
Hardware Synchronization for Embedded
Multi-Core Processors

Christian Stoif
Institute of Computer Technology
Vienna University of Technology

stoif@ict.tuwien.ac.at

Martin Schoeberl
Department of Informatics and

Mathematical Modeling
Technical University of Denmark

masca@imm.dtu.dk

Benito Liccardi
BMW Group

Munich, Germany
benito.liccardi@bmw.de

Jan Haase
Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
haase@ict.tuwien.ac.at

Abstract— Multi-core processors are about to conquer embed-
ded systems — it is not the question of whether they are coming
but how the architectures of the microcontrollers should look
with respect to the strict requirements in the field. We present
the step from one to multiple cores in this paper, establishing
coherence and consistency for different types of shared memory
by hardware means. Also support for point-to-point synchro-
nization between the processor cores is realized implementing
different hardware barriers. The practical examinations focus
on the logical first step from single- to dual-core systems, using
an FPGA-development board with two hard PowerPC processor
cores. Best- and worst-case results, together with intensive bench-
marking of all synchronization primitives implemented, show the
expected superiority of the hardware solutions. It is also shown
that dual-ported memory outperforms single-ported memory if
the multiple cores use inherent parallelism by locking shared
memory more intelligently using an address-sensitive method.

I. INTRODUCTION

The following quote from [1] indicates that dealing with
parallelism is mandatory for any field of information technol-
ogy:

If researchers meet the parallel challenge, the future
of IT is rosy. If they don’t it’s not.

Despite the fact that exploiting parallelism has a long history
in computer science it is still uncommon in the field of
embedded systems. Electronic embedded architectures face a
continuous increase in functionality which requires additional
memory and computational power. Due to the stringent envi-
ronmental conditions to be fulfilled, increasing the core fre-
quency of the single-core embedded processor cores is much
more limited than in other fields. As the road maps of leading
semiconductor companies denote, multi-core alternatives for
embedded applications are about to be introduced [2].

The advent of parallelism is a renowned topic in the field
of computer science and there are enough examples that show
how parallelism — in all its undeniable benefit — introduces
new kinds of problems which, unfortunately, are nontrivial in
the majority. However, with ever increasing miniaturization,
introducing parallelism is a natural next step in the evolution
of any microprocessor architecture (e.g. the UltraSPARCI and
the dual-core 64b UltraSPARC [3]).

Conventional parallel architectures have to be judged with
respect to their applicability in the field of embedded systems.

Since the issue here concerns also safety-critical systems
(especially automotive and aeronautics), cost will or should
not be the sole criterion in evaluating promising solutions.

Changing from a single to multiple processor cores is not
without pitfalls and requires prudence. Synchronization is the
main topic that must be addressed. Data synchronization pre-
vents data from being invalidated by parallel access whereas
event synchronization coordinates concurrent execution. One
common mechanism to achieve data synchronization is a lock.

Event synchronization forces processes to join at a certain
point of execution. Barriers can be used to separate distinct
phases of computation and are normally implemented without
special hardware using locks and shared memory [4]. An in-
volved process enters the barrier, waits for the other processes
and then all processes leave the barrier together.

Waiting can be of type busy-waiting or blocking, whereas
locking by busy-waiting is not a preferred locking technique.
This common belief is challenged recently [5], but not re-
garding embedded but database systems. In [6] synchroniza-
tion primitives are analyzed regarding the amount of energy
consumption of busy-waiting vs. blocking methods.

In this paper blocking hardware solutions ensuring synchro-
nization for a multiple number of processor cores are presented
and compared to pure spinning software solutions.

II. RELATED WORK

Locks are implemented in hardware in the CRAY X-MP [7]:
a limited set of lock registers is shared by the processors and
are assigned to certain processes by the operating system.

In [8] the architecture of an early RISC-based multipro-
cessor is described. Each processor has a fixed number of
channels to send data to the other processors, some bytes can
be sent on a channel without blocking the sending processor.
Here support of the compiler is needed to coordinate the
execution of the processes on the different processors.

The synchronization primitives locks, barriers and lock-free
data structures are the focus of attention in [9]. The classical
implementations of those primitives are compared against
hybrid synchronization primitives that use hardware support
and the caches to improve efficiency and scalability, yielding
promising results that seem to justify hardware acceleration.



In the specialized multi-core architecture described in [10]
a DSP-, RISC- and VLIW-core are connected by a 64-bit
AMBA AHB bus. For fast synchronization each pair of the
three cores share dual-ported memory on-chip. Caching is
not done for the on-chip but for the off-chip memory (SD-
RAM). The work in [10] shows some relevance regarding the
hardware configurations used and described in this paper.

In [11] an analysis of how to provide an efficient synchro-
nization by barriers on a shared memory multiprocessor with
a shared multi-access bus interconnection is described. An
innovative, perhaps unorthodox, alternative to ordinary barriers
is given in [12]: the waiting of a thread is forced by continuous
invalidation of the respective instruction cache.

An example of global event synchronization across parallel
processors using a barrier support library is given in [13], a
compiler is needed to produce the parallelized binary code.
Besides the performance overhead due to waiting, barriers also
have a significant power consumption [14] as disadvantage.

Different barrier implementations for many-core architec-
tures are analyzed in terms of efficiency and scalability in [15],
proving that the scaling behavior of actual hardware imple-
mentations can differ to the expected scaling behavior.

Directly related to the topic of this paper is the work done
in [16], the on-chip global synchronization unit presented there
shares ideas with the work presented in this paper. In [16]
this synchronization unit is only simulated, in our paper we
actually implemented such an on-chip synchronization aid in
hardware too. On the other hand in [17] hardware implementa-
tions of basic synchronization mechanisms are described. This
was done here for comparison reasons as well, previously to
designing and implementing the synchronization unit which
is the main part of this work. The mechanisms realized
in [17] are building on vendor-specific bus systems, lacking
the advantage of direct on-chip synchronization realized here.

Similar system architectures based on FPGAs are discussed
in [18] with respect to accelerating data processing.

III. HARDWARE SYNCHRONIZATION

A hardware-environment based on hard-wired processor
cores and on-chip shared memory is the fundament for the
implementation and practical verification of the concepts pre-
sented in this paper. The main focus is on how to achieve
reliable communication between the processor cores using the
on-chip shared memory.

Fig. 1. Scheme of an efficient race for access

A. Problem

Synchronization between the arbitrary number of cores in
their access to the shared memory is necessary. An efficient
mechanism to resolve arbitrary concurrent requests for our
critical resource should fulfill the following demands:

• Efficiency:
– only cores actually competing for access attend the

race and can become its winner
– the race itself must not consume much time

⇒ ideally the race elects one winner per cycle
• Fairness:

– no competitor waits indefinitely to get access
– each competitor is served in a finite time

⇒ ideally the worst-case waiting time is bounded
only by the number of processor cores

All requirements are met with the synchronization mecha-
nism developed and described in the following.

B. Concept

In order to fulfill the efficiency and fairness demands a syn-
chronization mechanism has been developed. A simple round
robin scheme cycling all available processor cores would
require minimal resources for implementation but would be
very inefficient when only a few cores want to access the
shared memory. As shown in Fig. 1 only the cores which really
need access are considered for it by our mechanism. Processor
cores that have to wait are blocked until it is their turn. The
worst case occurs in the situation when all the available cores
want access to the shared memory simultaneously, resulting in
different waiting times. In order to avoid any processor core
to be favored or discriminated a dynamic priority scheme is
used to choose the access-order.

A global locking scheme making not just arbitrary single
but also multiple accesses to the shared memory atomic is
present as well. Global locking is offered by a global locking
bit that is shared by all processor cores in the system.

Fig. 2. Parallel access to different memory-regions by address-sensitivity

Locking the whole shared memory when accessing essen-
tially only a small area of the memory is not very efficient.



Therefore a special form of address-sensitive locking that
allows the locking of just blocks instead of the whole shared
memory has been developed and implemented. This enables
concurrent read- and write-access to regions of shared mem-
ory, as is demonstrated for two cores in Fig. 2.

For event synchronization simple barriers using fixed con-
figuration bit patterns and more flexible complex barriers
have been developed, the latter ones allow to specify multiple
barriers for different subsets of the available processor cores.

C. Realization

The developed Multi-Access Controller (MACtrl) consists
of core-side and inter-core logic as shown in Figure 3.

Fig. 3. Memory-access controller (MACtrl), abstraction

A fully generic design of the MACtrl has been developed
in the hardware description language VHDL in order to allow
easy scaling in terms of the processor cores. The goal to keep
the design as compact as possible is achieved by a code-
optimized algorithm that selects the next core that is allowed
to access the shared memory in case of concurrent requests.
The algorithm continuously cycles the highest priority among
all available cores. Only cores requesting access are used and
the other cores are masked out in the process.

In order to execute multiple accesses atomically also global
locking is implemented using a variation of the algorithm.

Address-sensitive locking is activated as soon as an upper
and a lower address of a memory block is loaded into the
respective registers of the MACtrl. Then the block of memory
is tried to be locked by the controller. Due to their very nature,
global locking and address-sensitive locking are implemented
to be mutual exclusive - the two access methods cannot be
used simultaneously to access the shared memory.

Simple barriers are the easiest method to achieve efficient
point-to-point synchronization: each core that wants to meet
at a given point of execution writes an arbitrary value to a
dedicated barrier register of the MACtrl. Then the respective
processor core is blocked until at least one other core writes
to its corresponding counterpart-register.

With more than two processor cores in the system, extended
simple barriers offer the possibility to define exactly for what

other cores to wait for. Each bit in the register corresponds
to the fixed number of a processor core in the system. The
drawback is that the number of the cores must be known at
compile-time.

A more flexible replacement for the extended simple barriers
are complex barriers. They allow a more hardware-remote
— abstracted — level of programming: the numbers of the
processor cores must not be known in advance, only the
number of other cores to wait for, making it irrelevant on
what processor core the program will eventually be executed.

IV. IMPLEMENTATION

All the hardware synchronization methods described in the
previous Section were successfully simulated for four, some
of them also for eight processor cores. From the beginning on
there was no assumption limiting the number of cores.

A. System Configuration

Fig. 4. Configuration of dual-core test system

For the actual hardware implementation the dual-core case
could be examined thoroughly using a Xilinx development
board ML410 with a mounted FPGA Virtex-4 FX60 contain-
ing two hard PowerPC processor cores and a dual-ported block
RAM which is used as on-chip shared memory. The generic
design has been specialized to fit as on-chip logic to the
system at hand, using the on-chip memory interface (OCM) for
accessing the shared memory and taking advantage of its two
ports (concurrent reads possible). Also external shared SD-
RAM was used as shared memory. The basic configuration of
the system is drafted in Figure 4, freed from irrelevant vendor-
specific details which can be found in [19], [20].

All implemented types of synchronization mechanisms were
tested. As most important case the worst case of incessant
access to the shared memory was simulated with the help of
assembler routines. The core frequency of the processor cores
was 100 MHz when conducting the following test data sets.



Fig. 5. Performance of single accesses to shared memory over all methods

B. Results
Figure 5 and Table I clearly show the superiority of the

MACtrl with implicit and explicit locking to the badly perform-
ing spinning software locking methods. A total of 10 million
successive single or paired accesses (read/write-pairs) to the
same word in shared memory are executed in sum by both
processor cores, resulting in countless conflicts between them.

In order to test address-sensitive locking an artificial sce-
nario with overlapping memory blocks was constructed. Each
processor core reserves a memory block, accesses it and
then relocates it by an arbitrary offset. Relocation is done
in opposite directions, hence conflicts between the processor
cores occur. The promising results are presented in Table II.

Synchronization Details No Massive
Contention

([access-target], [locking details]) (ms)
MACtrl 1030 1054
Spinning lock in on-chip memory 2734 4426
Spinning PLB-lock 2890 5512
Spinning OPB-lock 3681 7071
Shared SDRAM, spinning PLB-lock 4058 8116
Shared SDRAM, spinning OPB-lock 4874 8627

TABLE I
PAIRED ACCESSES, EXACT VALUES WITH LOCK-DETAILS

Synchronization Details No Massive
Contention

([access-target], [locking details]) (ms)
MACtrl address lock 12144 12767
MACtrl global 13628 27496
Spinning lock in on-chip memory 12186 24608
Spinning PLB-lock 12707 24654
Spinning OPB-lock 12722 24679
Shared SDRAM, spinning PLB-lock 22215 46001
Shared SDRAM, spinning OPB-lock 22232 47241

TABLE II
BLOCK ACCESSES TO DIFFERENT REGIONS OF MEMORY

V. CONCLUSION

The problem of synchronization in multi-core systems with
shared memory demands for efficient and reliable solutions, in
particular for embedded systems. An approach is to integrate
the synchronization mechanisms, which are normally based on
locks, into the on-chip hardware. This guarantees fairness and
stability, avoiding poor performance under load, starvation and
even deadlock. A specialization of the multi-core approach to
a dual-core PowerPC system proved the clear superiority of
the hardware over software solutions that were implemented.
Ongoing and future research focuses on testing efficient par-
titions of real embedded software on multi-core systems with
hardware synchronization like the one presented here.

REFERENCES

[1] K. Asanovic et al., “A view of the parallel computing landscape,” in
Communications of the ACM, Vol. 52, No. 10. ACM Press, October
2009, pp. 56–67.

[2] D. McGrath, “Intel rolls quad-core CPUs for embedded computing.”
EE Times, April 2007. [Online]. Available: http://www.eetimes.com

[3] T. Takayanagi et al., “A dual-core 64b UltraSPARC Microprocessor for
Dense Server Applications,” Sun Microsystems, Sunnyvale, USA, 2004.

[4] D. E. Culler and J. P. Singh, “Parallel Computer Architecture, a hw/sw
approach.” Morgan Kaufmann Publishers, Inc., Editorial and Sales
Office, San Francisco, U. S. A., 1999.

[5] R. Johnson et al., “A New Look at the Roles of Spinning and Blocking,”
in Proceedings of the Fifth International Workshop on Data Management
on New Hardware, Providence, Rhode Island. ACM Press, June 2009.

[6] C. Ferri, I. Bahar, M. Loghi, and M. Poncino, “Energy-optimal synchro-
nization primitives for single-chip multi-processors,” in GLSVLSI’09,
Boston, Massachusetts. ACM Press, May 2009, pp. 141–144.

[7] M. C. August et al., “Cray X-MP: The Birth of a Supercomputer,” Cray
Research, 1989.

[8] R. Gupta et al., “The Design of a RISC based Multiprocessor Chip,”
University of Pittsburgh, Philips Laboratories New York, 1990.

[9] Nikolopoulos and Papatheodorou, “Fast synchronization on scalable
cache-coherent multiprocessors using hybrid primitives,” University of
Patras, Greece, 2000.

[10] H.-J. Stolberg et al., “HiBRID-SoC: A multi-core System-on-Chip
architecture for multimedia signal processing applications,” Universitaet
Hannover, Germany, 2003.

[11] S. Y. Cheung and V. S. Sunderam, “Performance of Barrier Synchroniza-
tion Methods in a Multi-Access Network,” Emory University, Atlanta,
Georgia, 1993.

[12] J. Sampson et al., “Fast synchronization for chip multiprocessors,” in
ACM SIGARCH Computer Architecture News, Vol. 33, UCSD, UPC
Barcelona, Palo Alto, California, 2005.

[13] A. Marongiu, L. Benini, and M. Kandemir, “Lightweight barrier-based
parallelization support for non-cache-coherent MPSoC platforms,” in
CASES’07, Salzburg, Austria. ACM Press, Sept. 2007, pp. 145–149.

[14] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin, “Exploiting
barriers to optimize power consumption of CMPs,” in Proceedings of
IPDPS, 2005.

[15] O. Vila, G. Palermo, and C. Silvano, “Efficiency and scalability of barrier
synchronization on NoC based many-core architectures,” in CASES’08,
Atlanta, Georgia, USA. ACM Press, October 2007, pp. 81–89.

[16] E. W. Lynch and G. F. Riley, “Hardware supported time synchroniza-
tion in multi-core architectures,” in ACM/IEEE/SCS 23rd workshop on
principles of advanced and distributed simulation. IEEE Press, 2009,
pp. 88–94.

[17] A. Tumeo et al., “HW/SW methodologies for synchronization in FPGA
multiprocessors,” in FPGA’09, Monterey, California, USA. IEEE Press,
2009, pp. 265–268.

[18] R. Mueller, J. Teubner, and G. Alonso, “Data processing on FPGAs,”
in VLDB’09. ACM Press, August 2009, pp. 910–921.

[19] ML410 Embedded Development Platform User Guide, v1.6.1 UG085,
Xilinx, 2007.

[20] Virtex-4 Family Overview, v3.0 DS112, Xilinx, 2007.


