
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Argo: A Real-Time Network-on-Chip Architecture
With an Efficient GALS Implementation

Evangelia Kasapaki, Martin Schoeberl, Member, IEEE, Rasmus Bo Sørensen, Student Member, IEEE,
Christoph Müller, Kees Goossens, Member, IEEE, and Jens Sparsø, Member, IEEE

Abstract— In this paper, we present an area-efficient, globally
asynchronous, locally synchronous network-on-chip (NoC)
architecture for a hard real-time multiprocessor platform.
The NoC implements message-passing communication between
processor cores. It uses statically scheduled time-division
multiplexing (TDM) to control the communication over a
structure of routers, links, and network interfaces (NIs) to
offer real-time guarantees. The area-efficient design is a result
of two contributions: 1) asynchronous routers combined with
TDM scheduling and 2) a novel NI microarchitecture. Together
they result in a design in which data are transferred in a pipelined
fashion, from the local memory of the sending core to the local
memory of the receiving core, without any dynamic arbitration,
buffering, and clock synchronization. The routers use two-phase
bundled-data handshake latches based on the Mousetrap latch
controller and are extended with a clock gating mechanism to
reduce the energy consumption. The NIs integrate the direct
memory access functionality and the TDM schedule, and use
dual-ported local memories to avoid buffering, flow-control, and
synchronization. To verify the design, we have implemented
a 4 × 4 bitorus NoC in 65-nm CMOS technology and we present
results on area, speed, and energy consumption for the router,
NI, NoC, and postlayout.

Index Terms— Asynchronous design, multiprocessor
interconnection networks, real-time systems, time-division
multiplexing (TDM).

I. INTRODUCTION

IT IS generally agreed that an appropriate architecture
for a multiprocessor system-on-chip (SoC) must support

a globally asynchronous, locally synchronous (GALS) imple-
mentation and that a packet-switched network-on-chip (NoC)
is a good fit to this. The concept of using packet-switched
networks for intrachip communication was introduced
in [1] and [2], and examples of NoC and GALS-based SoCs
are found in [3]–[6].

Manuscript received August 1, 2014; revised November 20, 2014 and
January 20, 2015; accepted February 1, 2015. This work was supported in part
by the European Union Seventh Framework Programme through the project
Time-Predictable Multi-Core Architecture for Embedded Systems under
Grant 288008, and in part by the Danish Research Council for Technology
and Production Sciences through Project “Hard Real-Time Embedded
Multiprocessor Platform - RTEMP” under Contract 12-127600.

E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, and J. Sparsø
are with the Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby 2800, Denmark (e-mail:
evka@dtu.dk; masca@dtu.dk; rboso@dtu.dk; chmy@dtu.dk; jspa@dtu.dk).

K. Goossens is with the Faculty of Electrical Engineering, Eindhoven
University of Technology, Eindhoven 5612 AZ, The Netherlands (e-mail:
k.g.w.goossens@tue.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2015.2405614

Fig. 1. Example of an Argo NoC-based multiprocessor. (a) 2-D mesh
NoC topology. (b) Details of a processor core and its NI. The processor core
consists of the processor itself, several caches, and an SPM.

In this paper, we present a novel GALS architecture for
a general-purpose multiprocessor platform that is intended
specifically for the use in hard real-time systems. The platform
contains one NoC offering access to a shared memory [7] and
one NoC supporting message passing, each of them optimized
for its purpose of use. The focus of this paper is the message-
passing NoC, Argo, whose architecture and implementation
reflect the two main requirements: 1) support for hard
real-time applications and 2) implementation of GALS.

Fig. 1 shows an example of an Argo multiprocessor platform
using a 2-D-mesh topology. Processor cores contain some
amount of local memory, e.g., caches and explicitly managed
scratchpad memories (SPMs). The SPM serves as the source
and target for the message passing between cores. As shown
in Fig. 1(b), the processing cores are connected to the
routers through a network interface (NI). A direct memory
access (DMA) controller in the NI initiates message transfers
from the SPM of one core to the SPM of another, generating a
(NoC specific) packet stream toward the network of routers. A
standard read–write transaction interface (Open Core Protocol
(OCP) [8]) toward the cores is used to set up the DMA
controllers.

In hard real-time systems, it is necessary to guarantee the
worst case execution time (WCET) of a task executing on
a processor as well as the execution time of an application
consisting of a set of communicating tasks that execute on a
set of processors. To enable this, all the components, including

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

the NoC, must be analyzable and time-predictable. Most
published NoCs support only the best effort traffic [9]–[11],
and some NoCs offer multiple priority levels for different
qualities of service [12], [13], but none of these are ade-
quate for hard real-time systems. To avoid interference of
traffic and to obtain full time predictability, the NoC must
provide some form of end-to-end (virtual) circuits, for which
latency and throughput guarantees can be given. Examples
of NoCs in this category—that will be discussed in more
detail in Section II—are: 1) Æthereal and aelite [14] and
2) MANGO [15].

The message-passing NoC in our platform uses statically
scheduled time-division multiplexing (TDM) to implement
end-to-end circuits and support time predictability. The
primary reason for choosing TDM over alternative approaches
for time predictability is simplicity: 1) simplicity of calculating
communication latency and 2) simplicity of the hardware
implementation of the routers—pipelined crossbars (Xbars)
without any circuitry for arbitration or buffering. Intuitively
this simplicity may result in disadvantages as well, for
example: 1) increased complexity of the NIs because they must
now include schedule tables and data buffers and 2) increased
communication latency following from the fact that TDM is
not work-conserving. We have been able to combat the first
drawback by a novel microarchitecture of the NIs. The second
drawback is not an issue in the context of hard real-time
systems where focus is on WCET.

The requirement for a GALS organization and what follows
in terms of synchronization and clock domain crossings greatly
affect the design of the NoC. The typical mindset when design-
ing a GALS-based system is the one of composing modules of
synchronous circuitry using glue components that implement
synchronization or clock domain crossing. With this mindset,
the glue components become overhead. Our architecture uses
components that implement the required functionality to also
implement the mesochronous synchronization and true clock
domain crossing.

TDM requires a common notion of time across the plat-
form to ensure that all NIs and routers in the NoC oper-
ate in sync with the global TDM schedule. This leads
to mesochronous implementations using clocked routers.
Mesochronous means operating on the same frequency with
bounded skew. The typical way of supporting mesochro-
nous synchronization is using mesochronous synchroniz-
ers. These are first-input first-output (FIFO) structures that
are needed in all links of the NoC. In contrast, our
design uses pipelined asynchronous routers. Any asynchronous
pipeline also offers some inherent FIFO capability [16].
By exploiting this combined pipeline and FIFO behav-
ior, we avoid the per-link synchronizers needed in clocked
mesochronous NoCs.

In our design, the network of asynchronous routers is
embedded in a shell of mesochronous NIs that drive the
asynchronous routers below their maximum speed. In every
clock cycle, the NIs transmit and receive a phit (a data token
that can be valid or void) to and from the network of routers.
In combination with the local join-fork (JF) synchronization
that is performed inside the asynchronous routers, this

establishes the synchronicity necessary to implement TDM as
well as the elasticity that is necessary to support a GALS
implementation using mesochronous NIs. At the same time,
data are transferred in a simple pipelined fashion from the local
memory of the sending processor core to the local memory
of the receiving processor core, without passing through
any arbitration, buffering, or clock domain synchronization
circuitry.

Elements of the design have been published previously
in [17]–[20]. The contributions of this paper are as follows.

1) It gives for the first time a detailed presentation of
all aspects of the design. This is important for a full
understanding of the qualities and characteristics of the
design—the originality of the design rests in the combi-
nation of the TDM principle, the NI microarchitecture,
and the asynchronous router, and the way in which
synchronization is handled across mesochronous and
fully asynchronous clock domain boundaries.

2) The design of a new and efficient two-phase bundled-
data router. The router uses the Mousetrap latch
controller [21] and has been extended with a mechanism
that resembles clock gating in order to reduce the energy
consumption when router ports are idle.

3) Synthesis and layout of a complete 4 × 4 bitorus
NoC in a 65-nm CMOS technology. From this, we
derive post place-and-route figures for area, speed, and
energy.

This paper is organized as follows. In Section II, we
present the background and related work in the field of
real-time NoCs, and specifically in the TDM scheme, GALS,
and traditional architectures. In Section III, we present the
overall architecture and the key ideas of our Argo NoC.
In Section IV, we present the new asynchronous router and
NI design. In Section V, we present the schedule generation for
Argo and how to compute the message latency. In Section VI,
we give the implementation details and results showing the
efficiency of the architecture. Finally, the conclusion is drawn
in Section VII.

II. BACKGROUND AND RELATED WORK

This section reviews related work in the area of NoCs for
real-time systems, GALS timing organization, and NI design.

A. Real-Time NoCs

The fact that a NoC is a shared communication medium
comprising multiple, independently arbitrated resources
(routers and links) may severely complicate timing analysis.
The seemingly simple question “what is the latency that the
NoC adds to a read or write transaction toward a memory
in a remote core?” can be very difficult to answer. To give
guarantees on bandwidth and/or latency for individual transac-
tions, some form of end-to-end connection, physical or virtual,
is needed. We decided to implement virtual circuits using
statically scheduled TDM.

Examples of NoCs offering circuit switching with
physical connections are the NoC used in the 4S-
platform [22] that offers initialization-time field-programmable
gate array (FPGA)-style configurable connections and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KASAPAKI et al.: ARGO: REAL-TIME NoC ARCHITECTURE WITH AN EFFICIENT GALS IMPLEMENTATION 3

SoCBUS [23] that implements a dial-up mechanism. In
both cases, connections, when established, own resources
exclusively, and thus they can easily provide real-time
guarantees. The downside is a (potential) low utilization
of resources. Furthermore, in SoCBUS, a dial-up attempt
is not guaranteed to succeed. Our TDM approach makes
more efficient use of resources, sharing them among many
virtual circuits in a time-multiplexed fashion. Moreover,
the predefined static schedule guarantees the connections
defined in it, making the NoC suitable for hard real-time
systems.

The use of virtual circuits allows sharing of resources.
Virtual channels can be implemented in two fundamentally
different ways. One approach is to use TDM, where the
resources (routers and links) are used in a time-multiplexed
fashion according to a static schedule. Examples are
Æthereal [24], aelite [25], Nostrum [26], and
TTNoC [27], [28]. Since the routers operate on a predefined
schedule, there is no arbitration, buffering, and flow control,
resulting in a very simple router implementation. The routers
in our approach also avoid buffering, arbitration, and flow
control.

The other approach is to use nonblocking routers with rate
control [29]. Examples of this approach are the asynchronous
MANGO NoC [15] and the Kalray NoC [30]. In these NoCs,
several connections may share a link, but each connection
has a private (virtual-channel) buffer in every router along
the connection. The Kalray NoC uses static paths for virtual
circuits, constraining them when a throughput limit is reached,
enforcing a throughput rate over a time interval. The downside
of both these designs is the high hardware complexity caused
by the virtual channel buffers and a larger Xbar. The large
Xbar comes from the use of virtual channel buffers and from
the arbitration and flow control needed in every output port.
It is interesting to observe that a typical MANGO router
is 10 times larger than an aelite router [14], [31]. The Argo
router avoids all buffering and hardware complexity from
arbitration resulting in a simpler and more efficient router
implementation.

In a different perspective, other approaches use network
calculus [32], [33] to estimate arrival curves for traffic flows
in order to derive the performance guarantees. Traffic flows
are used in schedulability analysis [34], [35] to solve the
contention problem and to evaluate the throughput of the NoC.
Scheduling techniques attempt to give guarantees by enforcing
throughput limits or by assigning priorities to traffic flows.
The scheduling techniques can be simple (round robin) or
more elaborate (weighted or priority) and they may rely on
network calculus to derive more precise priorities based
on traffic loads [36]. In our opinion, statically scheduled
TDM is a simpler technique, is easier to analyze and
implement, and offers hard real-time guarantees.

A number of recent NoC designs support both packet
switching and circuit switching [37]–[39]. The main
motivation behind these designs is that circuit switching is
used as a means of reducing both power consumption and
end-to-end latency; there is no focus on supporting real-time
traffic. For example, the hybrid NoC developed in [38] requires

a channel reservation phase before using the circuit-switched
NoC resources. Like for SoCBUS discussed above, there are
no guarantees that a circuit can be established.

B. Time-Division Multiplexing

TDM is an arbitration scheme to share resources over
time. TDM partitions time into fixed-duration units called
time slots. A TDM schedule assigns resources to channels
at the granularity of time slots. In this way, different
(end-to-end) virtual circuits with different latency and
bandwidth guarantees can be provided on top of a shared
hardware resource. Nostrum [26] and Æthereal [14] families
of NoCs use TDM. Like most other NoCs, they use packet
switching and wormhole routing—either source routing, with
routing tables in the NIs, or distributed routing, where each
router contains a local routing table.

In every time slot, the TDM router forwards one or more
packets from its input ports to its output ports according
to a static schedule that is predetermined. Thus, it is never
the case that two packets compete for the same output port
of a router at the same time. Since there is no congestion,
there is no need for dynamic arbitration, flow control, and
buffering in the routers. This leads to a very simple router
implementation.

The TDM scheme requires a global notion of time. Since the
entire NoC is operating on a static schedule, all components of
the network, i.e., routers, links, and NIs, are tightly connected.
In a globally synchronous and mesochronous NoC, the global
clock enforces the synchronization. In an asynchronous NoC,
the global synchronicity is maintained by preserving the TDM
schedule at the end points of the network while allowing the
internal synchronicity to be relaxed (local synchronization).
The idea of local synchronization was proposed in [40], but
the implementation of an asynchronous TDM NoC has not
been explored.

The TDM schedule for a TDM NoC is calculated such that
there is no contention and such that bandwidth guarantees
are given for each connection. Deadlock cannot occur, since
packets never wait. TDM scheduling can be applied at the level
of packets, flits (flow-control-digits), or phits. A flit, i.e., the
smallest unit that is individually routed may consist of several
phits, i.e., the basic unit of the physical layer. In Argo, the
terms packet and flit are synonymous, and a packet consists
of three phits.

In the CompSoC [25] platform, the flit size is three phits,
and scheduling is performed at the flit level. Therefore, the
pipeline depth of the TDM router matches the size of a flit,
such that a router can store a whole flit. In addition, the
requirement means that pipeline registers can only be added
or deleted in groups of three.

In contrast to CompSoC, we calculate the schedule at the
phit level. This removes the restriction of matching router and
link pipeline depth to the flit size, offering more flexibility
to optimize the hardware for size or for throughput. Packets
are routed individually and phits of the same packet travel in
immediate succession, but a packet can be scheduled with a
delay of zero, one, or two clock cycles relative to the time slot.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

This scheduler was presented in [20] and is further explained
in Section V-A.

C. GALS Timing Organization

Distributing a clock signal across a chip and achieving
timing closure throughout the whole chip is becoming
increasingly difficult due to parameter uncertainty and
variability [41]. GALS-style architectures reduce these
problems by dividing the design into several independent clock
domains and by implementing some form of asynchronous
communication among these. A NoC-based multiprocessor
platform naturally supports a timing organization where the
processor cores and the NIs constitute separate clock domains.

A mesochronous timing organization represents the first
step away from a globally synchronous design. There are
numerous ways to achieve mesochronous functionality [42]:
1) DSPIN [43] and 2) aelite [14], [25] use bisynchronous
FIFOs [44], [45] on the links between routers. The routers are
clocked with the same clock, but a bounded phase difference
is allowed. The bisynchronous FIFOs are needed in every link
and this has a significant penalty in terms of increased area and
power consumption. The addition of the FIFOs in the aelite
NoC is reported to more than double the area of a router [25].
In contrast to aelite, our design contains FIFOs only between
the NI and the router.

A more straightforward solution would be an entirely
asynchronous implementation of the routers and links.
CHAIN [46], MANGO [15], QNoC [12], and ANoC [10]
are some of the asynchronous NoCs that explore this
approach. Among the asynchronous NoCs mentioned, only
MANGO offers hard real-time guarantees. However, as stated
in Section I, its hardware cost is considerable compared with
the simple TDM-based aelite router.

The solutions proposed above refer to the internal commu-
nication of the packet-switched NoC, i.e., between routers.
Synchronization and timing elasticity are also needed between
the NIs and the packet-switched NoC. For this purpose,
bisynchronous FIFOs can be used between NIs and routers
to provide for synchronization of fully independent clock
domains or for elasticity between mesochronous components.

For these reasons, we decided to explore how to implement
TDM efficiently in a GALS context using an asynchronous
implementation.

D. Network Interfaces and End-to-End Communication

The NIs in a NoC play a key role in implementing
end-to-end data transfer between two communicating
processor cores. Fig. 2 shows a typical multiprocessor
architecture. The figure also shows the points where clock
domain crossing and synchronization are needed in order to
provide a GALS organization using mesochronous routers
and NIs. In this section, we briefly address the overall
architecture, the functionality of the NI, and the end-to-end
data transfer.

As shown in Fig. 2, each processor core contains some
private memory: 1) caches and explicitly managed SPMs
and 2) a DMA controller. The use of SPMs and DMA

Fig. 2. Block diagram of a traditional GALS implementation of
multiprocessor architecture illustrating the end-to-end message passing.

controllers has been adopted in a number of multiprocessors
for embedded systems [25], [47]. The use of SPMs makes
data transfers explicitly visible to the application programmer
and avoids the implicit cost (area, power, and latency) of
using cache memories. The DMA controllers are intended
to implement background DMA-driven block transfers from
the local memory (SPM) of a processor core and into the
local memory (SPM) of a remote processor core. In this way,
program execution in the processor core and data transfer
across the NoC are completely isolated from each other,
offloading the processors and simplifying WCET analysis.

NIs are typically designed with a mindset focusing on
layering, encapsulation, and interfaces, and a general treatment
of this topic as well as descriptions of some specific NI designs
may be found in [48]. A NI is generally divided into a front
end and a back end, as shown in Fig. 2. Toward the attached
core, the front end provides one or more ports implementing
standard bus-style read–write transaction interfaces. The
NI front-end transforms these transactions into some form of
connection-oriented streaming of packets. The NI back end
deals with lower-level issues that are specific for the specific
NoC that is used, e.g., packetization, routing, buffering,
and flow control—often implemented using some form of
credit-based scheme. Read or write transactions involving
larger amounts of data may need to be transmitted as a
sequence of smaller request and/or response packets. The back
end also handles this splitting and reassembly.

Let us now consider in more detail a core-to-core message
transfer. Three autonomous processes perform the message
transfer, as shown in Fig. 2.

1) A DMA controller in the source node transfers the
message data into a buffer in the NI.

2) The NI in the source node packetizes the data and sends
them. The packets traverse the NoC and are received by
the destination NI.

3) A DMA controller in the destination node transfers the
data from the NI and into the SPM.

In a GALS-implementation, where processor cores and
NIs may operate at different and independent clock rates,
the three processes are completely asynchronous and for this



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KASAPAKI et al.: ARGO: REAL-TIME NoC ARCHITECTURE WITH AN EFFICIENT GALS IMPLEMENTATION 5

Fig. 3. Block diagram of the new architecture illustrating the direct
end-to-end message passing.

reason, flow control is needed. Toward the DMA controllers,
the NIs must signal buffer status (full/empty) and between
the NIs, some kind of credit-based flow control is
typically used. In addition to this flow control, the
end-to-end path involves two clock domain crossings (between
the processor cores and their NIs) and FIFO synchronizers
between the mesochronous NIs and the routers. In Fig. 2, these
are marked CDC and S, respectively.

As hinted by the above discussion, the hardware implemen-
tation of NIs can be quite large due to the buffering and flow
control. In many cases, the size of a NI is comparable with the
size of a processor [31]. As described in Section III Argo uses
a novel NI microarchitecture that transfers data from the SPM
in the source node across the NoC and into the destination
SPM without any buffering and flow control.

III. OVERALL ARCHITECTURE

This section presents the overall architecture and the key
underlying ideas, i.e., the integration of DMA controllers in
the NIs, the use of asynchronous routers, and the timing
organization of the entire NoC.

A. Network Interfaces With TDM-Driven DMA Controllers

The very essence of TDM is that it avoids buffering,
flow-control, and dynamic arbitration. This implies that it
should be possible to transfer data all the way from the SPM
of one processor core into the SPM of another processor core
without any buffering, flow control, and dynamic arbitration.
However, as explained in Section II-D and shown in Fig. 2,
this is not the case. The problem is that the DMA controllers
operate autonomously and independently of the
TDM-schedule.

The first key feature of Argo is that we have moved the
DMA controllers from the processor nodes into the NIs,
where they are integrated with the TDM schedule, as shown
in Fig. 3. In a TDM-based NoC, all communication chan-
nels are assigned some time slots in the TDM schedule,
such that each channel has some bandwidth guarantees.
DMA transfers have to be interleaved correspondingly, with
one DMA controller per outgoing channel. On the other hand,
the NI can only inject one packet at a time into the NoC,

Fig. 4. Block diagram showing the microarchitecture of the Argo
asynchronous router and the packet format. For clarity, the request and
acknowledge handshake signals are not shown.

and consequently, only one DMA controller can be active at
a time. This allows a single table-based implementation of all
the DMA controllers, where each entry of the table refers to
one DMA controller, i.e., one outgoing channel.

In addition, the dual-ported SPMs can be used for clock
domain crossing. In this way, explicit clock domain crossings
are needed only to program the DMA controllers; the actual
transfer of message data does not require any synchronization.
The combination of interleaved DMAs and dual-ported SPMs
creates a direct path from the SPM to the network of routers,
avoiding the need for flow control and buffering in the NIs as
well as latency for clock domain crossing for the message
data. Flow control between NIs can be omitted, since the
receiving SPMs always accept incoming transactions, i.e.,
offer a consumption guarantee. As shown in Fig. 3, data are
transferred from the source SPM across the NoC and into
the destination SPM without any buffering, flow control, or
clock domain crossings. The result is a very small and efficient
NI implementation.

Since NIs have the responsibility of enforcing the
TDM schedule, we have chosen a clocked mesochronous
implementation. In contrast to an asynchronous implementa-
tion, a clocked one simplifies the synthesis process and the
task of evaluating WCETs.

B. Asynchronous Argo Router

The second key idea is to use asynchronous routers instead
of clocked mesochronous routers. A clocked mesochronous
router, as used in [25], consists of a clocked router extended
with bisynchronous FIFOs on all input ports. The use of an
asynchronous router avoids the need for FIFOs—the necessary
timing elasticity is provided by the router itself. The result is
that the area and power consumption is reduced significantly,
as we will see later.

The Argo TDM router uses source routing, and in combi-
nation with the TDM scheme, which requires no flow control
or buffering, the routers become very simple and efficient.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

The Argo TDM router, shown in Fig. 4, is an asynchronous
implementation using handshake latches instead of clocked
registers. The router is a three-stage pipeline: 1) link traversal;
2) header parsing unit (HPU); and 3) traversal of the
Xbar switch. A router typically has five ports, and this allows
the construction of mesh-type topologies.

A packet consists of three phits, i.e., one header phit and
two payload phits, as shown in Fig. 4. A phit is the basic unit
that is held in a pipeline stage. Each phit is a 32-bit data word
along with three control bits, indicating whether the phit is
valid or not (vld), the start of packet, and the end of packet,
respectively. The header phit contains the destination write
address and the route that the packet follows. The route is
encoded with 2 bits for every hop the packet traverses.

Each input port has an HPU that extracts 2 bits from
the route to be decoded to a 4 bit one-hot encoding, selecting
the destination output port of the router. At the same time, the
HPU shifts the route field of the header phit two positions to
align the header for the next router along the path. The path
through the Xbar is locked until the last phit of the packet has
propagated through the Xbar.

The overall timing behavior of a structure of these
asynchronous routers is fundamentally different from a
clocked synchronous (or mesochronous) design. Lacking
a clock to explicitly define the time slots of the
TDM scheduling, the asynchronous router design enforces this
synchronization in an implicit and distributed manner using a
strongly indicating [49] implementation of the Xbar switch
in the router. In every handshake cycle, the Xbar consumes
a phit on each input channel (join), and in every handshake
cycle, it outputs a phit on all output channels (fork). With this
JF mechanism of the Xbar, it is possible to mimic the ticking
of a global clock, but this is done in a self-timed distributed
manner that avoids enforcing synchronization to a clock signal
inside every router.

For a given TDM schedule, there will be slots where no
traffic is scheduled on some links and router ports. At the
same time, the synchronization in the Xbar is achieved through
handshaking on all input ports in every cycle. For this reason,
we use two types of phits: 1) valid phits and 2) void phits.
Void phits are transmitted on ports and links where no traffic is
scheduled in a given cycle, and, as explained in Section IV-A,
we use clock gating in individual router ports to save power
when void phits are propagated.

C. Timing Organization

Argo supports a GALS organization with independently
clocked processor cores and mesochronous NIs, and the
NI clock is the time base for the TDM scheduling. The
asynchronous routers provide the timing elasticity necessary to
cover for skew among the mesochronous NIs. As will be clear
from the following text, the interfaces between the asynchro-
nous routers and the NIs do not require synchronization. The
only clock domain crossing where synchronization is required
is between the processor and the DMA controllers in the NIs.
This interface is only used to set up the DMA controllers; the
actual transfer of data from a source SPM, across the NoC, and

Fig. 5. (a) Asynchronous FIFO connecting a mesochronous producer–
consumer pair. (b) Influence of skew (positive or negative) on the speed of
the FIFO.

into a destination SPM happens without any synchronization.
It is this property in combination with the use of statically
scheduled TDM that renders all buffering and flow control
unnecessary and thereby results in a very simple, small, and
efficient design.

The skew between the NIs includes not only clock
skew but also the skew related to the deassertion of reset.
In combination, these two factors result in skew among the
TDM slot counters in the different NIs. This skew can exceed
one cycle. As explained below, we use the inherent ripple
FIFO nature of the network of asynchronous routers and links
to accommodate such skew.

Fig. 5(a) shows a mesochronous producer–consumer pair
connected by an asynchronous ripple FIFO. Being mesochro-
nous, the producer and the consumer operate at the same
rate. If the FIFO is initialized to a state where it is neither
completely full nor completely empty, it can accommodate
some amount of skew between the producer and the consumer.
Assuming an upper bound on the skew, it is possible to
determine a FIFO depth that ensures that the FIFO never runs
completely full or completely empty. This again means that
the FIFO never stalls completely; it will be able to input and
output data at some minimum rate. Under the assumption that
the frequency of the clock signal driving the mesochronous
producer and consumer is lower than this minimum data rate
of the FIFO, the handshake signals Ack_in and Req_out can
be ignored, as shown in Fig. 5(a). The corresponding timing
assumptions Req_in(i) ≺ Ack_in(i+1) and Req_out(i) ≺
Ack_out(i) (where i enumerates the sequence of handshake
cycles) can always be satisfied by setting the clock frequency
to a sufficiently low value.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KASAPAKI et al.: ARGO: REAL-TIME NoC ARCHITECTURE WITH AN EFFICIENT GALS IMPLEMENTATION 7

Fig. 6. FIFO-based model of the structure of the Argo NoC.

The speed of an asynchronous FIFO that is being used in a
context where the producer and consumer operate at the same
rate depends on the number of FIFO-stages per data item.
The speed of the FIFO is at a maximum when the number
of stages per data item matches the dynamic
wavelength, Wd [49], as shown in Fig. 5(b). If, due to
skew, the FIFO becomes fuller or emptier, it will exhibit
a slowdown. As long as the slowdown does not cause the
handshake cycle time of the FIFO to become larger than
the period of the clock, the arrangement in Fig. 5(a) is
safe, meaning that the FIFO delivers data to the consumer
well before the next clock tick and that the FIFO is ready
to receive data from the producer well before the data are
actually delivered at the next clock tick.

These are the key ideas underlying the architecture, and the
design does not require any form of synchronization in the
interfaces between the producer and the FIFO and between
the FIFO and the consumer. The exact amount of skew that
a particular FIFO implementation can tolerate depends on
the number of stages in the FIFO, the initial number of
data items in the FIFO, the frequency of the clock, and the
technology used for the implementation (worst case corner and
operating conditions). A slower clock gives more headroom for
skew-induced slowdown of the FIFO. Using realistic gate and
link delays, we found that for our design, Wd ≈ 1.5. For
this reason, we decided for a three-stage router initialized
to hold two data items. As packets are three phits long, it
follows that packets traverse routers in an unaligned fashion
and for this reason, we use phit-level scheduling instead of
packet-level scheduling. The scheduler is further discussed
in Section V-A.

The timing behavior of a complete Argo NoC can be under-
stood as a mesh of FIFOs connected by JF synchronization
points, as shown in Fig. 6. The JF nodes represent the strongly

Fig. 7. Argo handshake latch consisting of three blocks: Mousetrap controller,
gating block, and normal data enable latch.

indicating Xbars in the routers. As shown in Fig. 4, a router
has two pipeline stages before the Xbar and one pipeline stage
after the Xbar. This structure can be recognized in Fig. 6.

To balance the design and increase skew tolerance, we have
added additional pipeline stages on the local port that connects
an NI to its router. Our preferred design has one FIFO stage
in the channel from an NI to a router and two FIFO stages
in the channel from a router to an NI. This provides ample
time elasticity and it makes the mesh-structure symmetric—
all FIFO segments contain three pipeline stages initialized to
hold two tokens—a fact that simplifies the timing analysis.

We conducted an analysis to evaluate the elasticity of Argo,
i.e., the phase difference that can be tolerated at the end
points of the NoC and the mesochronous NIs. The details
of the analysis can be found in [19]. The results show that
a 2 × 2 instance of Argo can tolerate up to three clock
cycles of skew, depending on the operating frequency. This
implies that, at the layer of NIs, Argo can tolerate a shift
in the TDM schedule of more than one clock cycle without
compromising the correct behavior of the NoC.

IV. DESIGN

In this section, we describe the details of the router design,
the NI design, and how to initialize the Argo NoC.

A. Router

As shown in Fig. 4, the Argo TDM router is a
three-stage pipeline. The pipeline stages use two-phase
bundled-data handshake-latches [49] that are implemented
using conventional enable latches and a Mousetrap
controller [21], as shown in Fig. 7. The Mousetrap controller
was chosen after studying a range of alternative designs [18],
as it is very efficient, small, fast, and easy to implement.
As shown in Fig. 7, the Mousetrap controller consists
of a conventional latch and an XNOR gate. No special
asynchronous cells, such as C-elements, are used. The entire
router contains only two C-elements. These are in the Xbar
where they implement the join and fork functionality. They
are not on the critical path and are implemented using
conventional logic gates.

We have extended the Mousetrap controller with a clock-
gating scheme in order to reduce power consumption.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. Block diagram showing the microarchitecture of the Argo NI design.

The phits forwarded with the asynchronous handshaking may
represent either valid phits or void phits, indicated by the valid
bit (vld) in the packet format. In the case of a void-phit, the
latch-enable signal that controls all the data latches is disabled.
This functionality is implemented by the gating block shown
in Fig. 7. This block uses the latch that is already part of the
handshake latch to hold the vld bit of the phit and an additional
logic gate to provide the gating. The cost of the additional gate
is minimal, as a buffer is anyway needed to drive the enable
signals to all the data latches.

Having a three-stage bundled-data design, the Argo router
uses three delay elements: one matching the link delay, one
matching the HPU combinational logic, and one matching
the Xbar logic. To cover delay fluctuations from process
variations, we added a safety margin of 20%. This value is
typical and is discussed in [50] for a 65-nm CMOS process
operating at 1 V. If a chip is to be fabricated, the margin has to
be verified. The delays were implemented as a series of buffers
and inverters of the same technology. A repeated process
of setting the delay elements, synthesizing and generating a
layout, analyzing the timing, and adjusting the delay elements
leads to timing closure of the design.

B. Network Interface

Fig. 8 shows the design of the NI. The key elements of the
microarchitecture are the slot counter, slot table, DMA table,

and SPM. The TDM schedule is stored in the slot table,
while the route information for every channel is stored in the
DMA table. The slot counter is reset and it is incremented in
all NIs using the same (mesochronous) clock. The slot counter
defines the current slot in the TDM period. The slot counter
indexes a slot table, where each entry consists of a valid bit and
an index into the DMA table. The valid bit indicates whether
or not this time slot is assigned to an outgoing channel. If the
valid bit is true, the entry also holds a pointer to the relevant
entry in the DMA table. An entry in the DMA table holds
all the registers that are found in a normal DMA controller
(control bits, a read pointer, a write pointer, and a word count).
In addition, source routing requires the route for a remote
transaction, which is also included in the DMA entry. When
a DMA is active, the data are read from the SPM starting at
the read pointer address. At the destination, the received data
are written straight to the SPM at the write pointer address.
The read and write of the SPM are done on the NI clock, as
the SPM is dual ported.

Since Argo uses phit level scheduling, it follows that packets
and TDM time slots are not aligned. The NIs support this
misalignment by a controlled phase shift (relative to the
three cycle TDM slot) of packets leaving the NI. This phase
shift can be zero, one, or two clock cycles, and it is encoded
by 2 bits in the slot table entries (not shown in Fig. 8).
In the incoming path, a buffer stores the write address and
the two words of payload data of arriving packets in a buffer



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KASAPAKI et al.: ARGO: REAL-TIME NoC ARCHITECTURE WITH AN EFFICIENT GALS IMPLEMENTATION 9

until the clock cycle allocated for writing the double word to
the SPM.

The NIs are mesochronously clocked components, and the
clock signal in a NI is used to drive the handshaking on
the interfaces toward the asynchronous router, as explained
in Section III-C. The connection from the NI toward the router
is similar to the interface between the producer and the FIFO
in Fig. 5 and the connection from the router toward the NI is
similar to the interface between the FIFO and the consumer
in Fig. 5. Delay elements are added to the request signal to
ensure the bundling constraint.

The NI has two interfaces toward the processor side. Both
follow the OCP specification [8] and both support single word
read and write transactions. One interface is used to configure
the NI and to write commands to and read status from the
DMA controllers. If the processor core and the NI are in
different clock domains, a clock domain crossing is required
on this interface. The second interface is for the data payload
and is toward the SPM. Using standard OCP to interface the
processor with the NI provides decoupling form the processor
design and simplifies integration.

C. Initialization of Argo

Initialization of Argo involves resetting of the asynchronous
routers and links and the synchronous NIs, and configuring
the NIs with the desired TDM schedule. The resetting is done
using a global reset signal. In the routers, this initialize void
phits in the pipeline stages marked with solid tokens in Fig. 6.

Lacking phits in segments connecting the NIs to the
J/F nodes in Fig. 6, the network of routers and links is in
a deadlock state; the Xbars (the J/F nodes) in the routers
are waiting for phits from the local router ports. This allows
the reset signal to be deasserted with any amount of skew.
When reset is deasserted, the free-running TDM counters in
the NIs start. After a small and fixed number of cycles, the NIs
inject two void phits (illustrated by unfilled tokens in Fig. 6)
into the network before entering the steady state where they
input and consume a phit in every cycle.

At this point, each processor loads the schedule into its NI.
This involves writing the slot table entries and the route
column in the DMA table. The schedule is obtained from the
shared memory that is accessed using a memory-tree network
(not discussed in this paper). A barrier-synchronization imple-
mented using the shared memory is used to determine when
all NIs have been configured. The NoC is now ready for use.

To send a message across a virtual channel, the processor
sets up the corresponding DMA controller. This involves
writing the read address for the source SPM, the write address
for the destination SPM, the word count, and finally setting
a start control bit. The processor can check the status of the
transfer by reading the word counter.

V. SCHEDULING AND MESSAGE LATENCY

A. Scheduling

We developed a tool to generate the static TDM schedule for
the Argo NoC [20]. For each application that is executed on a
multiprocessor system, the workload is distributed into tasks,

which are then mapped to a set of processors for execution.
Depending on the mapping of tasks to processors, certain
pairs of processors have particular bandwidth requirements.
The bandwidth requirements between all pairs of processors
give the overall communication requirement that needs to be
scheduled.

In TDM, the bandwidth and the wait time for at time slot are
inversely proportional. If the message is larger than what can
be sent in one TDM period, then the message latency depends
mainly on the allocated bandwidth. Increasing the number of
time slots in a TDM period for a specific communication
channel makes the time between consecutive time slots shorter,
thus decreasing the wait time.

As mentioned in Section III-C, the router design and the
packet length require scheduling to be done at the level of
phits. The main advantage of such phit scheduling is that
it allows more freedom in pipelining the design. The design
can be pipelined holding single additional tokens, rather than
multiples of three additional tokens, keeping the hardware cost
low.

The scheduler produces a communication schedule at the
level of phits, with the requirements that communication
channels are only routed on the shortest paths, links are only
allocated to one communication channel in any time slot,
and all communication channels in the input specification
are routed. These three requirements ensure in-order arrival
of packets, that no packets collide, and that no channels are
starved from access to the network, respectively. The schedule
contains the route that each packet shall follow and the time
slot in which each packet shall leave the NI.

The scheduler always creates a schedule that implements the
communication channel specified in the bandwidth graph, but
in some cases, the period of the created schedule is so long
that the network frequency it requires to run is higher than
the maximum frequency of the network. This means that the
application should be restructured or a larger platform should
be used.

As an example, we have generated an all-to-all schedule
with equal bandwidth for the example platform of 4 × 4 nodes.
For this configuration, the TDM period is 23 time slots.
This schedule is used in the evaluation of the complete
4 × 4 Argo NoC.

B. Latency Analysis

When programming a real-time application using Argo,
the worst case latency Lmsg of sending a message from one
processor to another is the primary concern. We show below
how to calculate this latency using a simplified version of
the equations from [51] that do not assume any particular
distribution of slots in a schedule, and we derive numbers for
the presented platform with an all-to-all schedule with equal
bandwidth between all cores.

Lmsg is the latency, in NI clock cycles from the time the
source processor has set up a DMA to the time the destination
processor has received the full message. Lmsg consists of
two parts: 1) the time to send all packets into the network
and 2) the time for the last packet to travel from the source to
the destination. The time to send all packets into the network



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I

WORST CASE MESSAGE LATENCY IN A 4 × 4 BITORUS

NETWORK FOR DIFFERENT MESSAGE SIZES

is the waiting time for a time slot plus the number of TDM
periods needed to send the whole message; the formula is

Lmsg =
(

Twait +
⌈

Smsg − Spkt

Schan

⌉
· Psched

)
· Cslot + H · D (1)

where Twait is the worst case waiting time until the first packet
has been injected to the network toward the destination, Smsg is
the size of the transmitted message, Spkt is the number of
payload bytes in a packet, Schan is the number of payload
bytes that can be sent in one TDM period from the source
processor to the destination processor, Psched is the length of
the TDM schedule, Cslot is the number of clock cycles in a
TDM slot, H is the number of hops from the source to the
destination processor, and D is the number of phits that can
be stored in one hop.

For the presented 4 × 4 core platform, Spkt is 8 bytes,
Cslot is 3 clock cycles, H is maximally 5 hops, and D is
2 phits. With an all-to-all schedule for this platform, Twait is
the full TDM period of 23 time slots, Schan is 8 bytes, and
Psched is 23 time slots. The remaining variable is the size of
a message. We see that the worst cast message latency Lmsg
is simple to calculate and does not depend on the behavior
of other processors. Table I shows Lmsg for different message
sizes on the presented platform under the above assumptions.
With the values from Table I, we can see that it takes
∼9 cycles per byte to transmit. This latency can be reduced
by generating an application specific schedule.

VI. RESULTS AND DISCUSSION

The Argo NoC is operational and has been used in the
T-CREST project by two industry partners [52]. Hard real-time
applications from two industry domains (a railway application
and several applications from the avionics domain) have been
ported to use the Argo NoC message passing instead of shared
memory communication. The improvement on the WCET has
been reported in [52] and is outside the scope of this paper.
In this section, we focus on the evaluation of the Argo NoC.

To evaluate and characterize Argo, we have implemented its
individual components, i.e., the asynchronous router and NI,
as well as a complete 4 × 4 instance of the Argo NoC,
including the NIs, the asynchronous routers, and the additional
FIFO stages, as described in Sections III and IV. The designs
were described in VHDL, synthesized in an STMicroelec-
tronics 65-nm CMOS technology library, and laid out in a
floor plan. The NI was additionally implemented in FPGA
technology using an ALTERA DE2-70 FPGA board with a
Cyclone II EP3C70 chip. We used Synopsys Design Compiler
for synthesis, ModelSim for simulation, SoC Encounter for
layout, Synopsys Prime Time for power analysis, and Altera
Quartus for the FPGA implementation.

TABLE II

RESULTS FOR THE ROUTER IMPLEMENTATIONS

A. Router

The Argo router, being an asynchronous design, requires
special treatment through the design flow. We used conven-
tional design tools and synthesized with an aim for speed, but
we applied special constraints for synthesis and optimization
of the design. We applied local timing constraints that aim
to optimize the combinational logic of each pipeline stage
and to place delay elements in the request lines to match the
combinational logic of every stage as required by the bundled-
data protocol.

Before deciding for a particular router design, we explored
a number of alternatives, including a clocked mesochronous
design [18]. Table II shows postsynthesis and postlayout
results for frequency, area, and power consumption for all
the router designs. The designs shown in Table II are a
mesochronous router with the characterization of resources
spent on the router and FIFOs, a 2-phase bundled-data router
(2ph-bd), a gated 2-phase bundled-data router (2ph-bd-g), and
the Argo router (Argo).

The cell area of the Argo router is 7715 µm2, as the
first column of Table II shows, which is significantly smaller
than the mesochronous version. The mesochronous router
consists of a synchronous router that has an area comparable
to the Argo router (8026 µm2) and FIFOs on every link
that creates a large area overhead (16 213 µm2). Alternative
implementations of the input FIFOs are possible but still create
a considerable area overhead. The area of the Argo router is
similar to the other asynchronous designs. The 2ph-bd router
and the gated version (2ph-bd-g) consume about the same area,
as the gating uses logic gates that are already required in the
nongated design. The small area difference, 2ph-bd-g router
is 1% smaller than 2ph-bd router, is due to heuristics applied
by the synthesis tool.

The second and fourth columns show the frequency
achieved postsynthesis and postlayout in an environment of
eager producers and consumers. The Argo router is faster, due
to its simple controller implementation. Finally, the energy
per cycle consumed in the routers was evaluated based on the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KASAPAKI et al.: ARGO: REAL-TIME NoC ARCHITECTURE WITH AN EFFICIENT GALS IMPLEMENTATION 11

TABLE III

AREA OF DIFFERENT NI CONFIGURATIONS IMPLEMENTED

IN 65-nm CMOS std. CELL TECHNOLOGY

switching activity by simulating test cases of different link
utilization. The third and fifth columns of Table II show the
energy per cycle for link utilization of 0%, 70%, and 100%.
The energy consumption of the Argo router is much lower
than the mesochronous router and in general lower than the
other designs that use gating. Additional energy is saved on
idle traffic.

B. Network Interface

The NI was synthesized in 65-nm CMOS technology for
different NoC sizes. Table III shows figures for two instances
of the NI, one for a 2 × 2 and one for a 4 × 4 NoC.
With all-to-all communication requirements, NIs need one
DMA controller, i.e., one outgoing channel per processor. The
number of time slots indicates the length of the TDM schedule
period required for the communication. The increased cell
area of the second instance compared with the first is due to
the increased number of DMAs and the bigger schedule. The
frequency achieved by the NI for the 2 × 2 NoC is ∼1 GHz.
The frequency of the NI for the 4 × 4 NoC is roughly
the same, as it is not affected by the different sizes of the
tables.

There are surprisingly few papers addressing the design
of NIs, and often the area measures reported can be difficult
to compare. Notable exceptions include [25], [53], and [54].
Implementation results of a specific aelite NoC instance
designed for a TV-set platform [55] are presented
in [25, Sec. 8.1]. This instance comprises 6 routers
and 11 NIs and supports 45 bidirectional channels, and was
synthesized in 90-nm technology. Buffers in the NIs related
to the channel end points account for 85% of the area of the
entire NoC [25]. Depending on the buffer implementation, the
average area of one NI is calculated to 0.49 mm2, 0.22 mm2,
or 0.13 mm2. These figures do not include DMA controllers
that are normally placed in the processors. We implemented
an instance of our NI, which avoids the buffers, in 90-nm
technology for comparison. Including DMA controllers, the
area of our NI is 0.024 mm2; a significantly smaller figure.

For a generalized, technology-independent comparison,
Saponara et al. [53] reports area measures for typical-size
NIs to range from 7 to 50 kgates—a gate being a minimum
size two-input NAND. The area of a typical NI instance for
the original Æthereal NoC [54], supporting both GS and
BE traffic, corresponds to 21 kgates [53]. Considering the
area of a minimum drive-strength two-input NAND cell to
be 4.4 µm2, the total size of the Argo NI, including the
DMA table, corresponds to 5.5 kgates; a significantly smaller
figure.

TABLE IV

AREA FIGURES FOR A SELECTION OF NI IMPLEMENTATIONS WHEN

SYNTHESIZED FOR AN ALTERA EP2C70 FPGA

The static TDM schedule and the channel information need
tables in each NI. For each message-passing channel, one entry
in the DMA table in the NI of the sending core is needed.
With more cores, we expect more channels used per core.
For the TDM schedule, one table needs to be sized to the
maximum length of the TDM period. With the number of
cores increasing, the number of all communication channels
increases, and the TDM period increases. To explore the cost
of these tables and the scalability with the number of cores, we
synthesized different NI configurations to an FPGA. Table IV
shows the resource consumption of a single NI for different
configurations. Small memories can be implemented in flip-
flops; larger ones use the FPGA on-chip memories. Looking
at the three configurations with 16, 32, and 64 cycles TDM
periods and the 16, 32, and 64 DMA channels, we see a linear
increase of the table with ∼1, 2, and 4 kb of memory for the
DMA and slot tables. These three configurations should be a
good fit for 16, 32, and 64 multiprocessor systems. Compared
with local memory requirements for the communication SPM
and caches for the processor cores, these tables <1 kB are of
negligible size and we conclude that the NI design scales well
up to medium-sized many cores.

C. Complete 4 × 4 Argo NoC

To test the entire design of the Argo, a 4 × 4 instance
in a bitorus topology was synthesized in 65-nm technology.
The design includes 16 NIs, 16 routers, and the local FIFOs
between NIs and routers (input/output FIFO). The NIs for
this design includes 16 DMA controllers to serve one channel
per processor, and 23 time slots, for an all-to-all schedule.
We also generated a layout of the design to consider the
wireload effects after place-and-route. To provide a more
realistic example, tiles of 1.5×1.5 mm2 have been defined. The
2-D bitorus topology of the NoC has been folded to even out
link lengths. Details of the layout process are presented in [58].

The first section of Table V presents the area breakdown
after place and route, revealing 75% share for the NI.
The 18% of the area is attributed to the routers, while
the FIFOs contribute only 2%. The links contribute 6%,
due to the buffers that the tool added to drive the
links.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V

POST PLACE AND ROUTE AREA BREAKDOWN AND ENERGY

DISTRIBUTION FOR THE 4 × 4 ARGO

The second section of Table V presents the distribution
of the energy per cycle. The captured test case was set up
to transmit four packets of random data from every node to
every other node based on an all-to-all schedule. This synthetic
application models eager traffic producers and consumers. This
setup results in average link utilization of 23% as measured
during simulation. The table shows that the majority of the
energy is consumed by the NIs, with a share of roughly 47%,
and by the link driving buffers contributing ∼40%. The routers
contribute only ∼10% of the energy, a fact attributed to the
gating used in the routers.

Performance evaluation of the overall 4 × 4 instance
after layout presents a performance degradation to 450 MHz
from 746 MHz achieved in the synthetic environment of
eager consumers and producers used for the analysis shown
in Table II. This is due to the more realistic environment as
well as the delays added by the wires. Adding pipeline stages
might be a feasible way to overcome the latter limitation.

The aelite [25], as a virtual circuit switching TDM-based
NoC, is a comparable approach to the Argo NoC. The
implementation results of an example platform are shown
in [25, Sec. 8.1]. The area of this platform, including
6 routers, 11 NIs, and 45 bidirectional channels, synthesized in
a 65-nm technology library is calculated to be 2.5 mm2.
The area of our 4 × 4 implementation of Argo, including
16 routers, 16 NIs, and 240 unidirectional channels (all-to-all),
in the same technology is 0.72 mm2, as shown in Table V.
Overall, the implementation numbers are not directly compa-
rable, as the configurations differ. Nevertheless, from the above
results, we can conclude that depending on the configuration
(DMA controllers, TDM schedule, and number of FIFOs) the
Argo NoC is roughly 3.5 times smaller.

D. Source Access

We provide the whole NoC, scripts to synthesize
it, and the scheduling tool in open source with the
industry-friendly BSD license. The NoC can be found
at https://github.com/t-crest/argo and the scheduler at
https://github.com/t-crest/poseidon.

E. Future Work

The current version of Argo, especially the NIs, supports
homogeneous architectures with standard processors con-
nected to the NIs. However, the requirements for digital signal

processing (e.g., fast Fourier transform) are better handled by
dedicated components than by a general-purpose processor.
An extension of the Argo NI will be to support heteroge-
neous multiprocessor architectures with application-specific
accelerators. We started to explore the use of accelerators with
the Argo NoC by developing an integration technique [57].
The approach mimics the processor interface by finite
state machines to implement transmit and receive streaming
channels and to manage the accelerator tasks execution.

Currently, the finishing of a transfer can be queried from the
NI by reading out device registers. While this form of polling
is a viable technique for hard real-time systems, soft real-time
systems can benefit avoiding polling and receiving an interrupt
on message transfer. We will extend the NI to deliver interrupts
on end of transmitting or receiving a message.

VII. CONCLUSION

This paper presented the Argo NoC; a statically scheduled,
time-division-multiplexed NoC supporting message passing
among processors in a multiprocessor platform optimized for
use in hard real-time systems. Argo supports a GALS timing
organization using independently clocked processor cores and
mesochronous NIs.

NoCs are typically designed with a mindset of
encapsulation and layering, and resources for buffering, flow
control, and clock domain synchronization normally account
for a significant fraction of the implementation cost (area).
Argo avoids almost all of this. A novel NI design that
integrates DMA controllers and the TDM scheduling, and the
use of asynchronous routers instead of clocked mesochronous
routers, has resulted in a design in which messages are
transferred end-to-end without any buffering, flow control, or
synchronization.

In this paper, we have presented the architecture, design,
implementation, and layout of Argo, and provided extensive
results characterizing speed, area, and power. To complete the
picture, the paper also briefly covered TDM scheduling and the
end-to-end latency seen by communicating processor cores.

The message passing is completely time-predictable and
the message end-to-end latency statically analyzable. The
Argo NoC is at least 3.5 times smaller than existing designs
with similar functionality. This makes Argo a communication
solution suited to future multiprocessor systems for hard
real-time applications.

ACKNOWLEDGMENT

The authors would like to thank the T-CREST and RTEMP
project partners for their support, and J. Rodrigues and
O. Andersson from the Department of Electrical and
Information Technology, Lund University, for their help with
the EDA tools.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. Design Autom. Conf., Jun. 2001,
pp. 684–689.

[2] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KASAPAKI et al.: ARGO: REAL-TIME NoC ARCHITECTURE WITH AN EFFICIENT GALS IMPLEMENTATION 13

[3] F. Clermidy et al., “A 477 mW NoC-based digital baseband for MIMO
4G SDR,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers,
Feb. 2010, pp. 278–279.

[4] J. Howard et al., “A 48-core IA-32 processor in 45 nm CMOS using
on-die message-passing and DVFS for performance and power scaling,”
IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 173–183, Jan. 2011.

[5] L. A. Plana et al., “SpiNNaker: Design and implementation of a GALS
multicore system-on-chip,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 7, no. 4, 2011, Art. ID 17.

[6] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in Proc. Design, Autom. Test Eur. (DATE),
Mar. 2012, pp. 983–987.

[7] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A time-
predictable memory network-on-chip,” in Proc. 14th Int. Workshop
Worst-Case Execution Time Anal. (WCET), 2014, p. 53.

[8] Accellera Systems Initiative. (2013). Open Core Protocol Speci-
fication, Release 3.0. [Online]. Available: http://www.accellera.org/
downloads/standards/ocp/ocp_3.0/

[9] F. G. Moraes, A. Mello, L. Möller, L. Ost, and N. L. V. Calazans,
“A low area overhead packet-switched network on chip: Architecture
and prototyping,” in Proc. IFIP/IEEE Int. Conf. Very Large Scale
Integr. (VLSI-SOC), Dec. 2003, pp. 318–323.

[10] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An
asynchronous NOC architecture providing low latency service and its
multi-level design framework,” in Proc. 11th IEEE Int. Symp. Asynchron.
Circuits Syst. (ASYNC), Mar. 2005, pp. 54–63.

[11] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini,
“Xpipes: A latency insensitive parameterized network-on-chip architec-
ture for multi-processor SoCs,” in Proc. IEEE 30th Int. Conf. Comput.
Design (ICCD), Sep. 2012, pp. 45–48.

[12] R. Dobkin, V. Vishnyakov, E. Friedman, and R. Ginosar, “An asyn-
chronous router for multiple service levels networks on chip,” in Proc.
11th IEEE Int. Symp. Asynchron. Circuits Syst. (ASYNC), Mar. 2005,
pp. 44–53.

[13] T. Felicijan and S. B. Furber, “An asynchronous on-chip network router
with quality-of-service (QoS) support,” in Proc. IEEE Int. Syst.-Chip
Conf. (SOCC), Sep. 2004, pp. 274–277.

[14] K. Goossens and A. Hansson, “The Æthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), Jun. 2010, pp. 306–311.

[15] T. Bjerregaard and J. Sparsø, “Scheduling discipline for latency and
bandwidth guarantees in asynchronous network-on-chip,” in Proc.
11th IEEE Int. Symp. Asynchron. Circuits Syst. (ASYNC), Mar. 2005,
pp. 34–43.

[16] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6,
pp. 720–738, Jun. 1989.

[17] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An area-efficient network
interface for a TDM-based network-on-chip,” in Proc. Design, Autom.
Test Eur. (DATE), Mar. 2013, pp. 1044–1047.

[18] E. Kasapaki, J. Sparsø, R. B. Sørensen, and K. Goossens, “Router
designs for an asynchronous time-division-multiplexed network-on-
chip,” in Proc. Euromicro Conf. Digital Syst. Design (DSD), Sep. 2013,
pp. 319–326.

[19] E. Kasapaki and J. Sparsø, “Argo: A time-elastic time-division-
multiplexed NOC using asynchronous routers,” in Proc. 20th IEEE Int.
Symp. Asynchron. Circuits Syst. (ASYNC), May 2014, pp. 45–52.

[20] R. B. Sørensen, J. Sparsø, M. R. Pedersen, and J. Højgaard, “A meta-
heuristic scheduler for time division multiplexed networks-on-chip,” in
Proc. IEEE/IFIP Workshop Softw. Technol. Future Embedded Ubiquitous
Syst. (SEUS), Jun. 2014, pp. 309–316.

[21] M. Singh and S. Nowick, “MOUSETRAP: High-speed transition-
signaling asynchronous pipelines,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 15, no. 6, pp. 684–698, Jun. 2007.

[22] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit,
“An energy-efficient reconfigurable circuit-switched network-on-chip,”
in Proc. 19th IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
Apr. 2005, p. 155a.

[23] D. Wiklund and D. Liu, “SoCBUS: Switched network on chip for
hard real time embedded systems,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), Apr. 2003, p. 78a.

[24] K. Goossens, J. Dielissen, and A. Rădulescu, “Æthereal network on
chip: Concepts, architectures, and implementations,” IEEE Des. Test.
Comput., vol. 22, no. 5, pp. 414–421, Sep./Oct. 2005.

[25] A. Hansson and K. Goossens, On-Chip Interconnect With
Aelite/Composable and Predictable Systems. New York, NY, USA:
Springer-Verlag, 2011.

[26] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within the
nostrum network on chip,” in Proc. Design, Autom. Test Eur. (DATE),
Feb. 2004, pp. 890–895.

[27] M. Schoeberl, “A time-triggered network-on-chip,” in Proc. Int. Conf.
Field-Program. Logic Appl. (FPL), Aug. 2007, pp. 377–382.

[28] C. Paukovits and H. Kopetz, “Concepts of switching in the time-
triggered network-on-chip,” in Proc. 14th IEEE Int. Conf. Embedded
Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2008, pp. 120–129.

[29] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
Oct. 1995.

[30] M. Harrand and Y. Durand, “Network on chip with quality of ser-
vice,” U.S. Patent 8 619 622, Dec. 31, 2013. [Online]. Available:
http://www.google.com/patents/US8619622

[31] J. Sparsø, “Networks-on-chip for real-time multi-processor systems-on-
chip,” in Proc. Int. Conf. Appl. Concurrency Syst. Design (ACSD),
Jun. 2012, pp. 1–5.

[32] J.-Y. Le Boudec, “Application of network calculus to guaranteed service
networks,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1087–1096,
May 1998.

[33] M. Bakhouya, S. Suboh, J. Gaber, and T. El-Ghazawi, “Analytical mod-
eling and evaluation of on-chip interconnects using network calculus,”
in Proc. 3rd ACM/IEEE Int. Symp. Netw.-Chip (NOCS), May 2009,
pp. 74–79.

[34] S. Zheng, A. Burns, and L. S. Indrusiak, “Schedulability analy-
sis for real time on-chip communication with wormhole switching,”
Int. J. Embedded Real-Time Commun. Syst., vol. 1, no. 2, pp. 1–22,
May 2010.

[35] L. S. Indrusiak, “End-to-end schedulability tests for multiprocessor
embedded systems based on networks-on-chip with priority-preemptive
arbitration,” J. Syst. Archit., vol. 60, no. 7, pp. 553–561, 2014.

[36] Y. Qian, Z. Lu, and Q. Dou, “QoS scheduling for NoCs: Strict priority
queueing versus weighted round robin,” in Proc. IEEE Int. Conf.
Comput. Design (ICCD), Oct. 2010, pp. 52–59.

[37] M. Modarressi, H. Sarbazi-Azad, and M. Arjomand, “A hybrid packet-
circuit switched on-chip network based on SDM,” in Proc. Conf. Design,
Autom. Test Eur. (DATE), Apr. 2009, pp. 566–569.

[38] G. Chen et al., “16.1 A 340 mV-to-0.9 V 20.2 Tb/s source-synchronous
hybrid packet/circuit-switched 16×16 network-on-chip in 22 nm tri-
gate CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers (ISSCC), Feb. 2014, pp. 276–277.

[39] P. Ou et al., “A 65 nm 39 GOPS/W 24-core processor with 11 Tb/s/W
packet-controlled circuit-switched double-layer network-on-chip and
heterogeneous execution array,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers (ISSCC), Feb. 2013, pp. 56–57.

[40] K. Goossens, J. Dielissen, A. Radulescu, E. Rijpkema, and P. Wielage,
“Electronic device and a method for arbitrating shared resources,”
WO Patent 2 006 092 768, Sep. 8, 2006.

[41] The International Technology Roadmap for Semiconductors. (2011).
ITRS 2011 Edition—Design. [Online]. Available: http://www.itrs.net/

[42] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[43] I. M. Panades, A. Greiner, and A. Sheibanyrad, “A low cost network-
on-chip with guaranteed service well suited to the GALS approach,” in
Proc. 1st Int. Conf. Nano-Netw. (Nano-Net), Sep. 2006, pp. 1–5.

[44] I. M. Panades and A. Greiner, “Bi-synchronous FIFO for synchronous
circuit communication well suited for network-on-chip in GALS archi-
tectures,” in Proc. IEEE/ACM Int. Symp. Netw.-Chip (NOCS), May 2007,
pp. 83–92.

[45] P. Wielage, E. J. Marinissen, M. Altheimer, and C. Wouters, “Design
and DfT of a high-speed area-efficient embedded asynchronous FIFO,”
in Proc. Design, Autom. Test Eur. (DATE), Apr. 2007, pp. 1–6.

[46] J. Bainbridge and S. Furber, “Chain: A delay-insensitive chip area
interconnect,” IEEE Micro, vol. 22, no. 5, pp. 16–23, Sep./Oct. 2002.

[47] B. Flachs et al., “The microarchitecture of the synergistic processor for
a cell processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 63–70,
Jan. 2006.

[48] D. Berozzi, “Network interface architecture and design issues,” in
Networks on Chips, G. DeMicheli and L. Benini, Eds. San Mateo, CA,
USA: Morgan Kaufmann, 2006, ch. 6, pp. 203–284.

[49] J. Sparsø, “Asynchronous circuit design—A tutorial,” in Principles
of Asynchronous Circuit Design—A Systems Perspective, J. Sparsø
and S. Furber, Eds. Norwell, MA, USA: Kluwer, 2001, chs. 1–8,
pp. 1–152.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[50] J. Liu, S. M. Nowick, and M. Seokl, “Soft MOUSETRAP: A bundled-
data asynchronous pipeline scheme tolerant to random variations at ultra-
low supply voltages,” in Proc. IEEE 19th Int. Symp. Asynchron. Circuits
Syst. (ASYNC), May 2013, pp. 1–7.

[51] O. Gangwal, A. Rădulescu, K. Goossens, S. G. Pestana, and
E. Rijpkema, “Building predictable systems on chip: An analysis
of guaranteed communication in the Æthereal network on chip,” in
Dynamic and Robust Streaming in and Between Connected Consumer-
Electronic Devices (Philips Research), P. van der Stok, Ed. Amsterdam,
The Netherlands: Springer-Verlag, 2005, vol. 3, pp. 1–36.

[52] The Open Group, “D 9.5—Final project report,” Tech. Univ. Den-
mark, Copenhagen, Denmark, Tech. Rep., 2014. [Online]. Available:
http://www.t-crest.org/page/results

[53] S. Saponara, L. Fanucci, and M. Coppola, “Design and coverage-
driven verification of a novel network-interface IP macrocell for
network-on-chip interconnects,” Microprocess. Microsyst., vol. 35, no. 6,
pp. 579–592, 2011.

[54] A. Radulescu et al., “An efficient on-chip NI offering guaranteed ser-
vices, shared-memory abstraction, and flexible network configuration,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1,
pp. 4–17, Jan. 2005.

[55] P. Kollig, C. Osborne, and T. Henriksson, “Heterogeneous multi-core
platform for consumer multimedia applications,” in Proc. Design, Autom.
Test Eur. (DATE), Apr. 2009, pp. 1254–1259.

[56] S. R. Vangal et al., “An 80-tile sub-100-W TeraFLOPS processor in
65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 29–41,
Jan. 2008.

[57] L. Pezzarossa, “Hardware accelerators in network-on-chip based
multi-core platforms,” M.S. thesis, Dept. Appl. Math. Comput. Sci.,
Tech. Univ. Denmark, Kongens Lyngby, Denmark, 2014.

[58] C. T. Müller, E. Kasapaki, R. B. Sørensen, and J. Sparsø, “Synthesis and
layout of an asynchronous network-on-chip using standard EDA tools,”
in Proc. NORCHIP, Oct. 2014, pp. 1–6.

Evangelia Kasapaki received the B.Sc. and
M.Sc. degrees from the Department of Computer
Science, University of Crete, Rethymno, Greece, in
2006 and 2008, respectively. She is currently pursu-
ing the Ph.D. degree with the Technical University
of Denmark, Kongens Lyngby, Denmark.

She has been an Electronic Design Automation
Software Engineer with Nanochronous Logic, Inc.,
San Jose, CA, USA, from 2008 to 2011, when
she started her Ph.D. degree. Her current research
interests include asynchronous design, networks-on-

chip and system-on-chip design, real-time systems, and electronic design
automation.

Martin Schoeberl (M’01) received the Ph.D. degree
from the Vienna University of Technology, Vienna,
Austria, in 2005.

He was an Assistant Professor with the Institute
of Computer Engineering from 2005 to 2010. He is
currently an Associate Professor with the Technical
University of Denmark, Kongens Lyngby, Denmark.
He has been involved in a number of national and
international research projects, such as JEOPARD,
CJ4ES, T-CREST, RTEMP, and the TACLe COST
action. He has been the Technical Lead of the EC

funded project T-CREST. He has over 100 publications in peer-reviewed
journals, conferences, and books. His current research interests include hard
real-time systems, time-predictable computer architecture, and real-time Java.

Rasmus Bo Sørensen (S’09) received the M.Sc.
degree in computer science from the Technical Uni-
versity of Denmark, Kongens Lyngby, Denmark,
in 2012, where he is currently pursuing the Ph.D.
degree.

He is involved in time-predictable network-on-chip
architectures and programming models.

Christoph Müller was born in Leipzig, Germany, in
1986. He received the bachelor’s degree in informa-
tion technology from the Schmalkalden University
of Applied Sciences, Schmalkalden, Germany,
in 2011, and the master’s degree in system-on-chip
from Lund University, Lund, Sweden, in 2013.

He has been a Project Assistant with Lund Uni-
versity, and a Research Assistant with the Technical
University of Denmark, Kongens Lyngby, Denmark.
His current research interests include digital imple-
mentation with an emphasis on low power and

design methodology.

Kees Goossens (M’03) received the Ph.D. degree in
computer science from the University of Edinburgh,
Edinburgh, U.K., in 1993, with a focus on hardware
verification using embeddings of formal semantics
of hardware description languages in proof
systems.

He was with Philips/NXP Research,
Eindhoven, The Netherlands, from 1995 to
2010, where he was involved in networks-on-
chip for consumer electronics, where real-time
performance, predictability, and costs are major

constraints. He was a part-time Professor with the Delft University
of Technology, Delft, The Netherlands, from 2007 to 2010. He is
currently a Professor with the Eindhoven University of Technology,
Eindhoven, The Netherlands. He has authored three books and over
100 papers, and holds 24 patents. His current research interests include
composable (virtualized), predictable (real-time), low-power embedded
systems, and supporting multiple models of computation.

Jens Sparsø (M’98) is currently a Professor with the
Technical University of Denmark, Kongens Lyngby,
Denmark. He has authored over 70 refereed con-
ference and journal papers, and co-authored a book
entitled Principles of Asynchronous Circuit Design—
A Systems Perspective (Kluwer, 2001), which
has become the standard textbook on the topic.
His current research interests include design of
digital circuits and systems, design of asynchronous
circuits, low-power design techniques, application-
specific computing structures, computer organi-

zation, multicore processors, and networks-on-chips—in short, hardware
platforms for embedded and cyber-physical systems.

Prof. Sparsø was a recipient of the Radio-Parts Award and the Reinholdt
W. Jorck Award in 1992 and 2003, in recognition of his research on
integrated circuits and systems. He received the best paper award at the IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC)
in 2005. One of his papers was selected as one of the 30 most influential
papers of 10 years of the DATE Conference. He is a member of the Steering
Committees of ASYNC and the ACM/IEEE International Symposium on
Networks-on-Chip.


