth Multiplier

Three JOP instructions are used to access this func-
tion: stopa stores the first operand and stpob stores the
second operand and starts the sequential multiplier. After
33 cycles, the result is loaded with ldmul. Figure 5
shows the micro code for imul.

imul:
 stopa // first operand
 stopb // second and start mul

 ldi 5 // 6*5+3 cycles wait
imul_loop:
 dup
 nop
 bnz imul_loop
 ldi -1 // decrement in branch slot
 add

 pop // remove counter
 nop // wait
 nop // wait

 ldmul nxt

Figure 5: Micro Code to Access the Multiplier

4.2 Multiplication in Micro Code
If we run out of resources in the FPGA, we can move

the function to micro code. The implementation of imul
is almost identical with the Java code in Figure 6 and
needs 73 JOP instructions.

4.3 Bytecode imul in Java
JOP micro code is stored in an embedded memory

block of the FPGA. This is also a resource of the FPGA.
We can move the code to external memory by imple-
menting imul in Java bytecode. Bytecodes not imple-
mented in micro code result in a static Java method call
from a special class (com.jopdesign.sys.JVM). The class
has prototypes for every bytecode ordered by the byte-
code value. This allows us to find the right method by
indexing the method table with the value of the byte-
code. Figure 6 shows the Java method for imul.
public static int imul(int a, int b) {

 int c, i;
 boolean neg = false;
 if (a<0) {
 neg = true;
 a = -a;
 }
 if (b<0) {
 neg = !neg;
 b = -b;
 }
 c = 0;
 for (i=0; i<32; ++i) {
 c <<= 1;
 if ((a & 0x80000000)!=0) c += b;
 a <<= 1;
 }
 if (neg) c = -c;
 return c;
}

Figure 6: imul in Java

The additional overhead for this implementation is a
call and return with cache refills.

4.4 Implementations Compared
Table 1 lists the resource usage and execution time

for the three implementations. Executions time is meas-

ured with both operands negative, the worst-case execu-
tion time for the software implementations. The imple-
mentation in Java loads bytecodes from a slow memory
interface (8 bit, 3 cycle per byte) into the bytecode
cache.

 Hardware

[LE]
Micro code

[Byte]
Time

[Cycle]
VHDL 300 12 37
Micro code 0 73 750
Java 0 0 ~2300

Table 1: Different implementations of imul

Only a few lines of code have to be changed to select
one of the three implementations. The showed principle
can also be applied to other expensive bytecodes like:
idiv, ishr, iushr and ishl. As a result, the resource usage
of JOP is highly configurable and can be selected for
every application.

5 Conclusion

This paper presented an overview of the architecture
of a Java Optimized Processor. JOP is implemented in
the low-cost ACEX FPGA [4] from Altera. Memory
blocks are used to implement the stack, store micro code
and for caching of Java bytecode. The processor core
needs less than 2000 LEs and 6 memory blocks. It fits in
an EP1K50 leaving enough LEs for IO devices.

Taking the architecture of the FPGA into account
during VHDL coding, the resulting design can be opti-
mized for an FPGA but can result in poor resource usage
and speed on a different target platform. Dismissing the
possibility to transfer the design to silicon leads to new
options: e.g. generating VHDL code from assembler
code for an embedded processor. Treating VHDL like a
software language allows easy movement of function
blocks between hardware and software. Further informa-
tion, VHDL and Java sources can be found in [5].

References

[1] M. Schoeberl, Using a Java Optimized Processor in a Real
World Application, In Proc. Workshop on Intelligent So-
lutions in Embedded Systems, Vienna, Austria, June 2003.

[2] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Addison Wesley, 2nd edition, 1999.

[3] Sun Microsystems. picoJava-II Processor Core. Data
Sheet, April 1999.

[4] Altera Corporation, ACEX Programmable Logic Family,
Data Sheet, ver. 1.01, April 2000.

[5] Martin Schoeberl. JOP - a Java Optimized Processor,
available at: http://www.jopdesign.com/

