
A Simple NIOS II SOPC Builder Design

Martin Schoeberl
martin@jopdesign.com

August 8, 2006

1 Introduction

Altera’s SOPC-Builder is a powerful tool to create complete systems containing a processor,
peripheral devices and memory interfaces. We will show the steps for ‘Hello World’ example
with NIOS on the Cyclone board Cycore.

2 Quartus Design Flow

All your design files (VHDL files) make up a project in Quartus. A Quartus II project
is defined in Quartus II with just three files: projectname.qpf, projectname.qsf, and
projectname.cdf. Those project files are plain text files and can be edited with any edi-
tor1.

2.1 Create a New Project

Start Quartus II and create a new project with:

1. File – New Project Wizzard...

2. Select a project directory and select a project name. The project name is usually the
name of the top-level design entity. In our case simple

3. In the next dialog box the VHDL source files can be added to the project. As we have
no VHDL files at the moment we will skip this step

4. We have to select the target device. Choose family Cyclone and depending on your
board either select EP1C6Q240C8 or EP1C12Q240C8 as device

5. We leave the EDA tools settings blank

6. Press Finish at the summary window
1Close your Quartus II project before editing the files



2.2 Device and Pin Options

As the default settings in Quartus II for a device are dangerous2 we specify more details for
our target device:

1. Assignments – Device to open the device properties

2. Press the button Device & Pin Options...

3. Important! At the tab Unused Pins select As input tri-stated.

4. Selected in tab Voltage LVCMOS; it is the better IO standard to interface e.g. SRAM
devices

5. Close it with OK

6. Press teh Button Migration Devices... and add the second device to have EP1C6 and
EP1C12 as migration devices

7. Close it with OK

8. Close the dialog box and the next with OK

2.3 Pin Assignment

To avoid assigning each pin location manually we will import the pin assignments for the
Cycore board:

1. Open the Pin Planner with Assignments – Pins

2. Import the assignments with Assignments – Import Assignmnts...

3. Select file cycore.csv and close with OK

4. The All Pins window should now contain all pins

5. The Pin Planner can now be closed

2At the default setting the unused pins drive ground. However, some power pins from the EP1C12 are user
pins in the EP1C6. The Cycore PCB can be used for both devices and therefore provides power on those
pins. Driving them with ground (in the EP1C6) results in a short circuit between the ground driving pins and
power.

2



2.4 SOPC Build

A simple NIOS-II system can be built with the SOPC builder:

1. Start SOPC builder with Tools SOPC Builder... and select a system name (e.g. nios system)

2. Change the clock to 20.0 MHz

3. add a NIOS, On-Chip Memory (4 KB), and the JTAG UART

4. Select System – Auto Assign Base Addresses

5. Uncheck Simulation on the System Generation tab

6. Press the Generate button

7. Press Exit

8. Add all generated VHDL files with Project – Add/Remove Files in Project...

2.5 The Top Level VHDL File

Add a VHDL file to the project with File – New... and select VHDL File. Enter the code from
Figure 1 and save the file with filename simple.

2.6 Compiling and Pin Assignment

The analysis, synthesize, map, and place & route processes are all started with Processing –
Start Compilation.

Check the correct assignment in the compilation report under Fitter – Pin-Out-File. The
clk pin should be located at 152; all unused pins should be listed as RESERVED INPUT. Pin 81
should be a VCCINT pin (it is a user pin for the EP1C6, but a power pin for the EP1C12).

2.7 FPGA Configuration

Downloading your hardware project into the FPGA is called configuration. There are several
ways an FPGA can be configured. Here we describe configuration via JTAG.

2.7.1 ByteBlaster

This section describes configuration via ByteBlasterMV connected to the printer port.

1. Connect your ByteBlasterMV to the printer port of the PC

2. Connect the other end to the JTAG header on the FPGA board. The red wire should
point to pin 1 (written on the PCB)

3. Start the programmer with Tools – Programmer

3



--
-- simple.vhd
--
-- top level for SOPC/NIOS II experiments
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity simple is

port (
clk : in std_logic

);
end simple;

architecture rtl of simple is

component nios_system is
port (

signal clk : in std_logic;
signal reset_n : in std_logic

);
end component nios_system;

begin

-- Instantiate the Nios II system entity generated by the SOPC Builder.
nios: nios_system port map (clk, ’1’);

end rtl;

Figure 1: The top-level VHDL file for the NIOS II system

4



4. Press the button Auto Detect – the programmer window should list two devices: an
EPM2064A/7064AE and an EP1C6 or EP1C12

5. Double click for the filename of the EP1C6/12 device and select simple.sof. Leave
the file blank for the EPM2064A/7064AE device

6. Select the checkbox under Program/Configure for the EP1C6/12 and press the Start
button to configure the FPGA

For the evaluation version a message box titled OpenCore Plus Status opens. Keep it open
and start the NIOS IDE.

2.8 NIOS II IDE

The NIOS development system comes with an adapted version of Eclipse for C/C++ develop-
ment. Follow the tutorial and create the small version of the ‘Hello World’ program:

1. File – New – C/C++ Application

2. Select a name

3. Select your SOPC project in SOPC Builder System

4. Select Hello World Small

5. Press Finish

6. Right click on your project and select Build Project

7. Right click on your project and select Run As – Nios II Hardware to start the program

You should now see in the console: Hello from Nios II!

2.9 External SRAM

We will now add one external SRAM chip to the NIOS II design.

1. Remove the On-Chip Memory from the design

2. See details in the Quartus II manual, SOPC Volume, Section: Off-Chip SRAM & Flash
Memory

3. Create a SRAM component and add it to the SOPC system

4. Adapt the top-level simple.vhd

Figure 2 and 3 show our new top-level design. This system now contains 512 KB memory
and can run bigger applications. Try out the standard ‘Hello World’ example from the NIOS
II IDE.

Addition of the second SRAM chip for a 32 bit memory system is straight forward. Just
make sure that both chip’s address and control lines are connected to the signals from the
SOPC design.

5



--
-- simple.vhd
--
-- top level for SOPC/NIOS II experiments
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity simple is

port (
clk : in std_logic;
--
-- only one ram bank
--
rama_a : out std_logic_vector(17 downto 0);
rama_d : inout std_logic_vector(15 downto 0);
rama_ncs : out std_logic;
rama_noe : out std_logic;
rama_nlb : out std_logic;
rama_nub : out std_logic;
rama_nwe : out std_logic

);
end simple;

architecture rtl of simple is

signal int_res : std_logic;
signal res_cnt : unsigned(2 downto 0) := "000"; -- for the simulation
-- for generation of internal reset
attribute altera_attribute : string;
attribute altera_attribute of res_cnt : signal is "POWER_UP_LEVEL=LOW";

signal byte_nena : std_logic_vector(1 downto 0);
signal address : std_logic_vector(18 downto 0);

Figure 2: The top-level VHDL file for the NIOS II system with an external 16 bit SRAM

6



begin

--
-- internal reset generation
-- no extern reset, epm7064 has too less pins
--
process(clk)
begin
if rising_edge(clk) then

if (res_cnt/="111") then
res_cnt <= res_cnt+1;

end if;
int_res <= not res_cnt(0) or not res_cnt(1) or not res_cnt(2);

end if;
end process;

--
-- Instantiate our Nios II system
--
nios: work.nios_system port map (

-- 1) global signals:
clk => clk,
reset_n => not int_res,

-- the_tri_state_bridge_0_avalon_slave
chipselect_n_to_the_ext_ram => rama_ncs,
read_n_to_the_ext_ram => rama_noe,
tri_state_bridge_0_address => address,
tri_state_bridge_0_byteenablen => byte_nena,
tri_state_bridge_0_data => rama_d,
write_n_to_the_ext_ram => rama_nwe

);

rama_nlb <= byte_nena(0);
rama_nub <= byte_nena(1);
-- A0 from the avalon interface is NC on 16-bit SRAM
rama_a <= address(18 downto 1);

end rtl;

Figure 3: The top-level VHDL file for the NIOS II system with an external 16 bit SRAM
(cont.)

7



3 Links

• Quarts II Web Edition – VHDL synthesis, place and route for Altera FPGAs

• Quartus II Development Software Handbook – includes the SOPC builder volume

• Cycore Schematic – The board used in this example

• cycore.csv – The pin definitions for the Cycore board

• hello world.pdf – The FPGA Hello World Example

8

https://www.altera.com/support/software/download/altera_design/quartus_we/dnl-quartus_we.jsp
http://www.altera.com/literature/lit-qts.jsp
http://www.jopdesign.com/cyclone/cyc.pdf
http://www.jopdesign.com/cyclone/cycore.csv
http://www.jopdesign.com/cyclone/hello_world.pdf

	Introduction
	Quartus Design Flow
	Create a New Project
	Device and Pin Options
	Pin Assignment
	SOPC Build
	The Top Level VHDL File
	Compiling and Pin Assignment
	FPGA Configuration
	ByteBlaster

	NIOS II IDE
	External SRAM

	Links

